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Abstract. Poincaré profiles are analytically defined invariants, which provide

obstructions to the existence of coarse embeddings between metric spaces. We

calculate them for all connected unimodular Lie groups, Baumslag–Solitar

groups and Thurston geometries, demonstrating two substantially different

types of behaviour. For Lie groups, our dichotomy extends both the rank one

versus higher rank dichotomy for semisimple Lie groups and the polynomial

versus exponential growth dichotomy for solvable unimodular Lie groups. We

provide equivalent algebraic, quasi-isometric and coarse geometric formula-

tions of this dichotomy.

As a consequence, we deduce that for groups of the form N × S, where

N is a connected nilpotent Lie group, and S is a rank one simple Lie group,

both the growth exponent of N , and the conformal dimension of S are non-

decreasing under coarse embeddings. These results are new even for quasi-

isometric embeddings and give obstructions which in many cases improve those

previously obtained by Buyalo–Schroeder.

Contents

1. Introduction 1

2. Lie theoretic results 12

3. Embeddings of Diestel–Leader graphs 21
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1. Introduction

The notion of coarse embedding is very natural, since the inclusion of one com-

pactly generated locally compact group as a closed subgroup of another automat-

ically yields a coarse embedding with respect to the relevant word metrics. While

remarkable progress has been made on the much more restrictive class of quasi-

isometric embeddings – especially for high rank symmetric spaces and their lattices

[KL97, EF97, FW18, FN20] – the techniques involved typically say nothing about

coarse embeddings. As a consequence, many natural questions have been so far
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intractable; for instance, whether there is a coarse embedding H3
R → H2

R × Rd for

some d ∈ N (cf. [BST12, Question 5.4]).1

The separation profile was introduced by Benjamini, Schramm and Timar in

[BST12] as a new tool to provide obstructions to regular maps between bounded

degree graphs: in this setting, coarse embeddings are examples of regular maps.

In [HMT18], we introduced a new family of invariants: the Lp-Poincaré profiles,

which interpolate between the separation profile (for p = 1) and a function of the

volume growth (for p =∞). We computed all the Lp-Poincaré profiles in a number

of instances, including rank 1 simple Lie groups and groups of polynomial growth.

This already produced new obstructions to coarse embeddings: e.g. from H2
H to

H10
R (see [HMT18, Corollary 15] for a general statement). In this paper we push

this study much further by computing the Lp profiles for all connected unimodular

Lie groups, deducing in particular a negative answer to the question above (see

Corollary 1.14).

For the rest of this introduction, let us call a metric space standard if it is quasi-

isometric to a bounded degree graph. The class of such spaces includes bounded

degree graphs themselves, which in this paper are assumed to be connected, but

also Riemannian manifolds with bounded geometry, and compactly generated lo-

cally compact groups equipped with their word metric. Our main focus will be on

connected Lie groups, which are duly compactly generated.

This introduction is organized as follows: in §1.1, we recall the definitions of

Poincaré profiles, and of regular, coarse and quasi-isometric embeddings. We then

introduce the notions of analytically thin/analytically thick metric spaces. From

there on, we state our results. §1.2 contains our first main contribution: we show

that the Lp-profiles have two distinct types of asymptotic behaviour (analytically

thin/thick), and we characterize each one in terms of the Lie algebra of the group

(algebraically thin/thick). In §1.3, the complete calculation of the Lp profiles of

unimodular connected Lie groups is given. We also obtain a range of new obstruc-

tions to coarse embeddings which mainly (but not exclusively) follow from these

calculations of Lp-profiles.

1.1. Background.

1.1.1. Poincaré profiles. Poincaré inequalities are fundamental tools in analysis,

controlling function norms by the norm of their derivatives on a given space. For a

finite graph Γ, with vertex set V Γ and edge set EΓ we can quantify the extent to

which an Lp-Poincaré inequality holds by defining its Lp–Poincaré constant, for

p ∈ [1,∞]:

hp(Γ) = inf

{
||∇f ||p
||f ||p

: f : V Γ→ R,
∑
v∈V Γ

f(v) = 0, f 6≡ 0

}
where ∇f : V Γ → R is defined by ∇f(x) = max {|f(x)− f(y)| : xy ∈ EΓ} . For

p = 1, we recover the Cheeger constant of the graph, while for p = 2, h2(Γ)2

is comparable to the first positive eigenvalue of the graph Laplacian (and indeed

would equal it for a different choice of gradient norm). This constant is usually

interpreted as a measure of how “well-connected” the graph Γ is (in particular it is

positive if and only if the graph is connected).

1Using asymptotic dimension, there are no coarse (or even regular) embeddings for d = 0. In

the case d = 1, coarse embeddings do not exist by [Li18, Corollary 4.49].
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Inspired by Benjamini–Schramm–Timar’s “separation profile” [BST12], in a pre-

vious paper [HMT18] we used Lp-Poincaré constants to define a family of invariants

for infinite graphs.

Definition 1.1. For an infinite bounded degree graphX, we define its Lp–Poincaré

profile ΛpX : N→ R to be

ΛpX(r) = sup {|V Γ|hp(Γ) : Γ ≤ X, |V Γ| ≤ r} .

We consider functions up to the natural order . where f . g if there exists a

constant C such that f(r) ≤ Cg(Cr+C)+C for all r, and f ' g if f . g and g . f .

As mentioned above, Lp-Poincaré profiles interpolate between the separation profile

(for p = 1) and a function of the volume growth (for p =∞) [HMT18].

It turns out that the asymptotic behaviours of Poincaré profiles are invariant

under quasi-isometry [BST12, HMT18]. Hence one can define the Poincaré profiles

of a standard metric space to be those of a fixed bounded degree graph which is

quasi-isometric to it. This definition is indirect and not always useful in practice,

but we shall stick to it in this introduction in order to keep the presentation as

elementary as possible. Let us simply mention that it is possible to generalize the

definition of Poincaré profiles to a class of metric measure spaces including bounded

degree graphs, Riemannian manifolds with bounded geometry and compactly gen-

erated locally compact groups equipped with their word metric and Haar measure

[HMT18, §4] (we shall use this definition in §4.2).

1.1.2. Poincaré profiles as obstructions to embeddings. In addition to their natural

interest, Lp-Poincaré profiles are of use as obstructions to regular maps in the sense

of [BST12]: if X and X ′ are bounded degree graphs and there exists a regular

map X → X ′, then ΛpX . ΛpX′ for all p ∈ [1,∞] ([BST12, Lemma 1.3] for p = 1,

[HMT18, Theorem 1] for all p). Recall

Definition 1.2 ([BST12, §1.1] and [BS96, Definition 1.3]). A map φ : X → Y

between bounded degree graphs is regular if it is Lipschitz and (at most m)-to-one

for some m ∈ N, i.e. for all y ∈ Y , |φ−1({y}| ≤ m.

Note that regularity is stable under post and pre-composition by quasi-isometries.

This allows us to define a regular map φ : X → Y between two standard metric

spaces as follows: if ΓX and ΓY are bounded degree graphs and iX : ΓX → X

and pY : Y → ΓY are quasi-isometries, then φ : X → Y is regular if and only if

pY ◦ φ ◦ iX is regular. By the remark above, this definition is independent of the

choice of ΓX ,ΓY , iX , pY .

The prototypical example of regular map between bounded degree graphs is an

injective Lipschitz map. In fact, it is easy to see that on replacing Y by Y × F for

some finite graph F , every regular map is at bounded distance from an injective

Lipschitz map.

Recall that a map φ : (X, dX) → (Y, dY ) between metric spaces is a coarse

embedding if there exist increasing functions ρ± : [0,∞) → [0,∞) such that

ρ−(r)→∞ as r →∞ and for all x, x′ ∈ X
ρ−(dX(x, x′)) ≤ dY (φ(x), φ(x′)) ≤ ρ+(dX(x, x′)).

When ρ−, ρ+ are affine functions φ is called a quasi-isometric embedding. In

the context of graphs, coarse embeddings are obviously ρ+(1)-Lipschitz. Moreover,

for all y = f(x), φ−1({y}) is contained in B(x, ρ−1
− (0)). Hence coarse embeddings

between bounded degree graphs are regular maps. More generally we deduce that

coarse embeddings between standard metric spaces are regular maps.
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1.1.3. Analytically thin versus thick metric spaces. Now let us focus for the moment

on the p = 1 case, where the Poincaré profile is equivalent to the separation profile

of Benjamini–Schramm–Timár. It follows by definition that for all bounded degree

graph X, one has Λ1
X(r) . r. For virtually nilpotent groups, or Gromov hyperbolic

groups, the separation profile has a bound Λ1
G(r) . ra for some a < 1 [BST12].

Second, for the product of two non-abelian free groups F ×F , the separation profile

is Λ1
F×F (r) ' r/ log(r) [BST12]. The lower bound of r/ log(r) therefore holds for

the separation profile of any finitely generated group containing F×F as a subgroup.

More generally, all examples of groups whose separation profile has been calculated

exactly satisfy exactly one of the following two properties.

Definition 1.3. We say that a standard metric space is analytically thin if there

exists a < 1 such that Λ1
X(r) . ra. On the other hand we call it analytically thick

if Λ1
X(r) & r

log r .

The corresponding version of Definition 1.3 for the L∞ profile is that “thin”

spaces have (at most) polynomial growth and “thick” spaces have exponential

growth (this follows from [HMT18, Proposition 6.1]). Many classes of groups such

as linear and elementary amenable groups do not contain any intermediate growth

groups. More specifically for connected Lie groups, this dichotomy has an elegant

algebraic formulation which can be read off the Lie algebra [Gui73]. One of the

main objectives of this paper is to show that connected unimodular Lie groups

are either analytically thick or analytically thin, and to provide nice and workable

algebraic translations of these properties.

1.2. An analytic, geometric and algebraic dichotomy.

1.2.1. A dichotomy for connected unimodular Lie groups. Connected Lie groups

offer a fascinating playground for exploring the relationship between the algebraic

properties of a group and the geometric properties of the metric spaces on which

it acts, as their algebraic properties are conveniently encoded in the Lie algebra.

There are many examples of these relationships, including the already mentioned

algebraic characterization of Lie groups of polynomial growth; Varopoulos’s classi-

fication according to the large time behaviour of symmetric random walks [VSC92]

using both analytic and geometric methods; Pansu’s Lp-cohomology methods char-

acterizing Gromov hyperbolicity for such groups [Pan89b, CT11]; and Cornulier–

Tessera’s algebraic characterization of Lie groups whose Dehn function is polyno-

mially bounded [CT17].

Our main result has a similar flavour as it consists in identifying algebraic coun-

terparts of being analytically thin/thick.

Definition 1.4. A connected Lie group G with solvable radical R and Levi factor

S is algebraically thin if

• its R-rank is at most 1;

• [Snc, R] = 1, where Snc is the non-compact part of S;

• R is an NC-group.

Otherwise it is called algebraically thick.

The concept of NC-group appears in various articles by Varopoulos, for instance

[Var96, §1.2]; we refer to §2.1 for the full definitions of this and of R-rank. In

the case R is a solvable connected real Lie group, then R is an NC-group if it

admits a closed normal subgroup E such that R/E has polynomial growth and

some element of R acts on E as a contraction, see Lemma 2.5. This includes the
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case R itself has polynomial growth, since any α acts on E = {1} as a contraction

(since αn converges to the identity on compact sets). If such solvable connected R

is unimodular, then it is NC if and only if has polynomial growth.

The examples of algebraically thin groups that will be most important to us are

direct products R × S where R has polynomial growth and S is either trivial or

semisimple of rank 1. While we already know that rank 1 semisimple Lie groups and

connected Lie groups of polynomial growth are analytically thin, we are now able

to show that their direct product is as well. More generally, we have the following

dichotomy.

Theorem 1.5. Let G be a connected unimodular Lie group. Then G is algebraically

thin (resp. thick) if and only if it is analytically thin (resp. thick). Moreover, if it

is algebraically thick, then ΛpG(r) ' r/ log(r) for every p ∈ [1,∞].

As each polycyclic group is virtually a uniform lattice in a connected unimodular

solvable Lie group, such groups satisfy a similar dichotomy.

Corollary 1.6. Let G be a polycyclic group. If G has polynomial growth, then

it is analytically thin. Otherwise, it is analytically thick, and moreover satisfies

ΛpG(r) ' r/ log(r) for every p ∈ [1,∞].

Some remarks are in order.

(1) Since connected Lie groups have finite Assouad–Nagata dimension, from

[HMT18, §9] we deduce that every connected Lie group G satisfies ΛpG(r) .
r/ log(r) for every p ∈ [1,∞], giving sharp upper bounds for analytically

thick groups.

(2) Further examples of NC-groups include all direct products R = H × N

where N is a connected real nilpotent Lie group and H is a Heintze group

(i.e. of the form E o R with every positive element of R acting as a con-

traction on E). To see this, write R = E o (R × N): it is clear that E

is a closed normal subgroup of R and that R/E has polynomial growth.

Finally, any non-trivial element (or its inverse) of the R factor acts on E

as a contraction.

(3) The condition [Snc, R] = 1 appears in various works dealing with algebraic

characterizations of certain analytic properties of Lie groups. A first occur-

rence of this condition appears in Varopoulos’s work on the diffusion of the

heat kernel in [Var96, §1.8], as reported in [CPS07, Theorem 7.1]: in his

context, G is assumed to be unimodular, and R of polynomial growth. It

appears in the characterization of the Haagerup property [CCV01], and of

weak amenability [CDSW05]: there Snc is assumed to contain only certain

rank one factors. More recently, Chatterji, Pittet and Saloff-Coste proved

that a connected Lie group has Property RD if and only if its Lie algebra

has the form ros with [snc, r] = 0 and r has type R [CPS07, Theorem 0.1.].

1.2.2. More characterizations of algebraically thin groups. Let G be an algebraically

thin connected Lie group with solvable radical R and Levi factor S. Then exactly

one of the following holds (see Proposition 2.4):

(a) G has polynomial growth;

(b) S has R-rank 1, [Snc, R] = 1 and R has polynomial growth; or

(c) S is compact and R is an NC-group with R-rank 1.

We observe that (a) and (b) exactly correspond to the case where G is unimodu-

lar (as an NC-group is unimodular if and only if it has polynomial growth). We
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prove that unimodular algebraically thin groups reduce up to quasi-isometry to the

following class of groups (see Corollary 2.20 for a more algebraic statement which

implies this one).

Proposition 1.7. An algebraically thin connected unimodular Lie group is quasi-

isometric to either P or a direct product P ×HmK , where P is a connected Lie group

of polynomial growth, K ∈ {R,C,H,O} and m ≥ 2 with m = 2 when K = O.

Below is an easy consequence of Theorem 1.5 – and the Bonk-Schramm embed-

ding theorem [BS00] – providing an algebraic characterization of connected uni-

modular Lie groups which admit certain embeddings into certain standard product

spaces.

Theorem 1.8. Let G be a connected unimodular Lie group. The following are

equivalent:

(i) G is algebraically thin;

(ii) G admits a regular map into Rn ×HmR for some n,m ≥ 0;

(iii) idem with ‘coarse embedding’;

(iv) G admits a quasi-isometric embedding into P ×HmR for some connected Lie

group P with polynomial growth, and some m ≥ 0.

Although it only applies to unimodular groups, this theorem should be compared

with Cornulier’s algebraic characterization of connected Lie groups admitting a

quasi-isometric embedding into a CAT(0) space [C08].

Note that in (iv) one needs such a P rather than Rn since, for example, the

Heisenberg group does not quasi-isometrically embed into any Rn.

1.2.3. More characterizations of algebraically thick groups. The following result is

a partial version of Theorem 1.5 valid without the unimodularity condition.

Theorem 1.9. Let G be a connected Lie group. If G is algebraically thick, then

ΛpG(r) ' r/ log(r) for every p ∈ [1,∞]. In particular G is analytically thick.

An important ingredient in the proof of Theorem 1.9 is the following useful

characterization of algebraically thick Lie groups. The following proposition says

that within a slightly restricted class of connected Lie groups, there are two types

of ‘minimal’ algebraically thick groups: SOLa = R2 o(1,−a) R, for a > 0, and the

split oscillator group Osc = Heis3 o(1,−1,0)R. We denote by sola and osc their

respective Lie algebras.

Proposition 1.10. Let G be a connected linear real Lie group whose radical R is

real-triangulable. The following are equivalent:

(i) G is algebraically thick;

(ii) G admits a closed undistorted subgroup isomorphic to either SOLa for some

a > 0, or Osc;

(iii) g has a Lie subalgebra isomorphic to either sola for some a > 0, or osc.

Recall that a real-triangulable Lie group is a connected, simply connected

Lie group which admits a continuous faithful triangulable real representation. To

the best of our knowledge, this characterization is new, but its statement and

proof are similar to previous works (for instance [CDSW05, Proposition 8.2]). The

assumptions that the group is linear and has real-triangulable radical are here only

to avoid inessential complications. We shall indeed see that an algebraically thick

connected Lie group is quasi-isometric to an algebraically thick connected Lie group

of that form (see Theorem 2.9 for a more precise statement).
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We recall that connected Lie groups have finite Assouad–Nagata dimension, and

therefore by [HMT18], they satisfy ΛpG(r) . r/ log(r) for every p ∈ [1,∞]. With

Proposition 1.10 at hand, the proof of Theorem 1.9 boils down to showing that

SOLa and Osc both satisfy ΛpG(r) & r/ log(r) (Theorems 4.3 and 4.6). The lower

bound in the case Osc is treated by a direct (involved) computation which uses the

definition of Poincaré profiles of metric measure spaces from [HMT18]. We proceed

more indirectly for SOLa: indeed, we first prove that the Diestel-Leader graph

DL(2, 2) quasi-isometrically embeds into it, and then that ΛpDL(2,2)(r) ' r/ log(r).

We have the following geometric characterization of unimodular algebraically

thick groups.

Theorem 1.11. Let G be a connected unimodular Lie group or a polycyclic group.

The following are equivalent:

(i) G is algebraically thick;

(ii) either DL(2, 2), or Osc regularly maps to G;

(iii) idem with “coarsely embeds into G”;

(iv) idem with “quasi-isometrically embeds into G”.

1.2.4. A word on the non-unimodular case. The question whether all non-unimodu-

lar algebraically thin groups are analytically thin remains open. We can prove it

though when G is a direct product of a group of polynomial growth with a Heintze

group. We shall provide explicit upper and lower bounds on their Poincaré profiles

below. For now, let us indicate an indirect argument showing that they are ana-

lytically thin: By Heintze’s theorem [He74], a Heintze group admits a negatively

curved left-invariant Riemmanian metric, and therefore is Gromov hyperbolic. Ap-

plying the Bonk-Schramm embedding theorem, we see that every Heintze group

quasi-isometrically embeds into some HnR. Next, every group of polynomial growth

satisfies the doubling property, so by Assouad’s embedding theorem we obtain a

coarse embedding into some Rm [A83]. Thus, the product of a Heintze group with

a group of polynomial growth coarsely embeds into some HnR×Rm, and is therefore

analytically thin by Theorem 1.5.

More generally, any hypercentral-by-Heintze group is analytically thin: this is be-

cause such a group is a closed subgroup of a direct product of a nilpotent connected

Lie group with a Heintze group (see Corollary 2.6). An example is the semi-direct

product of R3 oR, where the action of R is through matrices

 1 t 0

0 1 0

0 0 et

 (this

appears as a special case of Corollary 2.7).

The smallest example of an algebraically thin (actually an NC-group) for which

we are unable to prove analytic thinness is G = Heis3 o(1,0,1)R, also isomorphic to

R2 o R2, where the first factor acts through matrices

(
et 0

0 et

)
and the second

through matrices

(
1 t

0 1

)
.

1.3. Poincaré profiles and obstructions to regular maps.

1.3.1. Precise calculation of Poincaré profiles of thin groups. A slightly disappoint-

ing consequence of Theorem 1.9 is that Poincaré profiles do not allow to distinguish

between algebraically thick groups. By contrast, they provide very refined invari-

ants for unimodular algebraically thin groups, as shown by the combination of

Proposition 1.7 and the following result.
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Theorem 1.12. Let X be a direct product P × H, where P is a connected Lie

group of polynomial growth of degree d ≥ 0, and H is one of the following:

• (a uniform lattice in the group of isometries of) HmK , for some K ∈ {R,C,H,O}
and m ≥ 2 with m = 2 when K = O, and with Q = (m+ 1) dimR K− 2, or

more generally

• a Gromov hyperbolic discrete group whose conformal dimension Q is at-

tained by a metric admitting a 1-Poincaré inequality, or

• a non-abelian free group of finite rank with Q = 0.

Then

ΛpX(r) '


r1− 1

Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if Q < p <∞.

Theorem 1.12 also applies to the case where P is a finitely generated virtually

nilpotent group as any such group is quasi-isometric to a connected nilpotent Lie

group.

The proof of this result uses the metric structure of the boundary at infinity

∂∞H of H. Recall that the boundary at infinity ∂∞G of a Gromov hyperbolic

group G admits a ‘visual metric’ which is Ahlfors Q-regular for some Q ≥ 1:

the measure of balls of radius r is comparable to rQ. The conformal dimension

of G is the infimum of values of Q so that ∂∞G is quasisymmetric to an Ahlfors

Q-regular space, and is a quasi-isometric invariant of G [Pan89a]. We say the

conformal dimension of G is attained if this infimum is a minimum. In certain

cases one can find a metric on the boundary of a hyperbolic group which admits

a ‘1-Poincaré inequality’ in the sense of Heinonen and Koskela. This is the case

for (uniform lattices in) rank 1 simple Lie groups Isom(HmK ), where the conformal

dimension is (m + 1) dimR K − 2 as in Theorem 1.12, and the isometry groups for

a family of Fuchsian buildings studied by Bourdon and Bourdon–Pajot, where the

conformal dimension can take a dense set of values in (1,∞) (cf. the discussion in

[HMT18, §11]).

Note that Theorem 1.12 is new even when p = 1 and H × P is quasi-isometric

to PSL(2,R)× R, or equivalently H2
R × R. In this case, the correct lower bound of

r1/2 log1/2(r) was found by Benjamini–Schramm–Timár [BST12, Corollary 3.3].

Observe that these computations show that the polynomial growth exponent is

monotonous under regular maps. For instance, it follows from Theorem 1.12 that

H2
R × R does not regularly map into HnR for any n ≥ 2, but this does not yet rule

out a regular map from H3
R to H2

R × R. We shall see in Theorem 1.13 that the

quantity Q is also monotonous under regular maps when the domain satisfies the

hypotheses of Theorem 1.12.

Theorem 1.12 is a consequence of a more general statement, which we state as

two theorems. One of them is general upper bound on the Poincaré profile (The-

orem 6.1), and the other is a lower bound for hyperbolic spaces whose boundaries

admit a 1-Poincaré inequality (Theorem 6.2 and Corollary 6.6). These bounds give

information in other cases too, such as Heintze groups, see §8.

1.3.2. Obstructions to regular maps. Below is a general non-embeddability result

which cannot be solely deduced from Poincaré profile estimations.

Theorem 1.13 (Corollary 6.10). Assume G1 = H1×P1 and G2 = H2×P2, where

for i = 1, 2 :
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• Hi is a non-elementary finitely generated hyperbolic group of conformal

dimension Qi ≥ 0, and

• Pi is a locally compact group with polynomial growth of degree di ≥ 0.

If there exists a regular map G1 → G2, then d1 ≤ d2. Moreover, if H1 has its

conformal dimension Q1 > 1 attained by a metric admitting a 1-Poincaré inequality,

then Q1 ≤ Q2.

Here is a specialization of the above theorem to the family of connected Lie

groups from Proposition 1.7.

Corollary 1.14. If there is a regular map Hm1

K1
× Rd1 → Hm2

K2
× Rd2 , then (m1 +

1) dimR(K1)− 2 ≤ (m2 + 1) dimR(K2)− 2 and d1 ≤ d2.

This corollary answers [BST12, Question 5.4], which asked for an obstruction

to the existence of a regular map H3
R → H2

R × R, indeed we show that there is no

regular map H3
R → H2

R × Rd for any d using the monotonicity of the conformal

dimension of the hyperbolic factor.

There are several further points to note about Theorems 1.12, 1.13 and Corol-

lary 1.14:

Remark 1.15.

(1) Theorems 1.12 and 1.13 (and the more general upper bound in Theorem

6.1) are new even in the case of hyperbolic groups (i.e. d = 0, respectively

d1 = d2 = 0), since the technical hypothesis about “equivariant conformal

dimension” from our previous paper is no longer needed [HMT18, Corollary

12.6]. However for a different class of maps including coarse embeddings,

Pansu earlier ruled out maps H1 → H2 unless Q1 ≤ Q2 for groups satisfying

the second part of Theorem 1.13 [Pan16, Corollary 1].

(2) One particular case of Theorem 1.13 is that there is no regular map from

F2 × Z (i.e. the product of a 4-regular tree and a line) to any hyperbolic

group.

(3) The fact that H1 is non-elementary is important, since there certainly are

coarse embeddings Rd → Hd+1
R or Rd → HdR × R, etc., using horospheres.

(4) The monotonicity of d in Theorem 1.13 does not follow from the separation

profile alone, and indeed to deduce that d1 ≤ d2 above, we will need to

consider Lp-Poincaré profiles with p > Q1, Q2.

(5) As already mentioned, the Poincaré profile is not enough to imply the

monotonicity of the conformal dimension of the hyperbolic factor in The-

orem 1.13 and Corollary 1.14. This is obtained by a different argument

based on the same techniques in §6.4.

(6) For coarse embeddings, obstructions in the case where d1 > 0 and d2 = 0 are

obtained in [HS17]. Apart from this case, we believe that the monotonicity

of the growth exponent of the polynomial factor is new.

(7) It is natural to ask whether the last statement of Theorem 1.13 holds for

Q1 = 1, that is, can one show there is no regular map H2
R → F2 × Rn for

any n ≥ 0. We answer this question using different methods in forthcoming

work [HMT22].

1.3.3. Comparison with ‘dimension-based’ obstructions. It is worth comparing our

results with those obtainable using Gromov’s asymptotic dimension and its vari-

ants. If there is a coarse embedding X → Y then asdimX ≤ asdimY , and in fact

the same is true for regular maps [BST12, §6]. Asymptotic dimension does not rule
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out maps HkR → Hk−1
R × Rd, since for d ≥ 1 we have asdimHkR = k ≤ k − 1 + d =

asdim(Hk−1
R ×Rd). Buyalo–Schroeder [BS07] used a variation on asymptotic dimen-

sion to show that if there is a quasi-isometric embedding Hm1

K1
×Rd1 → Hm2

K2
×Rd2

we must have monotonicity of the asymptotic dimension of the hyperbolic factors,

that is m1 dimR(K1) ≤ m2 dimR(K2). Thus they can rule out quasi-isometric em-

beddings HkR → Hk−1
R × Rd, however their variation does not behave well with

respect to coarse or regular maps.

Corollary 1.14 applies to regular maps, shows monotonicity of the growth ex-

ponent of the Euclidean factor, and when the hyperbolic factor in the domain has

large conformal dimension compared to its asymptotic dimension we get bounds

stronger than those of Buyalo–Schroeder. For example, if there is a quasi-isometric

embedding H2
H → HmR ×Rd then Buyalo–Schroeder get m ≥ 8, while Corollary 1.14

gives m ≥ 11. On the other hand, when the hyperbolic factor in the codomain has

large conformal dimension but small asymptotic dimension, Buyalo–Schroeder’s

bound may be stronger. For instance, if there is a quasi-isometric embedding

H11
R → HmC × Rd then Corollary 1.14 gives m ≥ 5, while Buyalo–Schroeder can

conclude that m ≥ 6.

1.3.4. Further results and applications. Another natural class of groups which sat-

isfies the thick/thin dichotomy are Baumslag-Solitar groups.

Theorem 1.16 (§6.3). For all p ∈ [1,∞)

ΛpBS(m,n)(r) 'p


r

1
2 if |m| = |n| = 1,

r1− 1
p+1 if |m| = |n| ≥ 2,

r/ log(r) if |m| 6= |n| .

The lower bound in the case |m| 6= |n| of Theorem 1.16 is proved by showing

that BS(m,n) admits a quasi-isometrically embedded copy of DL(2, 2). Theorem

1.16 implies that a Baumslag–Solitar group regularly embeds into some hyperbolic

group if and only if it is virtually abelian, generalising results for coarse embeddings

in [HS17].

Next, we observe that the L1-Poincaré profile (i.e., the separation profile) dis-

tinguishes the non-compact Thurston geometries, except of course for the quasi-

isometric H2
R × R and ˜PSL(2,R):

X S2 × R H3
R H2

R × R, ˜PSL(2,R) R3 NIL SOL

Λ1
X(r) 1 r

1
2 r

1
2 log

1
2 (r) r

2
3 r

3
4 r/ log(r)

The next result is a direct consequence of the fact that spaces admitting regular

maps into analytically thin spaces are themselves analytically thin.

Corollary 1.17. Let H be a locally compact group which contains a closed subgroup

isomorphic to any of the following:

• a wreath product K o L where K is nontrivial and L is infinite finitely

generated;

• a Baumslag–Solitar group BS(m,n) = 〈a, t | tamt−1 = an〉 with |m| 6= |n|;
• a solvable group of exponential growth;

• a uniform lattice in a semisimple Lie group of real rank ≥ 2.

Then there is no regular map H → X×N whenever X is a bounded degree hyperbolic

graph and N a nilpotent group.
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Our results prove that the wreath products, Baumslag-Solitar groups and lattices

mentioned above are all analytically thick. Le Coz-Gournay prove that solvable

groups of exponential growth are not analytically thin [CG19].

Obstructions of coarse embeddings of the groups H considered in Corollary 1.17

into hyperbolic groups were established in [HS17], but as far as we are aware the

stronger result of Corollary 1.17 is new even for quasi-isometric embeddings.

The monotonicity of the dimension of the Euclidean factor also has applications,

for instance it provides a coarse geometric proof of a result in Lorentzian geometry

originally due to Zeghib [Zeg98, Theorem 4.2(i)].

Corollary 1.18. Let G be the identity component of the isometry group of a

compact Lorentz manifold. If G has a closed subgroup H locally isomorphic to

PSL(2,R), then it has finite center. Moreover, if it has a closed subgroup locally

isomorphic to PSL(2,R)× R, then the abelian factor is compact.

The proof goes as follows: by a fundamental observation of Gromov, G coarsely

embeds into some real hyperbolic space (cf. [Gro88, Fr21]). If H had infinite center,

then it would be quasi-isometric to H2
R×R. So we invoke Corollary 1.13 (or [HS17])

which implies that H2
R×R does not coarsely embed into any real hyperbolic space.

In the second case, we similarly argue that G would otherwise contain a closed

subgroup quasi-isometric to H2
R × R.

1.4. Plan of the paper. §2 is dedicated to all the Lie theoretic results that are

needed in the paper. In particular, Theorem 2.9 proves that any connected Lie

group is commable to a group of the form (real-triangulable)o(linear semisimple),

and that this reduction preserves all the properties that are relevant to us. In

§2.4, we prove that subgroups isomorphic to SOLa and Osc are always closed and

non-distorted. Finally, and most importantly, §2.5 is dedicated to the proof of

Proposition 1.10.

In §3, we show that DL(2, 2) quasi-isometrically embeds into various groups. In

§4, we prove that the Poincaré profiles of DL(2, 2) and Osc are & r/ log r; in both

cases the proof relies on curve counting arguments.

In §5 and §6, we study direct products of hyperbolic spaces with locally com-

pact groups of polynomial growth. Complete Poincaré profile calculations for the

individual factors appear in our previous work [HMT18] and many of these tech-

niques are also needed to consider products. The lower bound follows fairly quickly

from our previous work on considering product subgraphs, but the upper bound is

much more challenging as we have to find good functions on arbitrary subgraphs

of H ×P . This entails developing a theory of ‘capacity profiles’ of weighted graphs

arising from projections onto H, and a general upper bound formula for products

which may be useful in other contexts (Theorem 5.29); it also results in a connec-

tion between conformal dimension and hyperbolic cones (Theorem 5.16). The last

part of the section, §6.4 is dedicated to the proof of our non-embeddability result

Theorem 1.13, which is not a direct consequence of our calculations of Poincaré

profiles but is based on similar ideas. In §7, we end the proofs of Theorems 1.9,

1.5, 1.11, 1.8, and Corollary 1.6. Finally in §8 we raise some open questions.

1.5. Acknowledgments. We would like to thanks Charles Frances for communi-

cating Corollary 1.18 and its proof to us, Marc Bourdon for comments on a previous

version of the paper. We are especially indebted to Yves Cornulier for greatly help-

ing us with the Lie-theoretic aspects. We also thank two anonymous referees for



12 DAVID HUME, JOHN M. MACKAY, AND ROMAIN TESSERA

their corrections and very helpful suggestions, particularly regarding the results of

§2.

2. Lie theoretic results

2.1. NC-groups and algebraically thin groups. In this subsection we elaborate

on the Lie theoretic definition of algebraically thin groups. We start by recalling

the notion of weight used in the definition of NC-groups. We refer to [Var96, §1.2]

for more details. We let r be a solvable real Lie algebra. Denote by adC the adjoint

action of r on rC := r⊗ C. A root λ : r→ C is a Lie algebra morphism such that⋂
y∈r

ker(adC y − λ(y)) 6= 0.

A weight is the real part of a root. Note that roots may be viewed as elements of

Hom(rab,C), where rab is the abelianization of r, and that weights are elements of

the dual real vector space r∗ab of rab. We now extend the usual notion of rank of a

semisimple Lie group to arbitrary connected Lie groups, as suggested by a referee.

Definition 2.1. The R-rank of a connected solvable Lie algebra r is the dimension

of the subspace of r∗ab spanned by the weights. The R-rank of a connected Lie

algebra is the sum of the rank of its semisimple part, and of its solvable radical.

Finally the R-rank of a connected Lie group is the R-rank of its Lie algebra.

Remark 2.2. Note that a connected Lie group has real R-rank 0 if and only if it

has polynomial growth (see for instance [Gui73]).

Our definition of algebraically thin (Definition 1.3) uses the following definition

of Varopoulos.

Definition 2.3 ([Var96, §1.2]). A solvable Lie algebra has Property C if 0 is in

the convex hull of non-zero weights; else it has Property NC. A solvable connected

Lie group has Property C (resp. NC) if its Lie algebra has C (resp. NC).

We now show the following trichotomy stated in the introduction.

Proposition 2.4. Let G be an algebraically thin connected Lie group with solvable

radical R and Levi factor S. Then exactly one of the following holds:

(a) G has polynomial growth;

(b) S has R-rank 1, [Snc, R] = 1 and R has polynomial growth; or

(c) S is compact and R is an NC-group with R-rank 1.

Moreover G is unimodular if and only if we are in cases (a) or (b).

Proof. Recall that an algebraically thin connected Lie group satisfies [Snc, R] = 1,

R is an NC-group, and its R-rank is at most 1. Assume that the rank of S is 1,

then the rank of R is 0, and we are in case (b) by Remark 2.2. If the rank of G is

zero, then again Remark 2.2 implies that we are in case (a). Finally, if the rank of

S is zero and the rank of R is one, we have case (c). Regarding unimodularity, the

only non-obvious statement is that groups of type (c) are never unimodular. This

is because the presence of an element r ∈ R which contracts the exponential radical

E of R implies that the Haar measure of E is not preserved by conjugation by r.

Since R/E is unimodular, we deduce that R is not. And since S is unimodular, G

is not. �

We close this subsection with further examples of algebraically thin groups as in

§1.2.4; these corollaries are not needed elsewhere in the paper.
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We denote by eC ⊂ rC the Lie subalgebra spanned by characteristic subspaces

of roots with non-zero real part, and e = eC ∩ r. We now assume that r is the Lie

algebra of some solvable connected Lie group R. By [Gui80, Proposition 5], the

subgroup E = exp(e) is a nilpotent connected subgroup and it coincides with the

minimal closed normal subgroup of R such that R/E has polynomial growth. It

was later rediscovered by Osin in [Osi02] who named it the exponential radical of

R. The following lemma is standard: see for instance [CT17, Proposition 4.B.5.].2

Lemma 2.5. Let R be a solvable connected Lie group. The following are equivalent:

(i) R is an NC-group.

(ii) there is some element of R acting as a contraction on its exponential radical

E.

We recall that a contraction of a locally compact group G is an automorphism

α such that αn(g)→ 1 for all g ∈ G, uniformly on compact subsets. Recall that a

group is a Heintze group if it is isomorphic to a semidirect product EoR, where

E is either trivial or a simply connected nilpotent Lie group, with every positive

element of R acting as a contraction on E.

Corollary 2.6. Let 1 → N → G → H → 1 be an exact sequence of connected

Lie groups, such that N is hypercentral in G (i.e. covered by the ascending central

series of G) and H is a Heintze group. Then the diagonal map G → G/E × H
induces an isomorphism of G onto a closed subgroup of G/E ×H, where E is the

exponential radical of G.

Proof. The characterization (i) of NC-groups in Lemma 2.5 makes it clear that

being NC is stable by central, and therefore by hypercentral extensions. Since

Heintze groups are NC, we deduce that G is NC. Thus there exists an element of G

that contracts E, hence E ∩N = {1}. Therefore, the morphism G→ G/E ×G/N
is injective (and obviously has closed image). �

Corollary 2.7. Let G be a NC-group which is isomorphic to a semi-direct product

Rn o R. Then G is a closed subgroup of a group of the form P ×H, where P is a

connected Lie group of polynomial growth, and H is a Heintze group.

Proof. Denote U = Rn, and D = R so that G = U o D, and let d be a non-

zero element of D that contracts the exponential radical E of G (provided by

Lemma 2.5). By decomposing U into characteristic subspaces of ad(d), we see

that U decomposes as a D-equivariant direct sum U = E ⊕ N , where N is the

sum of characteristic subspaces associated to eigenvalues of modulus 1. Thus G ∼=
(E ⊕N) oD, which embeds as a closed subgroup of (E oD)× (N oD). Since d

contracts E, the first factor is a Heintze group, while NoD has polynomial growth

by Remark 2.2. �

Remark 2.8. Corollaries 2.7 and 2.6 provide slightly different kinds of examples:

for instance the semi-direct product of (C × R) o R, where R acts by rotation

on the complex factor and by homothety on the R factor. This example satisfies

the conditions of Corollary 2.7 but not of Corollary 2.6: indeed, in this example,

N = C, which is not hypercentral.

2Although the assumptions there are slightly more restrictive, the same proof applies.
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2.2. Reduction to linear, real triangular by semisimple. The goal of this

section is to prove that any connected Lie group is commable to a linear connected

Lie group whose radical is real-triangular (which is unimodular and is an NC-group

if and only if G is). Recall that two locally compact groups G and G′ are commable

(see [C15]) if there exists n ≥ 1 and a sequence

G = G0 −G1 − · · · −Gn−1 −Gn = G′,

where the Gi are locally compact groups and Gi−1 − Gi denotes the existence of

a proper continuous group homomorphism with cocompact image Gi−1 → Gi or

Gi → Gi−1. We shall call these maps commability arrows associated to the

commability from G to G′.

Commability is a natural generalization of commensurability for discrete groups,

and like commensurable finitely generated groups, commable locally compact groups

are always quasi-isometric.

We say a Lie group G has Property V (for Varopoulos) if [Snc, R] = 1 where

R is the solvable radical and Snc is the non-compact part of a (any) Levi factor S;

equivalently the corresponding Lie algebras satisfy [snc, r] = 0. We now state the

goal of this subsection.

Theorem 2.9. Let G be a connected Lie group. Then G is commable to a linear

connected Lie group G′ with same R-rank of the form (real-triangular)o(semisimple

without compact factor). Moreover each of the following properties is true for G′ if

and only it is true for G:

• unimodular;

• Property V;

• the solvable radical has3 Property R;

• the solvable radical has Property C (or NC);

• algebraically thin (or thick).

We will proceed in two steps: Proposition 2.12 treats the defect of linearity of the

semisimple part, while Proposition 2.15 deals with the property that the amenable

radical is real-triangular. (Given G a connected Lie group, we denote by Am(G)

the amenable radical4 : the maximal normal amenable subgroup of G, which

turns out to be closed.) This argument replaces our approach in an earlier version

of the paper, following helpful suggestions of the referee.

Let us start recalling a few basic facts about connected Lie groups (see [OV90]),

and more specifically about the linearity of connected Lie groups (see [Mal43,

Ho60]). We let K(G) be the intersection of all kernels of continuous linear fi-

nite dimensional representations of G. Considering the adjoint representation of a

Lie group, we see that K(G) is central.

Example 2.10. A typical example of non-linear simple Lie group is ˜PSL(2,R):

the universal cover of PSL(2,R).

When the group G is semisimple, K(G) has finite index in the center Z(G) of

G, which is discrete. In particular, linear connected Lie groups have finite center.

Let T be a Levi factor of Am(G) in G: this a Lie subgroup of G which is locally

isomorphic to a sum of simple factors of positive rank and such that G = Am(G)T .

3Recall that a solvable connected Lie group has Property R if its roots are purely imaginary,

or equivalently if it has polynomial growth [Gui73].
4At the level of Lie algebras, the amenable radical differs from the solvable radical in that we

add the compact semisimple factors to it.



POINCARÉ PROFILES OF LIE GROUPS AND A COARSE GEOMETRIC DICHOTOMY 15

Example 2.11. Note that T is not necessarily closed. A counterexample is for in-

stance given by the group G = ( ˜PSL(2,R)×R/Z)/Z, where Z is the cyclic subgroup

generated by (z, t), where t ∈ R/Z is irrational and z generates Z( ˜PSL(2,R)): here

the amenable radical is the image of R/Z in G, and a Levi factor T is the image of

˜PSL(2,R), their intersection being the dense subgroup of R/Z spanned by t. We

also observe that in this example, K(G) = R/Z .

We shall use the fact that a semisimple Lie group with finite center admits a

real-triangulable cocompact subgroup. For instance in PSL(2,R), this would be the

subgroup of upper triangular matrices, while in PSL(2,C), it would the subgroup

of upper triangular matrices whose diagonal entries are real.

Proposition 2.12. Let G be a connected Lie group. Then then there exists a

connected Lie group G′ = G′′ × V , commable to G, such that

• V ∼= Rd for some d ∈ N;

• G′ and G′′ are (amenable)o(linear semisimple without compact factor);

• G and G′′ are locally isomorphic.

In particular,

• G is unimodular if and only if G′ is unimodular;

• Am0(G′) = Am0(G)× V ;

• G/Am(G) and G′/Am(G′) are isomorphic;

• G has Property V if and only if G′ has Property V.

Proof. Write A = Am(G) and A0 = Am0(G), and let T be a Levi factor of A0 in

G, i.e. a semisimple subgroup of G satisfying G = A0 · T , and A0 ∩ T ⊂ Z(G).

Let Z0 = K(T ), so Z0 has finite index in Z(T ) and is central in G. Note that

the amenable radical of G/A0 coincides with the center of T/(A0 ∩ T ), so that

A ⊂ A0Z(T ).

In Z0, let Z1 be a maximal subgroup among those intersecting A0 trivially. By

maximality, Z1 ·(Z0∩A0) has finite index in Z0 and therefore in Z(T ). This implies

that the group A1 = Z1 · A0
∼= Z1 × A0 has finite index in A0Z(T ), and therefore

in A. Thus the semisimple group G/A1 has finite center.

Note also that Z1 is discrete: indeed, it maps injectively to the (discrete) center

of the semisimple quotient G/A0. Let P1 = L1/A1 be a closed cocompact real-

triangulable subgroup of G/A1. P1 being simply connected, its preimage L1/A0

under the projection (which is a covering map) G/A0 → G/A1 is a direct product

(A1/A0) × P0, where P0 = L0/A0 is isomorphic to P1. In restriction to T , the

surjection G→ G/A0 yields a surjective morphism T → G/A0 with discrete kernel,

which splits in restriction to the simply connected subgroup P0. Thus lifting P0 we

see that L0 = A0 o P0.

Denote S = T/Z0, which is by definition of Z0 = K(T ) the largest linear quotient

of T . The T -action on A0 induces an action of S on A0. Embed A1/A0 as a uniform

lattice in some connected abelian Lie group V ′, with non-compact factor V . We

have the following cocompact inclusions:

G ⊃ L1 = Z1 × L0 ⊂ V ′ × L0 ⊃ V × L0 = V × (A0 o P0) ⊂ V × (A0 o S). (2.13)

Thus G is commable to G′ := V ×G′′, with G′′ := A0 o S.

Let a denote the common Lie algebra of A0 and A1, p the Lie algebra of P0
∼= P1,

and let g, s, . . . denote the Lie algebras of G,S, . . .. We already have g = aot. Since

T and S are locally isomorphic, we deduce that g = ao s, and therefore G and G′′

are locally isomorphic. More precisely, on the level of Lie algebras, the sequence
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of inclusions (2.13) first passes through the subalgebra a o p, then takes a direct

product with v′ (which is subsequently reduced to v), and finally ends up with

v× (ao t) = v× g.

The additional preservation assertions are clear, observing that they are un-

changed under taking local isomorphisms and direct products with abelian groups.

�

Examples 2.14. It is instructive to illustrate the proof on the examples discussed

above. First the case of G = ˜PSL(2,R): here the group P0 = L0 is the subgroup of

upper triangular matrices in SL(2,R). We have K(G) = π1(SL(2,R)) ∼= Z. Hence

V = R, and we finally get G′ = R×SL(2,R). In Example 2.11, we leave the reader

to check that G′ = G′′ = R/Z× SL(2,R).

The second reduction step consists in passing from Ao S, where A is amenable

and S is (linear) semisimple without compact factors, to N o S, where N is real-

triangular.

Proposition 2.15. Let G = A o S be a connected Lie group, such that A =

Am0(G), and S has finite center. Then G is commable to a group of the form

N o S, where N is real-triangulable. Moreover, each commability arrow is of the

form ρi : Ai o S → Ai+1 o S (or ρi : Ai+1 o S → Ai o S) such that

• ρi is compatible with the semi-direct decomposition;

• its restriction to S is the identity;

• its restriction Ai → Ai+1 (or Ai+1 → Ai) has coabelian image.

Proof. We will use the following easy observation.

Fact 2.16. Let M be a Zariski dense subgroup of an algebraic group L. If [M,M ]

is Zariski closed in L, then [M,M ] = [L,L].

Proof of the fact. The map L × L → L defined by (g, g′) → [g, g′] being Zariski

continuous, the Zariski closure of [M,M ] contains [L,L], since L is the Zariski

closure of M . �

This follows from the proof of [C08, Lemma 2.4]: there Cornulier treats the

case where S = {1}, but one checks that even in presence of a non-trivial S,

both the commability arrows can be made S-equivariant. The first arrow in his

proof is (replacing his G by our A) A → H = KA where K ∼= H/A is abelian.

The second arrow is (denoting his T1 by N) the cocompact inclusion of N →
H. Now [A,A] is unipotent, hence Zariski closed, so A being Zariski dense in H

we have [A,A] = [H,H]; Cornulier shows [A,A] ⊂ N . Thus both arrows have

coabelian image. The last statement of Proposition 2.15 follows from the following

observation: [C08, Lemma 2.4] provides maps with coabelian image: indeed, in the

argument, [G,G] is unipotent, hence Zariski closed, so G being Zariski dense in H,

we have [G,G] = [H,H]. �

Remark 2.17. The fact that this reduction preserves unimodularity is clear as

commability preserves unimodularity among amenable locally compact groups.

Since the commability arrows have coabelian image, the set of non-zero weights

of the radical is preserved, thus so are Property R, R-rank, and Property C or

NC. We will prove that Property V (recall this is the condition [Snc, R] = 1) is

preserved in the following lemma (2.18). Given these results the fact that this

reduction preserves algebraic thinness is simply a consequence of the others.
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Lemma 2.18. Let S be a semisimple Lie group, and let R and R′ be connected

solvable Lie groups with S-actions. Let f : R → R′ be an S-equivariant proper

continuous group homomorphism with cocompact coabelian image. Then RoS has

Property V if and only R′ o S does.

Proof. On refining the sequence of commability arrows, we can assume f is either

injective or surjective. In each case, one implication is trivial. Let us treat the

non-trivial directions. Assume f is surjective with compact kernel K and [snc, r
′] =

0. Denote the Lie algebra of K by k. As snc is semisimple, k admits a vector

complement W in r which is stable by the adjoint action of snc. Since [snc, r
′] = 0,

the adjoint action of snc on W is trivial. Moreover, since Snc acts trivially on K,

we have [snc, k] = 0. Combining these two facts, we conclude that [snc, r] = 0.

Suppose now that f is injective, and that [snc, r] = 0 while [snc, r
′] 6= 0. By

semisimplicity, and since r is an ideal in r′ we have [snc, r
′/r] 6= 0. But then, Snc

acts non-trivially on the compact group R′/R: contradiction. �

Proof of Theorem 2.9. Starting with a connected Lie group G, Proposition 2.12

reduces to the case where G satisfies the assumptions of Proposition 2.15. The

fact that the properties listed in Theorem 2.9 are preserved is obvious as the Lie

algebras only differ by an abelian factor. Next, applying Proposition 2.15 reduces to

the case where G is (real-triangular)o(linear semisimple without compact factor).

The resulting group is linear by Malcev’s theorem [Mal43]: a connected Lie group

with solvable radical R and Levi factor S is linear if and only if both R and S are

linear. The preservation of the relevant properties is justified in Remark 2.17. �

2.3. Algebraically thin unimodular connected Lie groups.

Proposition 2.19. Let G = R o S, where R is real-triangulable, and S = Snc is

semisimple with finite center. Then G is unimodular and algebraically thin if and

only if G = R× S, R is simply connected nilpotent, and S has rank 1 or is trivial.

Proof. Suppose G is unimodular and algebraically thin. By Proposition 2.4 we

have two cases. In the first case G has polynomial growth, hence S is trivial and

G = R, being triangulable and polynomial growth, is simply connected nilpotent.

In the second case, we have [R,S] = 1, and R has polynomial growth (thus again

is simply connected nilpotent). The intersection R ∩ S is contained in the (finite)

center of S. Hence it must be trivial as R is torsion-free. �

Corollary 2.20. Any algebraically thin, unimodular connected Lie group is commable

to a direct product G = R × S, where R is simply connected nilpotent, and S is

simple of rank 1 with finite centre, or trivial.

Proof. We apply Theorem 2.9 and then Proposition 2.19. �

2.4. Non-distortion of certain subgroups in linear connected Lie groups.

This section gives sufficient conditions for a subgroup of a Lie group to be undis-

torted. Although we could not find the following theorem in the literature, it is

probably known to the experts. The role it plays in the paper is to ensure that the

subgroups SOLa and Osc from Proposition 1.10 are closed and undistorted.

Let G and H be locally compact compactly generated groups such that H is a

closed subgroup of G. We say that H is undistorted in G if the inclusion H → G

is a quasi-isometric embedding (with respect to word metrics on both groups). In

what follows, we shall use repeatedly the following obvious remark: if φ : G → G′

is a continuous homomorphism from G to another compactly generated group G′
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such that φ|H is injective and φ(H) is undistorted in G′, then H is undistorted in

G.

Theorem 2.21. We consider a group H = U oA, where U is a simply connected

nilpotent connected Lie group, and A ∼= Rr and

(i) for each non-trivial a ∈ A, the action by conjugation of a on V = U/[U,U ]

has an eigenvalue of modulus distinct from 1,

(ii) there exists some a0 ∈ A such that all its (possibly complex) eigenvalues on

V have modulus distinct from 1.

Then for any linear connected Lie group G, any injective morphism f : H → G has

closed and undistorted image in G.

Proof. On composing with a faithful linear representation, we can suppose that G =

GL(d,C). By Lie’s theorem, we can assume that H is contained in the subgroup

of upper-triangular matrices. We deduce from (ii) that V is contained in (and

therefore equal to) the derived subgroup of V oA, since the map V → V, v 7→ [v, a0]

is surjective. Therefore we have U = [H,H][U,U ], which implies that U/[H,H] is a

perfect group, hence trivial as it is solvable. Hence U = [H,H]. It follows that U is

contained in the subgroup of upper unipotent matrices. Let g be the Lie algebra of

G, that we equip with a norm ‖·‖. We denote by |·|G, |·|H and |·|A word lengths on

respectivelyG, H and A associated to compact generating subsets. We also consider

the operator norm ‖·‖op of GL(d,C) acting on Cd equipped with the usual Euclidean

metric. Note that since ‖·‖op is submultiplicative, |g|op := log max{‖g‖op, ‖g−1‖op}
satisfies |gg′|op ≤ |g|op + |g′|op. Hence

|g|op . |g|G. (2.22)

In particular, a straightforward calculation shows that for all x ∈ g \ {0}, log ‖x‖ .
| exp(x)|op, from which we deduce that

log(1 + ‖x‖) . | exp(x)|G. (2.23)

On the other hand condition (ii) implies that U is the exponential radical of H (see

[Gui80, Proposition 5]). By the corollary following [Gui80, Proposition 5], we have

for all u ∈ U ,

|u|H . log(1 + ‖ log u‖).
Combining this with (2.23) and with the obvious inequality |h|G . |h|H , valid for

all h ∈ H, we deduce that for all u ∈ U

|u|G ' |u|H ' log(1 + ‖ log u‖). (2.24)

A consequence of (i) is that for all h = ua ∈ H, |h|op & |a|A. Indeed, note that

‖ · ‖op defines a norm on the vector space of square matrices M(d,C), and as such

is bi-Lipschitz equivalent to any other norm. Now, if one considers the norm ‖ · ‖1
consisting of the sum of absolute values of coefficients, one clearly has ‖h‖1 = ‖a‖1+

‖u‖1 ≥ ‖a‖1. On the other hand, we observe that log max{‖a‖1, ‖a−1‖1} ' |a|A,

so |h|op & |a|A as claimed. Since there is an obvious projection of H onto A,

|a|A ' |a|H , so |h|op & |a|H . We then deduce from (2.22) that

|h|G & |a|H . (2.25)

Assume for a contradiction that there exists hk = (uk, ak) ∈ H such that |hk|G =

o(|hk|H). Then by (2.25), |ak|H = o(|hk|H), which implies by the triangle inequality

that |hk|H ' |uk|H , and |uk|G . |hk|G + |ak|G . |hk|G + |ak|H = o(|hk|H) =

o(|uk|H). But the latter contradicts (2.24), so we are done. �
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Examples 2.26. The class of groups H satisfying the conditions of Theorem 2.21

is stable under finite direct product, and contains the examples that are relevant

to us: SOLa for all a > 0, and Osc. But it also contains the subgroup of upper

triangular matrices whose diagonal entries are real and positive in SL(d,K), for

d ≥ 2 and K ∈ {R,C}. In this last case U is the upper triangular unipotent

matrices and A consists of diagonal matrices with real and positive entries.

2.5. Algebraically thick connected Lie groups. The main goal of this section

is to prove Proposition 1.10. We will proceed in various steps.

Proposition 2.27. Let G be a linear connected Lie group. If either:

• [Snc, R] 6= 1, or

• the R-ranks of both Snc and R are positive, or

• the R-rank of Snc is at least 2,

then G has an undistorted closed subgroup isomorphic to SOL1 or Osc.

Proof. Let us first prove the Lie algebra analogue. In the first case, by [CDSW05,

Proposition 8.2], g has a subalgebra isomorphic to vnosl(2,R) for some irrreducible

n-dimensional representation vn for n ≥ 2, or to the 1-dimensional central extension

h2n+1 o sl(2,R) of v2n o sl(2,R) for some n ≥ 1. The first one contains a copy of

sol1, while the second one contains a copy of osc.

Let us now assume that [snc, r] = 0 and both snc and r have positive rank, then

they both contain a subalgebra isomorphic to the affine Lie algebra R o R. Hence

g contains a subalgebra isomorphic to sol1.

We are left with the case where snc has R-rank at least 2. We can assume

without loss of generality that g is equal to its semisimple part. If g is not simple,

then it contains sl(2,R)× sl(2,R). Since the latter contains a copy of sol1, we are

done. Otherwise, by [BdlHV08, Lemma 1.6.2], it contains a copy of either sl(3,R)

or sp(4,R). Since sp(4,R) contains a copy of sl(2,R)× sl(2,R), it has already been

treated. Finally we conclude from the fact that sl(3,R) contains a copy of sol1.

Let us now prove the proposition. By simple connectedness and the Lie algebra

case, we deduce that there is an injective continuous homomorphism H → G, with

H either SOL1 or Osc. By Proposition 2.21 and Examples 2.26, we deduce that

the image is closed and undistorted. �

We now treat the case of real-triangulable Lie groups. We start with the following

Lie algebra statement. A Lie algebra is called minimal algebraically thick if it is

algebraically thick, i.e. has R-rank at least 2 or is C (recall Definition 2.3) but no

proper subalgebra satisfies these conditions.

Lemma 2.28. A real-triangulable Lie algebra is minimal algebraically thick if and

only if it is isomorphic to sola, for some a > 0, or osc.

Proof. Clearly these are minimal algebraically thick. Conversely, assume that g

is minimal algebraically thick, and let e be its exponential radical. Since the Lie

algebra is real-triangulable, its roots are real, and this correspond to weights. Recall

that we can see them as elements of the dual of the abelianization gab of g.

Assume first that e has codimension at least 2. Since e ⊂ [g, g], we deduce

that gab has dimension at least 2. Fix a Euclidean structure on gab, so that we

can identify it with its dual. Consider subalgebras containing [g, g] of dimension

1+dim[g, g], which are in one-to-one correspondence with lines of gab. The effect of

passing to such a subalgebra on the weights is to project them orthogonally to the

corresponding line. Since there are only finitely many weights, one can find a line so
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that any non-zero weight remains non-zero when restricted to the line. Moreover,

whether g has C, or has R-rank is at least 2, we can find a line such that when

projecting onto this line we obtain a subalgebra which has C, which contradicts

minimality.

Hence e has codimension 1, so g = eoa, where a is one-dimensional. Recall that

weights are elements of Hom(gab,R) = Hom(a,R) ∼= R. Since g is real-triangulable,

weights correspond to the eigenvalues of the adjoint action of a on e. Denote ex
the characteristic subspace of e associated to the weight x. Observe that since

the adjoint action is by derivations, [ex, ey] ⊂ ex+y. In other words, the vector

decomposition e =
⊕

x ex, where x run through weights, defines a real grading of

the Lie algebra e.

Write (ei)i≥1 for the lower central series of e. These are graded ideals, so in

particular the graduation on e induces a graduation on ei/ej for all i < j (associated

to the corresponding induced a-action). Moreover the Lie bracket induces for each

pair of weights α, β, and for all i, j ∈ N∗ a bilinear map

(ei/ei+1)α × (ej/ej+1)β → (ei+j/ei+j+1)α+β . (2.29)

The fact that g has C implies that there are both positive and negative weights—

say s and t. Passing to the graded subalgebra generated by one eigenline in degree s

and t, and using minimality, we see that e1/e2 is 2-dimensional with weights s and t.

We claim that e2 is concentrated in degree 0, and therefore that e = et⊕es⊕e20. For

if e2 contains a negative (resp. positive) weight then (es+e2)oa (resp. (et+e2)oa)

contradicts minimality.

Now if t + s 6= 0, then by (2.29), we have e2 = 0, and so g ∼= sol−t/s. Assume

s + t = 0. Again by by (2.29) we have [es, e
2] = [et, e

2] = 0, so e2 is centralized

by es and et. By minimality es and et are one-dimensional, and e2 is either zero

or one-dimensional, according to whether [es, et] is zero or not. In the first case,

g ∼= sol, while in the second case, e is the Heisenberg group, and g ∼= osc. �

Proposition 2.30. Let G be an algebraically thick real-triangular Lie group. Then

it has an undistorted closed subgroup isomorphic to SOLa, for some a > 0, or Osc.

Proof. Lemma 2.28 clearly implies the analogous result for Lie algebras: since an

algebraically thick real triangulable Lie algebra contains a minimal one, we deduce

that g contains a subalgebra isomorphic to sola, for some a > 0, or osc. We conclude

as in the end of the proof of Proposition 2.27. �

Combining Proposition 2.27 and 2.30, we immediately deduce the following re-

sult.

Corollary 2.31. Let G be a linear connected Lie group with real-triangulable rad-

ical. If it is algebraically thick, then it contains a closed undistorted subgroup iso-

morphic to SOLa, for some a > 0, or Osc.

Proof. The only case not covered by Proposition 2.27 is when R is a C-group or

has R-rank at least 2, which is treated in Proposition 2.30. �

We now turn to the converse.

Lemma 2.32. The class of solvable algebraically thin groups is stable under taking

closed subgroups.

Proof. Recall that algebraically thin solvable Lie groups are precisely NC-groups of

R-rank at most 1 by Proposition 2.4. The conclusion can be deduced from Lemma

2.5: indeed, if G′ < G, then the exponential radical E′ of G′ is contained in E, and
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either G′ contains an element that contracts E, and therefore E′, or it does not.

But since the R-rank of G is at most one, the last option implies that E′ = {1},
and therefore that G′ has polynomial growth. �

Lemma 2.33. If a connected Lie group is algebraically thin, then so are all its

closed connected solvable subgroups.

Proof. This is a statement about Lie algebras. Let s be the semisimple part of the

Lie algebra g of G, and let r be its solvable radical. Let n be a maximal solvable

subalgebra of s: it is of type NC. Let m = n + r. The condition [r, s] = 0 ensures

that m is the direct product of n with r. Besides, by Hahn-Banach, property NC

says that there exists x in the Lie algebra such that ω(x) > 0 for all for weights ω.

Since weights of n× r are pairs (ωn, ωr), where ωn and ωr are respectively weights

of n and r, we deduce that m has property NC and has R-rank at most 1. Now

every maximal solvable subalgebra of g is of this form. Hence combining this with

Lemma 2.32 proves the lemma. �

Proof of Proposition 1.10. Corollary 2.31 readily implies (i) =⇒ (ii), and (ii) =⇒
(iii) is clear. Hence we are reduced to proving (iii) =⇒ (i). This results from Lemma

2.33 together with the fact that neither SOLa nor Osc are algebraically thin. �

3. Embeddings of Diestel–Leader graphs

The goal of this section is to show that for all a > 0, SOLa (and some others

groups) contain a quasi-isometrically embedded copy of the Diestel–Leader graph.

This will be important when we establish lower bounds on Poincaré profiles in §4.

Unfortunately, we are unable to prove it for Osc, so its Poincaré profiles will be

established by a direct (much harder) computation in §4.

Theorem 3.1. The Diestel–Leader graph DL(2, 2) quasi-isometrically embeds into

• T × T where T is any tree with minimal vertex degree ≥ 3,

• any finitely generated wreath product H oK where H is non-trivial and K

is infinite,

• the Baumslag–Solitar group BS(m,n), whenever |m| 6= |n|, and

• SOLa for any a > 0.

The first two items are certainly not new, and, as mentioned in the introduction,

all are likely known to experts, but proofs are given for completeness.

Firstly, we recall the definition of the Diestel–Leader graph. Given a simplicial

tree T , v ∈ V T and ξ ∈ ∂T , for each vertex w let γw be the unique geodesic ray

from w to ξ. The Busemann function associated to the triple (T, v, ξ) is defined

by bT,v,ξ : V T → R,

bT,v,ξ(w) = dT (v, γv ∩ γw)− dT (w, γv ∩ γw).

Let Ti = (Ti, vi, ξi) for i = 1, 2, where each Ti is a simplicial tree, vi ∈ V Ti and

ξi ∈ ∂Ti. Let hi = bTi,vi,ξi for i = 1, 2. The vertex set of the Diestel–Leader

graph DL(T1, T2) is

{(x, y) ∈ V T1 × V T2 : h1(x) + h2(y) = 0}

and two vertices (x, y),(x′, y′) span an edge if and only if xx′ and yy′ are edges in

ET1 and ET2 respectively. As a shorthand we write DL(q1, q2) when each Ti is a

(qi + 1)-regular tree. The Diestel–Leader graph DL(q, q) is a Cayley graph of the

lamplighter group Zq o Z [Woe05].
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We start with the standard fact that Diestel–Leader graphs are undistorted in

the product of trees used to define them.

Lemma 3.2. The inclusion map ι : DL(T1, T2)→ T1 × T2 (defined on vertices) is

a bi-Lipschitz embedding with respect to the shortest path metric on DL(T1, T2) and

the L1 product metric on T1 × T2.

Sketch of proof. It is clear that ι is 2-Lipschitz. For the converse, suppose we

have (s1, s2) and (t1, t2) ∈ DL(T1, T2) ⊂ T1 × T2. We find a path in DL(T1, T2)

connecting these points by concatenating a path of length dT1
(s1, t1) from (s1, s2)

to some (t1, s
′
2), and a path of length at most dT1

(s1, t1) + dT2
(s2, t2) from (t1, s

′
2)

to (t1, t2). Hence, dDL(T1,T2) ≤ 2dT1×T2
. �

3.1. Busemann compatible embeddings. We let H2
R = {(x, y), x ∈ R, y > 0}

be the hyperbolic half-plane with boundary ∂H2
R = (R× {0}) ∪ {∞}, and define a

Busemann function on H2
R by bH2

R,(0,1),∞(x, y) = log(y).

Recall that if T is a tree, and ι : T → H2
R is a bi-Lipschitz embedding, then

ι extends to a topological embedding (a homeomorphism onto its image) between

the Gromov compactifications ι : T → H2
R.

Definition 3.3. Let α > 0, and let T be a tree. Let (X, v′,∞) be either the

triple (H2
R, (0, 1),∞) or a triple of a tree T ′, a vertex and a point labelled ∞ in

the boundary of T ′. Let hX be the Busemann function associated to the triple

(X, v′,∞). A map ι : T → X is called α-Busemann-compatible, if there is a

vertex v ∈ T and a point ξ ∈ ∂T such that

(i) ι is a bi-Lipschitz embedding;

(ii) ι(ξ) =∞;

(iii) hX(ι(z)) = αbT,v,ξ(z), for all z ∈ V T .

Remark 3.4. It is an easy observation that given a tree (T ′, v′, ξ′) where every

vertex has degree at least 3, and any positive integer k, there exists a k-Busemann-

compatible embedding of the 3-regular tree (T3, v, ξ) into (T ′, v′, ξ′). The following

proposition shows that a similar fact is true replacing T ′ by H2
R.

Proposition 3.5. For all α > log(m), there exists an α-Busemann-compatible

embedding of the (m+ 1)-regular tree in H2
R.

Proof. Fix m ∈ N and α > log(m). Set t := eα > m. Let Am,t be the subset of R
consisting of finite combinations of the form

∑
k≥0 ait

k, with ai ∈ {0, . . . ,m − 1}.
Now for every n ∈ Z, define Σn to be

Σn = {(atn, tn) : a ∈ Am,t} .

We now define a graph T whose set of vertices is Σ = ∪n∈ZΣn, and whose edges

relate pairs of vertices (v, v′) ∈ Σn × Σn+1, with v = (atn, tn) and v′ = ((a −
a0)tn, tn+1). This ensures that the distance between v and v′ is bounded by a

constant K only depending on t and m. It follows by construction that T is an

(m+ 1)-regular tree, and that the restriction of α−1bH2
R,(0,1),∞ to T coincides with

the Busemann function based at (0, 1) ∈ T , and pointing towards ∞. As already

observed the inclusion ι : T → H2
R is K-Lipschitz; we will now prove that the choice

of α ensures that it is bi-Lipschitz. We start with the case of two points on T at the

same Busemann level, whose images in H2
R are therefore of the form v = (atn, tn)

and v′ = (a′tn, tn). On applying the hyperbolic isometry of the half-plane that fixes

0 and ∞ and maps Hn = b−1
H2

R,(0,1),∞(αn) to H0, we can assume that n = 0. Then
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their distance in the tree is 2k+ 2 where k is the largest integer such that ak 6= a′k.

On the other hand, one has

|a− a′| ≥ tk −
k−1∑
i=0

(m− 1)ti ≥ tk
(

1− m− 1

t− 1

)
.

Since t > m, there exists c > 0 only depending on α andm such that dH2
R
(v, v′) ≥ ck,

so we are done. The general case can easily be deduced from this one using that

the distance between any points in Σn and Σn+k is at least αk. �

3.2. Horocyclic products. Let X,Y be spaces with associated Busemann func-

tions bX , bY and let α > 0. The (α-stretched) horocyclic product of X and

Y is defined as

Sα(X,Y ) = {(z1, z2) ∈ X × Y : bX(z1) + αbY (z2) = 0}

and is equipped with the subspace metric from the L1 product metric on X × Y .

Proposition 3.6. Let α1, α2 > 0, and let each of X1 = (X1, v1,∞1) and X2 =

(X2, v2,∞2) be either (T, v, ξ) with T a tree, v ∈ V T and ξ ∈ ∂T or (H2
R, (0, 1),∞).

Suppose T1 = (T1, v1, ξ1) and T2 = (T2, v2, ξ2) are two trees of degree at least 3,

with distinguished vertices and points in their boundary, and admitting α1 and α2–

Busemann-compatible embeddings into X1 and X2 respectively. Then the Diestel–

Leader graph DL(T1, T2) admits a bi-Lipschitz embedding into the α-stretched horo-

cylic product Sα(X1, X2) of X1 and X2, where α = α1/α2.

Proof. For i = 1, 2, let φi : Ti → Xi be an αi–Busemann-compatible embedding,

i.e., for all zi ∈ Ti,
hXi(φi(zi)) = αibTi(zi).

We immediately obtain a bi-Lipschitz embedding ψ = (φ1, φ2) from T1 × T2

to X1 × X2, which by Definition 3.3(iii) restricts to a (Lipschitz) embedding ψ :

DL(T1, T2)→ Sα(X1, X2). To see this notice that for (z1, z2) ∈ DL(T1, T2) we have

0 = bT1
(z1) + bT2

(z2) = α−1
1 hX1

(φ1(z1)) + α−1
2 hX2

(φ2(z2)),

so hX1(φ1(z1)) + αhX2(φ2(z2)) = 0.

By Lemma 3.2 the embedding of DL(T1, T2) into T1 × T2 is bi-Lipschitz, so

ψ ◦ ι : DL(T1, T2)→ X1 ×X2

is a composition of bi-Lipschitz embeddings and hence, is a bi-Lipschitz embedding.

Since ψ◦ι equals the composition of ψ with the natural embedding j : Sα(X1, X2)→
X1 ×X2 and ψ and j are both Lipschitz, it follows that ψ must be a bi-Lipschitz

embedding. �

With these results we can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. As is standard, by Lemma 3.2, DL(2, 2) quasi-isometrically

embeds into the product of two trivalent trees, and the trivalent tree isometrically

embeds into any tree with minimum degree ≥ 3. Next, DL(2, 2) is a Cayley graph

of the lamplighter Z2 o Z. Let h ∈ H \ {1H} and let γ be a bi-infinite geodesic in a

Cayley graph of K. The map

(f, z) ∈ Z2 o Z 7→ (g, γ(z)) ∈ H oK

where g(k) = h if k = γ(m) for some m and f(m) = 1, and otherwise g(k) = 1H ,

defines a quasi-isometric embedding of Z2 o Z into H oK. Thus H oK contains a

quasi-isometrically embedded copy of DL(2, 2).



24 DAVID HUME, JOHN M. MACKAY, AND ROMAIN TESSERA

For n ≥ 2, BS(1, n) is quasi-isometric to a horocyclic product of an (n + 1)-

valence tree with a copy of H2
R, so contains a quasi-isometrically embedded copy

of DL(2, 2) by Proposition 3.6. The groups BS(m,n) with |m| , |n| ≥ 2 and |m| 6=
|n| are all quasi-isometric [Why01], and BS(2, 4) = 〈a, t | t−1a2t = a4〉 contains

BS(1, 2) = 〈a2, t〉 as an (undistorted) subgroup.

Finally, for a > 0, we consider

SOLa = R2 o(1,−a) R ∼= {((x, t), (y, t)) ∈ (Ro1 R)× (Ro−a R)}
∼= {((x,−t), (y, t)) ∈ (Ro−1 R)× (Ro−a R)} .

Here, for b ∈ R, R ob R indicates the semidirect product where the action is given

by x · ψ(t) = ebtx; when b 6= 0 this group admits a left-invariant metric isometric

to H2
R. Let us fix isometries ι1 : Ro−1 R→ H2

R, ι2 : Ro−aR→ H2
R so that for each

i = 1, 2 we have bH2
R,(0,1),∞(ιi(x, t)) = βit where β1 = 1, β2 = 1/a. Equipped with

a suitable left-invariant metric, SOLa is isometric to the β1

β2
-stretched horocyclic

product of (H2
R, (0, 1),∞) with itself.

By Remark 3.4 and Proposition 3.5, for β > 0 large enough the 3-regular tree

admits a ββi–Busemann-compatible embedding in H2
R for each i = 1, 2, hence by

Proposition 3.6, DL(2, 2) quasi-isometrically embeds into SOLa ∼= Sα(H2
R,H2

R) for

α = β1

β2
= ββ1

ββ2
. �

Remark 3.7. Given two locally compact groups G1, G2 with automorphisms α1, α2

contracting into compact sets, the methods above adapt straightforwardly to show

that DL(2, 2) quasi-isometrically embeds into (G1 × G2) o(α1,α
−1
2 ) Z (cf. [CT17,

Definition 1.3]).

4. Poincaré profile calculations for analytically thick groups

Having established the required background on Lie groups and Diestel–Leader

graphs, we now begin the main content of this paper. In this section we prove:

DL(2, 2) and Osc have Λp(r) ' r/ log(r) for all p ∈ [1,∞]. In both theorems the

p = ∞ case follows immediately from [HMT18, Proposition 6.1], and so by the

following proposition it suffices to prove a lower bound of r/ log(r) on Λ1.

Proposition 4.1. If X is a graph with bounded degree with finite Assouad–Nagata

dimension, then ΛpX(r) . r/ log(r) for all p ∈ [1,∞).

Proof. Note that having finite Assouad–Nagata dimension, X has finite measurable

dimension in the sense of [HMT18, Definition 9.1] with function γ(t) . et. We

conclude thanks to [HMT18, Proposition 9.5]. �

Corollary 4.2. Let G be a connected Lie group or a Baumslag–Solitar group

BS(m,n). Then ΛpG(r) . r/ log(r) for all p ∈ [1,∞), and moreover if G is an-

alytically thick,

ΛpX(r) ' r/ log(r) ∀p ∈ [1,∞].

Proof. Such a group G has finite Assouad–Nagata dimension (see [HP13] for the

case of connected Lie groups). Moreover G is large scale equivalent in the sense of

[HMT18, Definition 5.3] to a graph with bounded degree, hence the first statement

follows from Proposition 4.1. Thus if G is analytically thick it has ΛpG(r) ' r/ log(r)

for p ∈ [1,∞) by [HMT18, Propositions 7.2]. For p = ∞, G does not have poly-

nomial growth (as those groups are analytically thin), so it must have exponential

growth [Gui73, Jen73], thus the result follows from [HMT18, Proposition 6.1]. �
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4.1. Diestel–Leader graphs. This section is dedicated to the proof of the follow-

ing theorem.

Theorem 4.3. For all p ∈ [1,∞], the Diestel–Leader graph X = DL(2, 2) satisfies

ΛpX(r) ' r/ log(r).

Proof. Fix a Busemann function h on the 3-regular tree T3. Consider copies T1, T2

of T3 so that V DL(2, 2) ⊂ V T1 × V T2. Suppose k ∈ N is given. Fix o1 ∈ V T1

with h(o1) = k and o2 ∈ V T2 with h(o2) = 0. Consider the induced subgraph Γk
of DL(2, 2) with vertex set

Vk =

(x, y) :

d(o1, x) = k − h(x),

d(o2, y) = −h(y),

0 ≤ d(o1, x), d(o2, y) ≤ k

 .

For 0 ≤ t ≤ k, let V tk = {(x, y) ∈ Vk : h(x) = t}. We call a directed edge (x, y)(x′, y′)

in Γk an up edge if h(x′) > h(x) and a down edge otherwise.

Given a pair of vertices (x, y), (x′, y′) in Γk with h(x) = t ≥ h(x′) = s we assign

a family C(x,y),(x′,y′) of 2k−t+s paths of length 2k− t+ s connecting them as follows

cz,z′ = (x, y) ↑ (o1, z
′) ↓ (z, o2) ↑ (x′, y′), (4.4)

where z′ varies over the 2k−t vertices in the second coordinate T2 satisfying k =

d(o2, z
′) = d(o2, y)+d(y, z′), and z varies over the 2s vertices in the first coordinate

T1 satisfying k = d(o1, z) = d(o1, x
′) + d(x′, z). Each path cz,z′ is uniquely deter-

mined by the two vertices z, z′ and the length restriction. This forces the path to

split into three parts as indicated in (4.4): the first and last consisting only of up

edges and the second only down edges.

We split the remainder of the proof into three claims.

Claim 1: |Γk| = (k + 1)2k.

For each 0 ≤ t ≤ k, there are 2k pairs (x, y) such that h(x) = t: 2t different

possibilities for x and 2k−t possible y. Thus there are (k + 1)2k vertices in total.

Claim 2: Every edge in EΓk is contained in at most 22k−t+s paths connecting

a vertex (x, y) ∈ V tk to a vertex (x′, y′) ∈ V sk .

Fix an up edge e = (a, b)(a′, b′) so 0 ≤ h(a) ≤ k − 1. For t ≥ s, denote by

Ne(t, s) the number of times e appears with either orientation in one of the chosen

paths which starts at some (x, y) where h(x) = t and ends at some (x′, y′) where

h(x′) = s.

If the edge e appears in the first section of some path in C(x,y),(x′,y′) then h(a) ≥ t
and y is the unique vertex satisfying d(o2, b) = d(o2, y) + d(y, b) and h(y) = −t.
Moreover, x can be any of the 2h(a)−t vertices satisfying d(o1, x) = d(o1, a)+d(a, x).

For any of these 2h(a)−t choices of a pair (x, y) and every choice of (x′, y′), the edge

e appears in exactly 2−(h(a′)−t) proportion of the paths in C(x,y),(x′,y′). All of this

analysis is independent of the choice of (x′, y′) so for each of the 2h(a)−t2k possible

choices of suitable (x, y), (x′, y′), e appears in 2−(h(a′)−t)2k−t+s of the paths in

C(x,y),(x′,y′).

Thus e appears in the first section of some path at most 22k−t+s−1 times. A

similar analysis shows that if h(a) < s then e appears in the third section of some

path at most 22k−t+s−1 times, and if h(a) ≥ s then e never appears in the third

section.

We are left to analyse the second section of the paths. If either h(a) ≥ t or h(a) <

s then the above analysis also holds and e is used 22k−t+s−1 times. Otherwise, either

none or all of the paths in C(x,y),(x′,y′) contain e. In the case where it is all of them,
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we have 2t−h(a′) possibilities for y, 2h(a)−s possibilities for x′, 2k−t+s choices of the

pair (z, z′), 2k−t choices of x and 2s choices of y′. Therefore, e appears at most

22k−t+s−1 times as a down edge. Combining these observations, we see that the

total number of different paths containing e is at most 2 · 22k−t+s−1 as required.

Claim 3: h1(Γk) � 1/k.

Let f : Vk → R be a non-constant function with
∑
v∈Vk f(v) = 0. For an edge

e ∈ EΓk with endpoints v, w, let |∇f(e)| = |f(v) − f(w)|. Using the triangle

inequality, we have

∑
v,w∈Vk

|f(v)− f(w)| ≤ 2
∑
t≥s

∑
v∈V tk ,w∈V

s
k

1

2k−t+s

 ∑
γ∈Cv,w

∑
e∈γ
|∇f(e)|


= 2

∑
t≥s

22k−t+s

2k−t+s

( ∑
v∈V tk ,
w∈V sk

∑
γ∈Cv,w

∑
e∈γ

1

22k−t+s |∇f(e)|

)

≤ 2k+1
∑
t≥s

∑
e∈EΓk

|∇f(e)| .

We deduce that∑
v,w∈Vk

|f(v)− f(w)| ≤ 2k(k + 1)(k + 2)
∑
e∈EΓk

|∇f(e)| .

Now, for every finite graph Γ with maximal degree d, and every function f : V Γ→ R
we have ∑

e∈EΓ

|∇f(e)| ≤ d

2

∑
v∈V Γ

|∇f(v)| = d

2
||∇f ||1 ,

which implies that if
∑
w∈Vk f(w) = 0,

|Vk| ‖f‖1 = |Vk|
∑
v∈Vk

∣∣∣∣∣f(v)− 1

|Vk|
∑
w∈Vk

f(w)

∣∣∣∣∣
≤

∑
v,w∈Vk

|f(v)− f(w)| ≤ d

2
2k(k + 1)(k + 2) ||∇f ||1

=
d

2
(k + 2) |Vk| ||∇f ||1 .

Thus h1(Γk) � 1/k as required.

Since for each k ≥ 1, |Γk| ≤ |Γk+1| ≤ 4 |Γk|, for every r ≥ 4 there exists a k such

that r
4 ≤ |Γk| ≤ r. Moreover, |Γk| = (k + 1)2k, so log2(r) ≥ k.

Given Proposition 4.1, the proof is now complete, since

Λ1
X(r) ≥ |Γk|h1(Γk) � r

log(r)
. �

Corollary 4.5. For every non-trivial finitely generated group H and every infinite

finitely generated group K, the wreath product G = H oK satisfies ΛpG(r) & r/ log(r)

for all p ∈ [1,∞]. If, in addition, H is finite and K is virtually cyclic then ΛpG(r) '
r/ log(r) for all p ∈ [1,∞].

Proof. For p = ∞, G has exponential growth so Λ∞G (r) ' r/ log(r) by [HMT18,

Proposition 6.1].

By Theorem 4.3 and Theorem 3.1

r/ log(r) . Λ1
DL(2,2)(r) . Λ1

G(r).



POINCARÉ PROFILES OF LIE GROUPS AND A COARSE GEOMETRIC DICHOTOMY 27

Finally, G has Assouad–Nagata dimension 1 whenever H is finite and K is virtually

cyclic, so by Proposition 4.1, for all p ∈ [1,∞)

r/ log(r) . Λ1
G(r) . ΛpG(r) . r/ log(r). �

4.2. Poincaré profiles of Osc. Let Heis3 denote the real Heisenberg group, con-

sider the action R y Heis3 given by 1 a c

0 1 b

0 0 1

 · ψ(k) =

 1 eka c

0 1 e−kb

0 0 1

 ,

and construct the corresponding semidirect product Osc = Heis3 oψR. For brevity,

we will omit ψ in what follows and we introduce the following shorthands for ele-

ments of Heis3 and Osc respectively

(a, b, c) :=

 1 a c

0 1 b

0 0 1

 (a, b, c; k) :=

 1 a c

0 1 b

0 0 1

 , k

 .

For example, the group operation in Osc is

(a, b, c; k)(a′, b′, c′; k′) = (ek
′
a+ a′, e−k

′
b+ b′, c+ c′ + ek

′
ab′; k + k′).

In what follows we will work with the cocompact subgroup G = Heis3 oZ. To define

Poincaré profiles on G, we use the word metric from the compact generating set

[−1, 1]3 × {−1, 0, 1}, and we use the following notion of gradient: Given a function

f : X → R on a metric space X, and a ≥ 2, we define |∇af | : X → R by

|∇af |(x) = sup {|f(y)− f(y′)| : y, y′ ∈ B(x, a)} .

Full details about Poincaré profiles with respect to this notion of gradient of a

function are presented in [HMT18, Sections 3 and 4].

Our goal is the following:

Theorem 4.6. For all p ∈ [1,∞], ΛpOsc(r) ' r/ log(r).

By Corollary 4.2 it suffices to prove that Λ1
G(r) & r/ log(r).

The proof has four main steps: first we define special families of sequences for

each pair of points in chosen subsets of Heis3, second we show these sequences have

“small overlap”, third from them we construct coarse paths in G, and finally we

get a lower bound on Λ1
G by controlling the change in functions by their gradient

on these paths.

Let us demonstrate the approach with a simpler example that avoids some of

the technicalities required. Consider G = R4 o(1,−1,1,−1) Z with the word metric

from the compact generating set [−1, 1]4 × {−1, 0, 1}. For each t define Ht =

[−et, et]4 ⊆ R4. Given any pair a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) we define a

special sequence S(a, b) as follows:

(a1, a2, a3, a4)→ (b1, a2, a3, a4)→ (b1, b2, a3, a4)→ (b1, b2, b3, a4)→ (b1, b2, b3, b4)

By “small overlaps”, we mean that if for some 1 ≤ n ≤ 5 we know c = (c1, c2, c3, c4)

is the nth term in the sequence S(a, b) then ai = ci for n ≤ i ≤ 4 and bi = ci for

1 ≤ i < n. We interpret this as saying that the set of points in Ht × Ht whose

special sequence contains a given c in the nth term is a “copy” of Ht.
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Next define

Gt =

t⋃
k=−t

(ψ(k)Hk, k) =
{

(x, y, z, w; k) ∈ G : x, z ∈ [−et+k, et+k],

y, w ∈ [−et−k, et−k], −t ≤ k ≤ t
}
.

For each pair ai = (xi, yi, zi, wi; ki) ∈ Gt for i = 1, 2 we define a discrete path

P (a1, a2) connecting them with adjacent terms at distance ≤ 2 with respect to the

word metric, and having at most 10t+ 5 entries in Gt. In the description below of

P (a1, a2), “→Z” indicates that we move between the two points by applying ψ±1

the appropriate number of times. Each application of ψ±1 defines a new point on

the path. Observe that all points defined are of the form (c · ψ(k); k) for some

−t ≤ k ≤ t, c ∈ P (a1, a2).

(x1, y1, z1, w1; k1) →Z (e−t−k1x1, e
t+k1y1, e

−t−k1z1, e
t+k1w1;−t)

→ (e−t−k2x2, e
t+k1y1, e

−t−k1z1, e
t+k1w1;−t)

→Z (et−k2x2, e
−t+k1y1, e

t−k1z1, e
−t+k1w1; t)

→ (et−k2x2, e
−t+k2y2, e

t−k1z1, e
−t+k1w1; t)

→Z (e−t−k2x2, e
t+k2y2, e

−t−k1z1, e
t+k1w1;−t)

→ (e−t−k2x2, e
t+k2y2, e

−t−k2z2, e
t+k1w1;−t)

→Z (et−k2x2, e
−t+k2y2, e

t−k2z2, e
−t+k1w1; t)

→ (et−k2x2, e
−t+k2y2, e

t−k2z2, e
−t+k2w2; t)

→Z (x2, y2, z2, w2; k2).

Given f : Gt → R, for any x = (a; r), y = (b; s) ∈ Gt, by the triangle inequality

we have

|f(x)− f(y)| ≤
t∑

k=−t

∑
c∈S(a,b)

|∇2f |(c · ψ(k); k).

Therefore,

µ(Gt)‖f − fGt‖1 ≤
∫
Gt×Gt

|f(x)− f(y)|dµ(Gt ×Gt) (4.7)

≤ (2t+ 1)2

∫
Ht×Ht

t∑
k=−t

∑
c∈S(a,b)

|∇2f |(c · ψ(k); k)dµ(Ht ×Ht).

Now we split
∫
Ht×Ht into 8 integrations over the variables xi, yi, wi, zi. We also split

into 5 terms coming from the five positions c could take in the sequence S(a, b).

For the nth of these we reorder the integration as follows:∫
a1,...,an−1,bn,...,b4

t∑
k=−t

∫
b1,...,bn−1,an,...,a4

∑
c=S(a,b)n

|∇2f |(c · ψ(k); k)

 (4.8)

By the “small overlap” condition, the bracketed part of the above expression is

simply
∫
c∈Ht |∇2f |(c · ψ(k); k), so (4.8) is bounded from above by

µ(Ht)

∫
Gt

|∇2f | =
1

2t+ 1
µ(Gt)

∫
Gt

|∇2f |.
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Combining this with (4.7) and cancelling µ(Gt) we deduce that

‖f − fGt‖1 ≤ 5(2t+ 1)

∫
Gt

|∇2f |.

We deduce that h1(Gt) ≥ 1
5(2t+1) ≥ ε/ log(µ(Gt)) for some ε > 0 which is inde-

pendent of t. Since for any r one can find t with µ(Gt) comparable to r, thus

Λ1
G(r) & r/ log(r).

Before proceeding with the lower bound on Osc we briefly mention some of the

difficulties of generalising our approach to R4 o Z. The first, and most obvious,

is that the special sequences in Heis3 are longer than those in R4 and the “small

overlap” condition is more involved. It is crucial to our argument that the Haar

measure dµH on Heis3 coincides with the Lebesgue measure dxdydz on R3 allowing

us to split integrals. However, in making this change we will have to apply three

changes of variables, some of which have non-trivial Jacobians. These also need to

be controlled.

Notations and conventions. In what follows we let t be a positive integer.

• Define a subset of Heis3 as follows:

Ht =
{

(a, b, c) : −et ≤ a < et, −et ≤ b < et, −2e2t < c ≤ 2e2t
}
⊂ Heis3 .

• Define a subset of G = Heis3 oZ as follows:

Gt =

{
(a, b, c; k) :

−et+k ≤ a < et+k, −et−k ≤ b < et−k

−2e2t < c ≤ 2e2t, −t ≤ k ≤ t

}
,

i.e. Gt =
⋃t
k=−t ((Ht; 0) · (1Heis3 ; k)) =

⋃t
k=−t(Ht · ψ(k); k).

• We shall consider the following subset of Heis3:

St =
{
A(s), B(s) : −2et ≤ s ≤ 2et

}
⊆ Heis3,

where A(s) = (s, 0, 0) and B(s) = (0, s, 0).

Step 1: Defining sequences in Ht. Let us fix x′ = (a1, b1, c1), y′ = (a2, b2, c2) ∈
Ht. We will define a sequence x′ = x′0, . . . , x

′
54 = y′ such that (x′i)

−1x′i+1 ∈ St for

all i.

Define ai ∈ [0, 1
3e
t) such that ai−ai ∈ 1

3e
tZ, and bi ∈ [0, 1

3e
t) such that bi− bi ∈

1
3e
tZ; note −et ≤ bi − bi ≤ 2

3e
t.

Define c1 ∈ (− 1
2e

2t, 0] such that c1 − c1 = l1
2 e

2t for some l1 ∈ {−4,−3, . . . , 3}.
Finally, define c2 such that c2 − c2 = l2

2 e
2t for some l2 ∈ Z and

1

2
e2t < c2 − c1 − a1(b1 − b1)− a2(b2 − b1) ≤ e2t. (4.9)

As we shall later see, −2
3 e

2t ≤ c2 ≤ 5
3e

2t so l2 ∈ {−7,−6, . . . , 5}. Set k = (c2− c1−
a1(b1 − b1)− a2(b2 − b1))1/2.

The first sixteen steps travel from x′0 = (a1, b1, c1) to x′16 = (a1, b1, c1). We have

x′16 = x′0C
l1

where C is any cyclic conjugate of the commutatorA( 1√
2
et)B( 1√

2
et)A(− 1√

2
et)B(− 1√

2
et)

and |l1| ≤ 4. Now Cl1 decomposes as a product of at most 16 elements of St. Split-

ting into four cases depending on the signs of a1, b1, at least one of these paths will

remain inside Ht, for example, the commutator given above always stays inside Ht

when a1, b1 ≤ 0. If x′i = (a1, b1, c1) occurs for the first time with i < 16 then we

simply define all terms in the sequence from x′i to x′16 to be equal to (a1, b1, c1).
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The next steps are given by multiplying by suitable A(s) or B(s) in turn:

x′17 = (a1, b1, c1) = x′16A(a1 − a1)

x′18 = (a1, b1, c1 + a1(b1 − b1)) = x′17B(b1 − b1), etc.

x′19 = (a2, b1, c1 + a1(b1 − b1))

x′20 = (a2, b2, c1 + a1(b1 − b1) + a2(b2 − b1))

x′21 = (a2 − k, b2, c1 + a1(b1 − b1) + a2(b2 − b1))

x′22 = (a2 − k, b2 − k, c2 − a2(b2 − b2)− ka2)

x′23 = (a2, b2 − k, c2 − a2(b2 − b2)− ka2)

x′24 = (a2, b2, c2 − a2(b2 − b2))

x′25 = (a2, b2, c2)

x′26 = (a2, b2, c2)

It is clear from the definitions given above that the a and b coordinates remain

within Ht. For the c coordinate, we have:

−13

18
exp(2t) ≤ c1 + a1(b1 − b1) ≤ 1

3
exp(2t)

−5

6
exp(2t) ≤ c1 + a1(b1 − b1) + a2(b2 − b1) ≤ 4

9
exp(2t)

Adding k2 to both sides, and then adding either −ka2 or a2(b2 − b2) we get:

−1

3
exp(2t) ≤ c2 − a2(b2 − b2) ≤ 13

9
exp(2t)

−2

3
exp(2t) ≤ c2 − a2(b2 − b2)− ka2 ≤ 13

9
exp(2t)

−2

3
exp(2t) ≤ c2 ≤ 5

3
exp(2t)

and therefore the sequence remains inside Ht.

For the final part we apply conjugates as in the first step, except that this time,

we only have |l2| ≤ 7, meaning as many as 28 steps could be required. As before,

we insist on using the full 28 steps (to simplify notation later) so if x′i = y occurs

for the first time at some i < 54 we simply define x′j = y whenever i ≤ j ≤ 54.

Thus, to each pair of points x′, y′ ∈ Ht we have assigned a sequence x′0, . . . , x
′
54.

We define gi : Ht ×Ht → Ht by gi(x
′, y′) = x′i.

Step 2: Showing that these sequences have “small overlap”. These se-

quences retain a considerable amount of information about their initial and terminal

points. We want to show that for any fixed v ∈ Ht the set of pairs (x′, y′) ∈ Ht×Ht

such that v lies on the sequence connecting x′ to y′ as defined above is “small”. We

now make this precise.

For all v = (v1, v2, v3) ∈ R3 and σ = (σ1, σ2, σ3) ∈ {1, 2}3, we define

Heis2
v,σ =

{
((a1, b1, c1), (a2, b2, c2)) ∈ (Heis3)2 : aσ1

= v1, bσ2
= v2, cσ3

= v3

}
Recall that for i ∈ {0, . . . , 54}, x′ ∈ Ht and y′ ∈ Ht the ith term in the sequence

connecting x′ to y′ is gi(x
′, y′).

Lemma 4.10. For each i, there exists σi = (σi1, σ
i
2, σ

i
3) such that g−1

i (a′, b′, c′)

intersects each Heis2
v,σi in at most M = 2932 points.

Proof. We will prove this by finding an appropriate σi in each case and proving a

bound on the intersection. As a shorthand, let us write x′i = (Ai, Bi, Ci).
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Case i ≤ 16 and i ≥ 26: For i ≤ 16, set σi = (2, 2, 2), we know that a′ ∈{
a1 − 1√

2
et, a1, a1 + 1√

2
et
}

, b′ ∈
{
b1 − 1√

2
et, b1, b1 + 1√

2
et
}

and c′ = c1 + εa1e
t +

p
2e

2t for some ε ∈ {−1, 0, 1} and at most 8 possible values of p ∈ Z. Therefore the

intersection with each Hv,σi contains at most 33 · 8 points, corresponding to the

three choices of a′, b′, ε and eight choices of p respectively. We argue similarly for

stage 7, where i ≥ 28, except that we must set σi = (1, 1, 1).

Case i = 17: Set σi = (2, 2, 2). Given (a1, b1, c1) there are at most 6 possibilities

for a1 and 8 possibilities for c1.

Case i = 18: Set σi = (2, 2, 2). Given (a1, b1, c1 + a1(b1 − b1)) there are at most 6

possibilities for a1, 6 for b1 and, for each of these choices, 8 possibilities for c1.

Case i = 19: Set σi = (1, 2, 2). There are at most 6 possibilities for a2, 6 possibil-

ities for b1, and for each of these, 8 possibilities for c1.

Case i = 20: Set σi = (1, 1, 2). There are at most 6 possibilities for a2 and 6

possibilities for b2. From these we determine c1 exactly, and there are 8 possibilities

for c1.

Case i = 21: Set σi = (1, 1, 2). We have

k2 + k(b2 − b2) +A21(b2 − b2)− c2 + C21 = 0.

There are at most 6 possible values of b2 − b2 and at most 8 possible values of c2
(given that c2 has been fixed). So solving the quadratic equation, there are at most

96 possible values of k. For each one we determine a2 and then c1. Then there are

at most 6 possibilities for a2 and 8 for c1, giving at most 96 · 6 · 8 ≤M possibilities.

Case i = 22: Set σi = (1, 1, 1). We have

C22 = c1 + a1(b1 − b1) + (A22 + k)(B22 + k − b1)−A22k

which is a monic quadratic in k where we are given all the coefficients. We solve

this, giving at most two possibilities for k. Using k we determine a2 and b2 giving

six possible a2 and b2 in each case. Finally, we determine c2, giving eight possible

values of c2.

Case i = 23: Set σi = (1, 1, 1). We have

k2 = C23 + ka2 − c1 − a1(b1 − b1)− a2(b2 − k + k − b1)

= C23 − c1 − a1(b1 − b1)−A23B23 +A23b1.

Thus we may calculate k exactly, and use this to determine b2. There are then 6

possibilities for b2. For each one, we then calculate c2 using the original definition

of k2. There are at most 6 possibilities for a2, and 8 possibilities for c2.

Case i = 24, 25: The same technique as i = 18, 17 respectively work, except with

σi = (1, 1, 1). �

Step 3: Defining sequences in Gt.

Fix x = (a1, b1, c1; r) and y = (a2, b2, c2; s) in Gt and let x′ = (e−ra1, e
rb1, c1)

and y′ = (e−sa2, e
sb2, c2) be the corresponding points in Ht. Fix the sequence of

points x′ = x′0, . . . , x
′
54 = y′ in Ht constructed in Step 1. We now construct a

sequence x = x0, . . . , xm = y of points in Gt such that dG(xi, xi+1) ≤ 2 for all i.

Starting from x0 = (a1, b1, c1; r), define xi = (e−ia1, e
ib1, c1; r−i) for 0 ≤ i ≤ r if

r ≥ 0 and xi = (eia1, e
−ib1, c1; r+i) for 1 ≤ i ≤ −r if r < 0. Now x|r| = (x′0; 0). We

now define parts of the sequence (xj) going from xki = (x′i; 0) to xki+1
= (x′i+1; 0)

for each 0 ≤ i < 54; note that k0 = |r|. If x′i and x′i+1 differ by some A(s) then

define

xki+j =

{
xki · (0;−j) if 0 ≤ j ≤ t,

xki+1 · (0;−(2t+ 1) + j) if t+ 1 ≤ j ≤ 2t+ 1.
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Note that here xki+t+1 = xki+t(A(se−t); 0) with |se−t| ≤ 2. If x′i and x′i+1 differ

by some B(s) then define

xki+j =

{
xki · (0; j) if 0 ≤ j ≤ t,

xki+1 · (0; 2t+ 1− j) if t+ 1 ≤ j ≤ 2t+ 1.

Note that here xki+t+1 = xki+t(B(se−t); 0) with |se−t| ≤ 2. Finally, to get from

(x′54; 0) to (a2, b2, c2; s) we apply (0; s) to get the last |s| steps of the sequence, so

the entire sequence has length |r| + 54(2t + 1) + |s|, which is at most a bounded

multiple of t.

Step 4: Controlling functions by their gradients. In this step we show the

following bound. Let µG be the Haar measure on G = Heis3 oZ; note that this

restricts to the Haar measure µH of Heis3 on each copy Heis3×{i}. Recall that

µH agrees with Lebesgue measure under the identification of (a, b, c) ∈ Heis3 with

(a, b, c) ∈ R3.

Lemma 4.11. There exists a constant C such that for any measurable function

f : Gt → R we have∫
x,y∈Gt

|f(x)− f(y)| dµ2
G(x, y) ≤ Ct2e4t

∫
z∈Gt

|∇2f(z)| dµG(z). (4.12)

Proof. Using our defining sequences, the left-hand integral in equation (4.12) is

bounded from above by∫
x,y∈Gt

m(x,y)∑
i=0

|∇2f(xi(x, y))| dµ2
G(x, y), (4.13)

where xi(x, y) is the ith term of the defining sequence from x to y, and m(x, y) is its

last index. DefineGkt = {(a, b, c; r) ∈ Gt : r = k}. LetHk
t = {(a, b, c) : (a, b, c; k) ∈ Gt}

which is by definition equal to Ht · ψ(k). Once k′ is fixed (a′, b′, c′; k′) is in the

sequence x0, . . . , xm only if (e−k
′
a′, ek

′
b′, c′) = (a′, b′, c′) · ψ(−k′) is in the corre-

sponding sequence x′0, . . . , x
′
54, and if a single point appears more than once in the

sequence x0, . . . , xm then we can shorten the sequence so that this does not happen.

Since dG(xi, xi+1) ≤ 2 for all i, the left hand expression in (4.13) is bounded from

above by

t∑
r1,r2=−t

t∑
k′=−t

54∑
j=0

∫
x∈Hr1t

∫
y∈Hr2t

∣∣∇2f(x′j · ψ(k′); k′)
∣∣ dµH(y)dµH(x)

where for x = (er1a1, e
−r1b1, c1; r1), y = (er2a2, e

−r2b2, c2; r2) we use the shorthand

x′j to represent the point gj((a1, b1, c1), (a2, b2, c2)), which we recall is the jth term

of the defining sequence from (a1, b1, c1) to (a2, b2, c2).

Now fix r1, r2, k′ and j. Our next goal is to bound the integral∫
x∈Hr1t

∫
y∈Hr2t

∣∣∇2f(x′j · ψ(k′); k′)
∣∣ dµH(y)dµH(x) (4.14)

in terms of
∫
z∈Gk′t

|∇2f(z)| dµG using Lemma 4.10. Firstly, by Tonelli’s theorem,

(4.14) equals∫
(exp(r

σ
j
1
)a
σ
j
1
,exp(−r

σ
j
2
)b
σ
j
2
,c
σ
j
3
)

∫
(exp(r

τ
j
1

)a
τ
j
1
,exp(−r

τ
j
2

)b
τ
j
2
,c
τ
j
3

)

∣∣∇2f(x′j · ψ(k′); k′)
∣∣

(4.15)

where τ ji is chosen so that {σji , τ
j
i } = {1, 2}.
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Although the integrand is what we are looking for, the problem is that x′j ∈ Ht

depends on the endpoints x and y in a complicated way. To work this out, we now

perform a change of variables (in three steps) which will fix the variables of the first

integral and replace the second three by the image of (x′j ·ψ(k′); k′) in Hk′

t , i.e. the

second integral will now be with respect to dµH as desired.

The first change of variables is the natural rescaling which fixes c1, c2, and maps

exp(rk)ak → ak and exp(−rk)bk → bk for k = 1, 2; since µH is Lebesgue measure

with respect to these coordinates, this rescaling preserves the measure.

The second step fixes aσj1
, bσj2

, cσj3
and replaces (aτj1

, bτj2
, cτj3

) by x′j .

Finally, we return (aσj1
, bσj2

, cσj3
) to (exp(rσj1

)aσj1
, exp(−rσj2)bσj2

, cσj3
) and map

x′j = (α, β, γ)→ (exp(k′)α, exp(−k′)β, γ).

In each case we treat each of di − di for d ∈ {a, b, c} and i = 1, 2 as a constant.

In reality, each takes one of a finite number of values, so we may split the domain

of the integral dependent on those values so that they are truly constants.

Claim: There exist constants 0 < K < L such that the determinant of the

Jacobian Jj corresponding to any such three-step change of variables is between

K exp(rσj1
− rσj2) and L exp(rσj1

− rσj2).

Proof of Claim: We denote the Jacobian matrix of the ith change of variables by

det J ij . The first change of variables clearly has Jacobian determinant 1, and third

transformation has Jacobian determinant exp(rσj1
) exp(−rσj2).

We must compute the finitely many Jacobian determinants corresponding to the

change of variable

(aσi1 , bσi2 , cσi3 , aτ i1 , bτ i2 , cτ i3)→ (aσi1 , bσi2 , cσi3 , α, β, γ).

For i 6= 21, 22, 23 it is straightforward to determine that these Jacobian deter-

minants are equal to 1. For example, in the case i = 20, we fix (a1, b1, c2) and

replace (a2, b2, c1) by (a2, b2, c1 + a1(b1 − b1) + a2(b2 − b1)). The Jacobian for this

transformation is

J2
20 =

 1 0 0

0 1 0

b2 − b1 a2 1

 ,

which has determinant 1.

For i = 21, 22, 23, the important partial derivatives are

∂k

∂a2
= −b2 − b1

2k
,

∂k

∂b2
= −a2

2k
,

∂k

∂c1
=
−1

2k
,

∂k

∂c2
=

1

2k
.

Applying these, we get

J2
21 =

 1 + b2−b1
2k

a2

2k
1
2k

0 1 0

b2 − b1 a2 1

 ,

J2
22 =

 1 + b2−b1
2k

a2

2k − 1
2k

b2−b1
2k 1 + a2

2k − 1
2k

−(b2 − b2)− k + a2(b2−b1)
2k

a2
2

2k 1− a2

2k

 ,

J2
23 =

 1 0 0

+ b2−b1
2k 1 + a2

2k − 1
2k

−(b2 − b2)− k + a2(b2−b1)
2k

a2
2

2k 1− a2

2k


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which have determinants 1 + b2−b2
2k , 1

2 + b2−b1
2k and 1 respectively.

Since 1√
2

exp(t) ≤ k ≤ exp(t), and − exp(t) ≤ b2 − b2 ≤ 2
3 exp(t), we have

0 < 1− 1√
2
≤ det J2

21 ≤ 1 +
√

2
3 .

Next, |b2 − b1| ≤ 1
3 exp(t), so 0 < 1

2 −
1

3
√

2
≤ det J2

22 ≤ 1
2 + 1

3
√

2
. �

For fixed (exp(rσj1
)aσj1

, exp(−rσj2)bσj2
, cσj3

), the change of variables in the other

three coordinates is (at most M)-to-one by Lemma 4.10. Thus, (4.15) is bounded

from above by∫
(exp(r

σ
j
1
)a
σ
j
1
,exp(−r

σ
j
2
)b
σ
j
2
,c
σ
j
3
)

dµH

(M ∫
z′∈Hk′t

1

det Jj
|∇2f(z′; k′)|dµH

)

≤ 16e4tM

K

t∑
k′=−t

∫
z′∈Hk′t

|∇2f(z′; k′)|dµH ,

where we used that
∫

(exp(r
σ
j
1
)a
σ
j
1
,exp(−r

σ
j
2
)b
σ
j
2
,c
σ
j
3
)
dµH = 16e4t exp(rσj1

− rσj2), and

that the Claim gives exp(rσj1
− rσj2) 1

det Jj
≤ 1

K .

Thus, we can bound
∫
x,y∈Gt |f(x)− f(y)| dµ2

G(x, y) by

t∑
r1,r2=−t

54∑
j=0

16e4tM

K

t∑
k′=−t

∫
z′∈Hk′t

|∇2f(z′; k′)|dµH

Finally,
∑t
k′=−t

∫
z′∈Hk′t

|∇2f(z′; k′)|dµH =
∫
z∈Gt |∇2f(z)|dµG. Combining these,

we see that there is constant C such that∫
x,y∈Gt

|f(x)− f(y)| dµ2
G(x, y) ≤ Ct2e4t

∫
z∈Gt

|∇2f(z)|dµG,

as required. �

We are now ready to complete the proof.

Proof of Theorem 4.6. By Corollary 4.2 it suffices to prove that Λ1
Heis3 oZ(r) &

r/ log(r).

Let f : Gt → R be a non-constant function. Since µG(Gt) ' te4t, by Lemma

4.11

µG(Gt) ||f − fGt ||1 .
∫
x,y∈Gt

|f(x)− f(y)| dµ2
G(x, y) . tµG(Gt) ||∇2f ||1 .

Thus Λ1
G(µG(Gt)) & µG(Gt)/ log(µG(Gt)) as functions of t. Here we are using the

Poincaré profile as defined in [HMT18] rather than the version for graphs stated in

the introduction. Since µG(Gt) grows at most exponentially in t we have Λ1
G(r) &

r/ log(r). �

5. Capacity profiles

The main goal of §5 and §6 is to compute the Poincaré profiles of spaces such

as P × HmK , where P is a connected Lie group of polynomial growth, m ≥ 2, and

K ∈ {R,C,H,O}. In our previous work [HMT18], we were able to compute the

Poincaré profiles of HmK and P separately. Since Poincaré profiles do not behave

especially well under direct product, we cannot simply apply these calculations

to our problem. As usual, upper bounds and lower bounds on Poincaré profiles

involve radically different ideas and strategies. In this section we will be entirely

concerned by upper bounds (lower bounds will be obtained in §6). Our strategy to
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obtain upper bounds relies on introducing new invariants: (weighted) capacity

profiles. Let us start by briefly explaining the problem and outlining its solution.

Recall that for the Lp-Poincaré constant of a finite graph Γ we minimize over

nonconstant functions f : V Γ → R the ratio ‖∇f‖p/‖f − fΓ‖p, where fΓ is the

average value of f on Γ. To find functions on Γ ⊂ X × Y it is natural to pull

back functions on the projected graphs in X and Y , where the image subgraphs

are weighted by the number of vertices in the fibre over each point. A problem

arises in that it is difficult to relate the Poincaré constant of Γ ⊂ X × Y to a

‘weighted Poincaré constant’ in a projection. However, all works much better if

we restrict the functions f we consider to those which satisfy f ≤ 0 and f ≥ 1 on

substantial proportions of Γ, and just minimize ‖∇f‖p among such functions. This

resulting ‘Lp-capacity’ constant and profile are by construction at least as large as

the Lp-Poincaré constants and profiles, and are amenable to finding good upper

bounds.

We define the capacity profile in §5.1 and compute it for trees in §5.2. In §5.3

we study it for Gromov hyperbolic spaces, getting new bounds for Poincaré profiles

along the way, and use it to find product graph bounds in §5.4.

We use the following notation. For quantities A,B we write A∨B := max{A,B}
and A ∧ B := min{A,B}. We write A � B if there exists C > 0 with A ≤ CB,

and write A � B if A � B and B � A. For a graph Γ and f : Γ → R we

have ‖f‖p = ‖f‖Γ,p :=
(∑

x∈V Γ |f(x)|p
)1/p

, and for x ∈ V Γ we have |∇f |(x) :=

max{|f(x)− f(x′)| : xx′ ∈ EΓ}, which lets us define ‖∇f‖p := ‖∇f‖Γ,p. Note that

if Γ has degree bounded by d then ‖∇f‖Γ,p �d
(∑

xx′∈EΓ |f(x)− f(x′)|p
)1/p

.

5.1. Definitions and basic properties. In this section we will define the Lp-

capacity profiles of weighted and unweighted graphs.

Definition 5.1. A weighted graph is a (finite) graph Γ with a non-zero measure

µ = µΓ on V Γ, i.e. a function µ : V Γ → [0,∞) extended to subsets A ⊂ V Γ by

µ(A) =
∑
x∈A µ(x). We define ‖µ‖∞ := maxx∈V Γ µ(x).

For any function f : Γ→ R we define ‖f‖µ,p :=
(∑

x∈V Γ |f(x)|pµ(x)
)1/p

.

Definition 5.2. Let (Γ, µ) be a weighted graph. For each p ∈ [1,∞), α ∈ (0, 1/4),

we define the (p, α)-capacity of Γ to be

Cp,α(Γ, µ) = inf
{
µ(Γ)−1/p ||∇f ||µ,p : f : V Γ→ R

and µ({f ≤ 0}), µ({f ≥ 1}) ≥ αµ(Γ)
}
,

where {f ≤ 0} is short for {x ∈ V Γ : f(x) ≤ 0}.

Definition 5.3. We let X be a connected graph. For k : N → [1,∞) with k(r) ≤
r/10, and for α ∈ (0, 1/4), we define

Ξp,α,kX (r) = supµ(Γ)Cp,α(Γ, µ),

where the supremum is taken over all subgraphs Γ of X with |Γ| ≤ r equipped with

some weight function µ so that µ(Γ) ≤ r and ‖µ‖∞ ≤ k(µ(Γ)).

If there exists a function f : N→ R>0 so that for all sufficiently small α we have

Ξp,α,kX (r) 'α f(r), then we say that the (Lp, k)-weighted capacity profile Ξp,kX
exists and write Ξp,kX (r) ' f(r).

Similarly, we define Ξp,αX (r) = sup |Γ|Cp,α(Γ,#) where Γ is a subgraph of X

with #(Γ) = |Γ| ≤ r, weighted by the counting measure # on Γ.
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If there exists a function f : N → R>0 so that for all sufficiently small α we

have Ξp,αX (r) 'α f(r), then we say that the (unweighted) Lp-capacity profile ΞpX
exists and write ΞpX ' f(r).

We do not pursue here whether the weighted capacity profile is a quasi-isometric

invariant of a graph. Unweighted capacity profiles are monotone regular invariants;

the proof – which follows exactly the same strategy as for Poincaré profiles – is

omitted from this paper as it is not needed.

Remark 5.4. In the definition of Cp,α, we may as well assume that f : V Γ→ [0, 1],

since replacing f by (f ∨0)∧1 (that is, min{max{f, 0}, 1}) only decreases ‖∇f‖µ,p.
Under this assumption, ||∇f ||p ≤ µ(Γ)

1
p , so Cp,α(Γ, µ) ≤ 1 for every weighted

graph (Γ, µ) and every p.

Remark 5.5. In all our examples below the (weighted) capacity profiles ΞpX exist.

Moreover, we aim to find bounds for weighted profiles that are uniform in the

following sense: for a given p, we find a function fp : [1,∞)×N→ R>0 so that for

all sufficiently small α, for all functions k = k(r) as in the definition, Ξp,α,kX (r) 'α
fp(k(r), r), where the constant of ' does not depend on k. We then write this

bound in short as Ξp,kX (r) 'α fp(k, r).

Remark 5.6. One may also define capacity profiles for p = ∞, but it follows

immediately from the proof of [HMT18, Proposition 6.1] that Ξ∞X ' Λ∞X . Similarly,

arguing as in [HMT18, Proposition 7.2] (in fact in the proof we may directly define

f(z) = gq/p(z)) we can deduce that whenever 1 ≤ p ≤ q <∞ and the functions are

defined, we have

ΞpX(r) .p,q ΞqX(r).

In what follows we work only with p <∞.

Poincaré, capacity and weighted capacity profiles are related by the following

two simple observations. Firstly, we compare Poincaré and capacity profiles.

Lemma 5.7. Let X be a graph. For all α ∈ (0, 1
4 ), ΛpX .α Ξp,αX . So when ΞpX is

defined, we have ΛpX . ΞpX .

Proof. If Γ is a subgraph of X, and we have f : V Γ → [0, 1] with |{f ≤ 0}|, |{f ≥
1}| ≥ α|Γ|, then ‖f − fΓ‖p � |Γ|1/p: if the mean value fΓ satisfies fΓ ≥ 1

2 then

|f − fΓ| ≥ 1
2 on {f ≤ 0} and so ‖f − fΓ‖p ≥ α1/p

2 |Γ|
1/p, and if fΓ ≤ 1

2 the same

bound holds on considering {f ≥ 1}. So we have, infimising over all non-constant

f : V Γ→ R,

hp(Γ) = inf

{
||∇f ||p
||f − fΓ||p

}
≤ 2

α1/p
Cp,α(Γ,#). �

The weighted and unweighted profiles are related by the following.

Lemma 5.8. Let X be a graph. For any k : N→ [1,∞) with k = k(r) ≤ r/10, we

have kΞp,αX (r/k) .α Ξp,α,kX (r). So, when defined, kΞpX(r/k) .α Ξp,kX (r).

Proof. Let Γ ⊂ X be a subgraph of size ≤ r/k so that |Γ|Cp,α(Γ,#) � Ξp,αX (r/k).

Setting µ to be k# where # is the counting measure on V Γ, we see that Cp,α(Γ, µ) =

Cp,α(Γ,#), so

Ξp,α,kX (r) ≥ µ(Γ)Cp,α(Γ, µ) = k|Γ|Cp,α(Γ,#) � kΞp,αX

( r
k

)
. �

As simple as these bounds are, they prove to be sharp for trees and rank 1

symmetric spaces, as we now proceed to show.
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5.2. Weighted profiles of trees. Our first goal is to adapt the argument of

[HMT18, §9] to bound the weighted profiles of trees, perhaps the easiest exam-

ple.

Proposition 5.9. For the 3-regular tree T and any weight function k = k(r) ≤ r/4,

Ξp,kT (r) ' k
1
p r1− 1

p .

Proof. Since ΛpT (r) ' r1− 1
p by [HMT18, Theorem 9], Lemmas 5.7 and 5.8 give

Ξp,α,kT (r) &α kΞp,αT

( r
k

)
&α kΛpT

( r
k

)
' k

( r
k

)1− 1
p

= k
1
p r1− 1

p .

To show the upper bound, suppose we have a subgraph Γ ⊂ T with |Γ| ≤ r and

a weight µ on Γ with µ(Γ) ≤ r and ‖µ‖∞ ≤ k = k(µ(Γ)). One can find a median

vertex v of Γ, i.e. if C1, C2, C3 denote the connected components of T \ {v} then

for each i we have µ(Ci ∩ Γ) ≤ 1
2µ(Γ). Since µ({v} ∩ Γ) ≤ k ≤ 1

4µ(Γ), there is

some i so that µ(Ci ∩ Γ) ≥ 1
4µ(Γ). Let v′ ∈ Ci be the vertex adjacent to v in

Ci, and set f to be the characteristic function f = χCi . For any α ≤ 1
4 we have

µ{f ≤ 0}, µ{f ≥ 1} ≥ α|Γ|. Thus, as ‖∇f‖pµ,p ≤ µ({v, v′} ∩ Γ) ≤ 2k we have

Ξp,α,kT (r) .α k
1
p r1− 1

p . Hence Ξp,kT exists and Ξp,kT (r) ' k
1
p r1− 1

p . �

5.3. Weighted profiles of hyperbolic spaces. We now consider (Gromov) hy-

perbolic groups and spaces, with the main goal a general upper bound on weighted

capacity profiles (Theorem 5.15), adapting the argument of [HMT18, Theorem 11].

Our argument here is stronger than that of [HMT18, Theorem 11] even in the

unweighted case (k ≡ 1), giving a stronger Poincaré profile upper bound as the

equivariant conformal dimension is replaced by the usual (Ahlfors regular) confor-

mal dimension, which a priori may be strictly smaller. As the Poincaré profile is a

quasi-isometric invariant of a graph [HMT18, Theorem 1], if X is quasi-isometric

to G then an upper bound on Ξp,αX gives an upper bound on ΛpG by Lemma 5.7:

ΛpG ' ΛpX . Ξp,αX . We take advantage of this by working in a particularly nice

graph model: Bourdon–Pajot’s hyperbolic cone on the boundary at infinity.

Recall that a metric space X is Ahlfors Q-regular if there is a measure on X

so that the measure of any ball of radius r ∈ (0,diamX) is � rQ. Starting with

an Ahlfors Q-regular compact space X, Bourdon and Pajot construct a hyperbolic

graph whose visual boundary is isometric to X: the hyperbolic cone of X. Al-

though the automorphism group of this graph may be trivial, it nevertheless has

a crucial homogeneity property: the volume of any ball of radius R is � eQR (see

Lemma 5.18). This property is a key ingredient in replacing the “equivariance”

that was required for the proof of [HMT18, Theorem 1].

5.3.1. Preliminaries on hyperbolic geometry and hyperbolic cones. Experts in hy-

perbolic geometry may skip to §5.3.2. Recall that given three points p, x, y in a

metric space (X, d), the Gromov product of x and y at p is given by

(x|y)p :=
1

2
(d(p, x) + d(p, y)− d(x, y)) . (5.10)

Note that 0 ≤ (x|y)p ≤ d(p, x) ∧ d(p, y) by the triangle inequality. A metric space

X is δ-hyperbolic if, for any p, x, y, z ∈ X

(x|z)p ≥ (x|y)p ∧ (y|z)p − δ. (5.11)

In a δ-hyperbolic geodesic metric space X, given any geodesics γ, γ′ with common

start point p and end points x and y respectively, we have that for all t ≤ (x|y)p,

d(γ(t), γ′(t)) ≤ 2δ.
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To each proper geodesic hyperbolic space X there is an associated boundary at

infinity ∂∞X, which is a compact space, with a family of visual metrics that are

pairwise ‘quasisymmetric’. If X admits a geometric group action then the visual

metrics are Ahlfors regular. The Gromov product can be extended to X = X∪∂∞X
by setting

(x | y)p := sup lim inf
i,j→∞

(xi|yj)p

where the supremum is taken over all sequences (xi) and (yj) in X with x = limxi
and y = lim yj . Moreover, lim infi,j→∞(xi|yj)p ≥ (x|y)p−2δ for all such sequences.

Finally, given x, y, z ∈ X and p ∈ X, we have

(x|z)p ≥ (x|y)p ∧ (y|z)p − 2δ. (5.12)

Suppose (Z, ρ) is a compact Ahlfors Q-regular metric space with at least two

elements, and rescale so that diamZ = 1/2. Following Bourdon–Pajot [BP03, §2.1]

we define a hyperbolic cone on Z to be a graph X, with vertex set V X =
⊔
t∈NXt

where each Xt is a maximal e−t-separated net in Z, and with an edge connecting

z ∈ Xt to w ∈ Xu if and only if |t− u| ≤ 1 and BZ(z, e−t)∩BZ(w, e−u) 6= ∅. Each

x ∈ Xt ⊂ X corresponds to a ball BZ(x, e−t) in Z.

The graph X is hyperbolic, and Z = ∂∞X. Moreover,

ρ(x, y) � e−(x|y)o � diam(A ∪B) (5.13)

holds for all x, y ∈ V X corresponding to balls A,B in Z [BP03, Proposition 2.1,

Lemma 2.2, Corollary 2.4], where o is the vertex in X0 ⊂ X. If (Z, ρ) is the

boundary of a proper visual hyperbolic space Y , then any hyperbolic cone X of Z

is quasi-isometric to Y [BS00].

5.3.2. Calculating weighted profiles of hyperbolic spaces. The main theorem of this

section 5.3 is:

Theorem 5.14. For X a hyperbolic cone on a compact Ahlfors Q-regular space Z

with Q > 0, for any α > 0 small enough and any k = k(r) ≤ r/10 and p ≥ 1,

Ξp,α,kX (r) .


k
(
r
k

)1− 1
Q if 1 ≤ p < Q

k
(
r
k

)1− 1
Q log

1
Q
(
r
k

)
if p = Q

k
(
r
k

)1− 1
p if p > Q.

Using this theorem, we obtain the following analogue of [HMT18, Theorem 11]

for weighted capacity profiles.

Theorem 5.15. Let G be a finitely generated hyperbolic group with conformal

dimension Q ≥ 1. Then for every ε > 0, there exists a graph X quasi-isometric to

G, so that for any k = k(r) ≤ r/10 and any α > 0 small enough,

Ξp,α,kX (r) .

{
k
(
r
k

)1− 1
Q+ε

if p ≤ Q+ ε

k
(
r
k

)1− 1
p if p > Q+ ε.

If the conformal dimension is attained (see discussion following Theorem 1.12),

there exists a graph X quasi-isometric to G so that:

Ξp,α,kX (r) .


k
(
r
k

)1− 1
Q if 1 ≤ p < Q

k
(
r
k

)1− 1
Q log

1
Q
(
r
k

)
if p = Q

k
(
r
k

)1− 1
p if p > Q.
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Proof of Theorem 5.15. If ∂∞G attains its conformal dimension of Q, let (Z, ρ)

be an Ahlfors Q-regular metric space, quasisymmetric to ∂∞G; without loss of

generality, diamZ = 1/2. Let X be a hyperbolic cone on Z as above, then the

needed bounds on Ξp,α,kX follow from Theorem 5.14.

If the conformal dimension of ∂∞G is not attained, for any ε > 0 we can find

Q′ > Q sufficiently close to Q, so that the bounds of Theorem 5.14 for a hyperbolic

cone on an Ahlfors Q′-regular space quasisymmetric to ∂∞G satisfy the necessary

estimates. �

We also get general bounds on Poincaré profiles of hyperbolic cones.

Theorem 5.16. Let Z be an Ahlfors regular compact metric space of conformal

dimension Q ≥ 1 and let X be the hyperbolic cone over Z in the sense of Bourdon–

Pajot. Then

Q ≥ inf
{
p ≥ 1 : ΛpX(r) . r1−1/p

}
.

Proof. Given an Ahlfors regular space Z with conformal dimension Q ≥ 1, let X

be a hyperbolic cone over Z. Suppose Z ′ is an Ahlfors Q′-regular space quasisym-

metric to Z, with hyperbolic cone X ′. Then X ′ and X are quasi-isometric, so by

Lemmas 5.7 and 5.8 we have

ΛpX(r) ' ΛpX′(r) . Ξp,αX′ (r) . Ξp,α,1X′ (r).

Thus by Theorem 5.14, for any p > Q′ we have ΛpX(r) . r1−1/p; since we can take

Q′ arbitrarily close to Q we are done. �

The following proof of Theorem 5.14 adapts and extends the work of [HMT18,

§12]; in that paper we only considered spaces on which G acts geometrically, but

here we instead use the hyperbolic cone construction of Bourdon–Pajot (cf. §5.3.1).

The idea is that, given a weighted subgraph of X, one can use a Lipschitz function

on the boundary to get a good candidate function for the p-capacity. The argument

is mainly elementary though somewhat long due to details given; we suggest the

reader skips the proofs of the lemmas on a first reading.

Proof of Theorem 5.14. As in §5.3.1, we suppose (Z, ρ) is a compact Ahlfors Q-

regular metric space with Q > 0, and rescale so that diamZ = 1/2. Let X be

a hyperbolic cone over Z with hyperbolicity constant δ. First we establish some

geometric properties of hyperbolic cones.

A graph X is C-visual with respect to a point x0 ∈ X if for any x ∈ X, there

is a C-quasi-geodesic ray (i.e., a (C,C)-quasi-isometric embedding) γ : [0,∞)→ X

with γ(0) = x0 and x ∈ γ (cf. (1) in [§12, HMT]).

Lemma 5.17. There exists C so that for any x0 ∈ X, X is C-visual with respect

to x0.

Proof. Firstly we prove the lemma for x0 = o. By definition, any x ∈ V X corre-

sponds to a point z ∈ Xt ⊂ Z. For each s ∈ N with s 6= t choose zs ∈ Xs so that

z ∈ BZ(zs, e
−s); and set zt = x. Then (zt) describes a geodesic ray from o in X

which contains x in its image. Denote this ray by γx. So X is 1-visual with respect

to o.

Now consider general x0 and x. Let d = (x|x0)o and note that d(γx(d), γx0(d)) ≤
4δ since by (5.11),

d− 1

2
d(γx(d), γx0

(d)) = (γx(d)|γx0
(d))o

≥ (γx(d)|x)o ∧ (x|x0)o ∧ (x0|γx0
(d))o − 2δ = d− 2δ.
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t

y

o

d(o, y)− C

z

e−d(o,y)+C

e−t

Figure 1. Counting points z ∈ Xt with (z|y)o � d(o, y)

There are now two cases.

Case 1: Suppose d(x, o) > d+ 2δ. We concatenate: the subgeodesic of γx0
from

x0 to γx0
(d); a geodesic (of length at most 4δ) from γx0

(d) to γx(d); and the subray

of γx from γx(d) to γx(∞). This is a (1, 8δ)-quasi-geodesic ray starting at x0 and

containing x, as we now show. As the ray is 1-Lipschitz, it suffices to show that

for t, t′ ≥ 0 with d+ t′ ≤ d(o, x0), writing y = γx(d+ t) and y′ = γx0
(d+ t′), that

d(y, y′) ≥ t+ t′ − 8δ. Applying (5.11), we have

d = (x|x0)o ≥ (x|y)o ∧ (y|y′)o ∧ (y′|x0)o − 2δ

= ((d+ t) ∧ d(x, o)) ∧
(
d+

1

2
(t+ t′ − d(y, y′))

)
∧ (d+ t′)− 2δ.

From this, either t ≤ 2δ, or t′ ≤ 2δ, or d ≥ d + 1
2 (t + t′ − d(y, y′)) − 2δ, that is

d(y, y′) ≥ t+ t′ − 4δ as required. If t′ ≤ 2δ then

d(y, y′) ≥ d(y, γx(d))− d(γx(d), γx0
(d))− t′ ≥ t− 6δ ≥ t+ t′ − 8δ,

and similarly if t ≤ 2δ.

Case 2: Suppose d(x, o) ≤ d + 2δ. Recall by (5.13) that there exists Cρ ≥ 1

so that for all x, y ∈ Z, ρ(x, y) ≤ Cρe
−(x|y)o . Choose an integer T ≥ log(5Cρ) +

2δ + 3 ≥ 3. Since diam(Z) = 1
2 , and considering x0 as a point in Z, we can

find y′ ∈ Z with ρ(x0, y
′) ≥ 1

4 . Choose y ∈ XT ⊂ V X so that y′ ∈ BZ(y, e−T ),

then ρ(x0, y) ≥ 1
4 − e

−T ≥ 1
5 . Now e−(x0|y)o ≥ 1

Cρ
ρ(x0, y) ≥ 1/5Cρ so (x0|y)o ≤

log(5Cρ) ≤ T − 2δ = d(o, y)− 2δ. Thus x0, y satisfy the hypotheses of Case 1, and

so there is a (1, 8δ)-quasi-geodesic ray β from x0 to γx0((x0|y)o), to γy((x0|y)0),

then along γy.

Since d = (x|x0)o ≤ d(o, x0) and d(x, γx0(d)) ≤ d(x, γx(d)) + d(γx(d), γx0(d)) ≤
6δ, and (x0|y)o ≤ log(5Cρ), we have that x is within C ′ := 6δ + log(5Cρ) of the

geodesic segment of γx0 from x0 to γx0((x0|y)o). So adding in to β a path of length

≤ 2C ′ to x and back, we get our desired (1, 8δ + 2C ′)-quasi-geodesic ray. �

The graph X has “volume entropy” Q in the following sense (cf. [(2), §12, HMT]).

Lemma 5.18. There exists C so that for every R > 0 and x0 ∈ X, we have

|QR− log |B(x0, R)| | ≤ C.

We first note the following estimate; see Figure 1.

Lemma 5.19. For any C ≥ 0 there exists C ′ ≥ 1 so that for any y ∈ X and t ∈ N
with t ≥ d(o, y),

|{z ∈ Xt : (z|y)o ≥ d(o, y)− C}| �C′ eQ(t−d(o,y)).
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Proof. Observe that (z|y)o ≤ d(o, y) always. Thus by (5.13) we are counting z ∈ Xt

so that

ρ(z, y) ≤ diam(BZ(z, e−t) ∪BZ(y, e−d(o,y))) � e−(z|y)o � e−d(o,y).

So we are counting a set of e−t-separated points in some BZ(y, C ′′e−d(o,y)): by

Ahlfors regularity there are � e−Qd(o,y)/e−Qt of them. �

Proof of Lemma 5.18. It is equivalent to prove that |B(x0, R)| � exp(QR). We

assume R ∈ N.

By the construction of X, any geodesic from o to x0 consists of a sequence of

centres of balls zt ∈ Xt, where t goes from 0 to n = d(o, x0) such that x0 ∈ Xn, so

that each BZ(zt, e
−t) ∩BZ(zt+1, e

−(t+1)) 6= ∅.
Each z ∈ B(x0, R) has 0 ≤ (z|o)x0 ≤ d(x0, z) ≤ R. We partition B(x0, R) into

sets V0, V1, . . . , VR such that z ∈ Vi whenever (z|o)x0 = i or i − 1
2 . If z ∈ Vi for

some 0 ≤ i ≤ R, then z ∈ Xt for some t with

d(o, x0)− i ≤ t ≤ R+ d(o, x0)− 2i+ 1

where the first inequality follows from d(o, x0)− (z|o)x0 = (z|x0)o ≤ d(z, o) = t and

the second from t+ 2i− 1 ≤ d(o, z) + 2(z|o)x0 = d(x0, z) + d(o, x0) ≤ R+ d(o, x0).

Moreover,

d(o, x0)− i = d(o, zd(o,x0)−i) ≥ (z|zd(o,x0)−i)o

≥ (z|x0)o ∧ (x0|zd(o,x0)−i)o − δ
≥ (d(o, x0)− i) ∧ (d(o, x0)− i)− δ = d(o, x0)− i− δ.

Therefore, for given values of i and t, by Lemma 5.19 applied when y = zd(o,x0)−i,

the number of options for z is � eQ(t−d(o,x0)+i). Hence

|B(xo, R)| =
R∑
i=0

|Vi| �
R∑
i=0

R+d(o,x0)−2i∑
t=d(o,x0)−i

eQ(t−d(o,x0)+i) �
R∑
i=0

eQ(R−i) � eQR.

On the other hand, by Ahlfors regularity there are � eQR points of Xd(o,x0)+R

in BZ(x0, e
−d(o,x0)), so |B(x0, R)| � eQR also. �

Recall from [HMT18, Definition 12.1] that A ⊆ X is a C-asymptotic shadow

of x0 ∈ X if for every x ∈ A there is a C-quasi-geodesic ray γx : [0,∞) → X

with γx(0) = x0, γx(rx) = x for some rx, and γx[rx,∞) ⊆ A. In broad terms,

the following lemma says that given any weighted subgraph Γ ⊂ X, we can find a

point x0 and two asymptotic shadows of x0 that are far apart and both containing

a substantial part of Γ.

Lemma 5.20 (cf. [HMT18, (4), §12]). There exist (small) κ > 0 and (large)

C > 0, R0 > 0 so that for any R ≥ R0 and subgraph Γ ⊂ X weighted by µ which

satisfies ‖µ‖∞ ≤ µ(Γ)/C, there exists some x0 ∈ X and two C-asymptotic shadows

H± ⊂ X \ B(x0, R) of x0 so that µ(H+ ∩ Γ), µ(H− ∩ Γ) ≥ κµ(Γ) − CeQR and so

that for any p± ∈ H± we have (p+|p−)x0
≤ − log κ.

Proof. We adapt the proof of [HMT18, Proposition 12.2 (4)] to deal with the weight

µ and the absence of a group action, and refer to [HMT18] for further details.

By Bonk–Schramm [BS00] there exists a quasi-isometric embedding ψ : X → HnR
for some n. Push forward µ to give a measure ψ∗µ on ψ(X).

The Helly’s Theorem argument of [HMT18, Lemma 12.8] applies verbatim to give

the existence of c > 0 and x ∈ HnR so that for any half-space H of HnR containing x
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we have ψ∗µ(H) ≥ cµ(Γ). By [HMT18, Lemma 12.10] there is a point x0 ∈ X so

that d(ψ(x0), x) ≤ C1 = C1(ψ, n).

The proof of [HMT18, Lemma 12.9] goes through nearly verbatim to find a

constant α > 0, and a hyperplane H ⊂ HnR through x, so that ψ∗µ(Hα \ {x}) ≤
c
2µ(Γ), where Hα is the union of all geodesics through x making an angle of ≤ α

with H. Note that we have to remove x from Hα to get the volume bound as the

polar coordinates in the proof of [HMT18, Lemma 12.9] degenerate at x. As ψ is

a quasi-isometry, |ψ−1(ψ(x))| ≤ C2 for some C2, so if we assume C ≥ 6C2/c then

ψ∗µ(Hα) ≤ c
2µ(Γ) + C2µ(Γ)/C ≤ 2c

3 µ(Γ).

Let V ± be the two components of HnR\Hα; by the assumptions on x, ψ∗µ(V ±) ≥
c
3µ(Γ). Let C3 be the visual constant of Lemma 5.17. By hyperbolicity and the

Morse lemma, there exists C4 = C4(C3, δ) so that if γ : [0,∞) → X is a C3-

quasi-geodesic ray with γ(0) = x0, then for any T ≥ t ≥ 0 we have d(γ(T ), x0) ≥
d(γ(t), x0)−C4 and (γ(T )|γ(t))x0 ≥ d(γ(t), x0)−C4. Let Ĥ± := ψ−1(V ±)\B(x,R+

C4). Since X is C3-visual, for any x ∈ Ĥ+ there is a C3-quasi-geodesic γx with

γx(0) = x0 and γx(rx) = x for some rx. Let H+ be the union of γx([rx,∞)) for all

x ∈ Ĥ+, and likewise for H−.

By construction H± are C3-asymptotic shadows of x0 in X \ B(x0, R). By the

convexity of V −, V + and hyperbolicity, there exists R′0, C5 depending on α,ψ,C1 so

that for R ≥ R′0 such x± ∈ Ĥ± must satisfy (x+|x−)x0
≤ C5. If we fix R0 > R′0 ∨

(2δ+C5) then for any R ≥ R0 we have that for any such p± ∈ γx±([r±,∞)) ⊂ H±
we have

C5 ≥ (x+|x−)x0 ≥ (x+|p+)x0 ∧ (p+|p−)x0 ∧ (p−|x−)x0 − 2δ

≥ (R+ C4 − C4) ∧ (p+|p−)x0 ∧ (R+ C4 − C4)− 2δ = (p+|p−)x0 − 2δ,

thus (p+|p−)x0
≤ C5 + 2δ.

Finally, by Lemma 5.18

µ(H+) ≥ µ(Ĥ+) ≥ µ(ψ−1(V +))− µ(B(x,R+ C4)) ≥ c

3
µ(Γ)− C6e

QR

for suitable C6, and similarly for µ(H−). Set C = (6C2/c) ∨ C3 ∨ C6. �

If we are given a weighted subgraph Γ ⊂ X and apply the preceeding lemma to

find x0 and H±, then the following lemma shows that, roughly speaking, either all

of H− or all of H+ must be on the other side of x0 from o.

Lemma 5.21. For C ′ = − log κ + δ either ∀x ∈ H−, (x|x0)o ≥ d(o, x0) − C ′, or

∀x ∈ H+, (x|x0)o ≥ d(o, x0)− C ′.

Proof. Indeed, if there exists x± ∈ H± so that (x±|x0)o < d(o, x0)−C ′ then as we

have (x+|x−)x0 = d(o, x0) − (x+|x0)o − (x−|x0)o + (x+|x−)o by definition of the

Gromov product, by hyperbolicity we see that (x+|x−)x0 is at least

d(o, x0)− (x+|x0)o − (x−|x0)o + (x+|x0)o ∧ (x−|x0)o − δ > C ′ − δ,

contradicting Lemma 5.20. �

Given this lemma, without loss of generality we suppose for all x ∈ H−, (x|x0)o ≥
d(o, x0)− C ′.

Lemma 5.22. There exists κ′ > 0 depending on δ, κ and the constant of (5.13) so

that ρ(∂∞H
−, ∂∞H

+) ≥ κ′e−d(x0,o).
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Proof. Let Cρ be the constant of (5.13). If a± ∈ ∂∞H
± satisfy κ′e−d(x0,o) >

ρ(a+, a−) ≥ 1
Cρ
e−(a+|a−)o then (a+|a−)o > d(x0, o) − log(Cρκ

′). There exist se-

quences (x±i ) ⊂ H± so that a+ = limx+
i and a− = limx−i , so as discussed in §5.3.1

we can bound

(a+|a−)o ≤ 2δ + lim inf
i,j→∞

(x+
i |x

+
j )o

≤ 2δ + lim inf
i,j→∞

(x+
i |x

+
j )x0 + d(x0, o) ≤ 2δ − log κ+ d(x0, o)

by Lemma 5.20, a contradiction for κ′ ≤ e−2δκ/Cρ. �

Recall from Lemma 5.17 that for any x ∈ X there is a C-quasi-geodesic ray

γ from o through x. Given another point x0, we now find a geodesic ray from o

through x that doesn’t go any closer to x0 than it has to.

Lemma 5.23. There exists D > 0 so that given any o, x0, x ∈ X, there exists

a geodesic ray γ from o with d(γ, x) ≤ D and ηx := γ(∞) satisfying |(x0|ηx)o −
(x0|x)o| ≤ D.

Proof. Given x ∈ X, by Lemma 5.17 let α, β be C-quasi-geodesics from o that

contain x0, x, respectively.

By the Morse lemma there exists C1 = C1(C, δ) so that |d(x, o)− (x|β(∞))o| ≤
C1. If d(x, o) > (x0|x)o + 2δ+C1 then we can let γ be a geodesic representative of

β since d(x, γ) is bounded, and

(x0|β(∞))o ≥ (x0|x)o ∧ (x|β(∞))o − 2δ

≥ (x0|x)o ∧ (d(x, o)− C1)− 2δ = (x0|x)o − 2δ,

and

(x0|x)o ≥ (x0|β(∞))o ∧ (β(∞)|x)o − 2δ

≥ (x0|β(∞))o ∧ (d(x, o)− C1)− 2δ = (x0|β(∞))o − 2δ.

Otherwise, d(x, o) ≤ (x0|x)o + 2δ + C1 ≤ d(x, o) + 2δ + C1. Since Z = ∂∞X is

Ahlfors Q-regular with Q > 0, there exists ηx ∈ ∂∞X with ρ(ηx, α(∞)) comparable

to e−d(o,x), and so there exists C2 so that |(ηx|α(∞))o − d(o, x)| ≤ C2. Let γ be a

geodesic ray from o to γ(∞) = ηx; we want to bound |(x0|ηx)o − d(x, o)|. As with

x, β we have |d(x0, o)− (x0|α(∞))o| ≤ C1, so

(x0|ηx)o ≥ (x0|α(∞))o ∧ (α(∞)|ηx)o − 2δ

≥ (d(o, x0)− C1) ∧ (d(o, x)− C2)− 2δ,

but d(o, x0) ≥ (x|x0)o ≥ d(x, o) − 2δ − C1, so (x0|ηx)o ≥ d(o, x) − 4δ − 2C1 − C2.

On the other hand

d(o, x) + C2 ≥ (α(∞)|ηx)o ≥ (α(∞)|x0)o ∧ (x0|ηx)o − 2δ

≥ (d(o, x0)− C1) ∧ (x0|ηx)o − 2δ.

So either (x0|ηx)o ≤ d(o, x) +C2 + 2δ and we are done, or d(o, x0)−C1 ≤ d(o, x) +

C2 + 2δ. But then (x0|ηx)o ≤ d(o, x0) ≤ d(x, o) + C2 + 2δ + C1. So in summary

|(x0|ηx)o − d(o, x)| ≤ 4δ + 2C1 + C2.

It remains to bound d(x, γ). Let p ∈ γ be the point with d(o, p) = d(o, x). Then

d(o, x)− 1

2
d(x, p) = (x|p)o ≥ (x|x0)o ∧ (x0|ηx)o ∧ (ηx|p)o − 4δ,

and so as (x|x0)o ≥ d(x, o) − 2δ − C1, (x0|ηx)o ≥ d(x, o) − 4δ − 2C1 − C2, and

(ηx|p)o ≥ d(p, o)− C1 = d(x, o)− C1 we are done. �
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We define a function ψ : X → R by

ψ(x) = 3κ′−1ρ(ηx, ∂∞H
−)ed(x0,o) − 1,

where each ηx ∈ ∂∞X is fixed by Lemma 5.23. (The bounds below work regardless

of the choices of ηx.) Up until now, no constants have depended on the choice of

R ≥ R0 in Lemma 5.20, and we now find a suitable choice of R to ensure ψ is

well-behaved. As a preliminary step we show that ψ(x) ≥ 1 outside a cone-like

‘shadow’ of x0.

Lemma 5.24. There exists E so that for any x ∈ Γ with (x|x0)o ≤ d(x0, o) − E
then ψ(x) ≥ 1.

Proof. If (x|x0)o ≤ d(x0, o)− E then for any y ∈ H−, Lemmas 5.23 and 5.21 give

d(x0, o)− E +D ≥ (x0|ηx)o ≥ (x0|y)o ∧ (y|ηx)o − 2δ

≥ (d(x0, o)− C ′) ∧ (y|ηx)o − 2δ = (ηx|y)o − 2δ,

where the last equality follows by assuming E > D + C ′ + 2δ. Therefore if ξ ∈
∂∞H

−, we have (ηx|ξ)o ≤ d(x0, o)− E + C1 for some constant C1. Writing Cρ for

the constant of (5.13), we have

ρ(ηx, ξ)e
d(x0,o) ≥ 1

Cρ
eE−C1 ≥ 2κ′

3
, (5.25)

fixing a choice of E > C1+log(2Cρκ
′/3). As ξ ∈ ∂∞H− was arbitrary, ψ(x) ≥ 1. �

Lemma 5.26. There exists R ≥ R0 (independent of Γ, µ, x0, H
±) so that for x ∈

H−, ψ(x) ≤ 0, and for x ∈ H+, ψ(x) ≥ 1.

Proof. We require the following:

Claim: Suppose some x ∈ X lies in a C-quasi-geodesic ray β from x0, and that

we have (x|x0)o ≥ d(o, x0)−F and d(x0, x) ≥ R. Then there exists C1 = C1(C,F )

and R1 = R1(C,F ) so that if R ≥ R1 then (β(∞)|ηx)o ≥ d(o, x0) +R− C1.

To see this, let β′ be a geodesic from o to β(∞). We first show that d(x0, β
′) ≤

2F + 12δ. Now,

F ≥ d(o, x0)− (x|x0)o = (x|o)x0
& (x|β(∞))x0

∧ (β(∞)|o)x0
− 2δ.

As x lies on the quasi-geodesic β from x0, the Morse lemma gives a constant C2 so

that (x|β(∞))x0 ≥ d(x, x0) − C2 ≥ R − C2. Thus if R ≥ R1 := F + C2 + 2δ + 1,

the above inequality gives F ≥ (β(∞)|o)x0 − 2δ. Then for q := β′(d(x0, o)),

d(x0, o)−
1

2
d(x0, q) = (x0|q)o ≥ lim inf

i→∞
(x0|β′(i))o ∧ (β′(i)|q)o − 2δ. (5.27)

As q ∈ β′, (β′(i)|q)o = d(o, q) = d(o, x0) for large i. Also,

lim inf
i→∞

(x0|β′(i))o = lim inf
i→∞

(d(o, x0)− (o|β′(i))x0)

≥ d(o, x0)− (o|β′(∞))x0
− 2δ ≥ d(o, x0)− F − 4δ,

so (5.27) gives d(x0, β
′) ≤ d(x0, q) ≤ 2F + 12δ.

Now as x lies on a quasi-geodesic from x0 to β′(∞) = β(∞), and x0 is a bounded

distance from β′, the Morse lemma gives that x is a bounded distance to β′. Thus

|(β′(∞)|x)o − d(o, x)| ≤ C3 for suitable C3. By Lemma 5.23, x also lies a bounded

distance from a geodesic from o to ηx, thus again |(ηx|x)o − d(x, o)| ≤ C4. So

together we have

(β(∞)|ηx)o ≥ (β(∞)|x)o ∧ (x|ηx)o − 2δ ≥ d(x, o)− C3 − C4 − 2δ.
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The claim follows from Lemma 5.21 as

d(o, x) = 2(x|x0)o − d(o, x0) + d(x, x0) ≥ d(o, x0)− 2C ′ +R,

setting C1 := 2C ′ + C3 + C4 + 2δ.

We return to the proof of the lemma. Let F = C ′ ∨ E with C ′ given by

Lemma 5.21 and E by Lemma 5.24, and fix the resulting C1, R1 from the claim

above.

For x ∈ H−, by the definition of asymptotic shadow, x ∈ β for some C-quasi-

geodesic β from x0 to β(∞) ∈ ∂∞H−, and (x|x0)o ≥ d(o, x0)− F by Lemma 5.21.

So the claim gives (β(∞)|ηx)o ≥ d(o, x0)+R−C1, thus writing Cρ for the constant

of (5.13),

ρ(ηx, ∂∞H
−)ed(x0,o) ≤ Cρe−(β(∞)|ηx)o ≤ Cρe−R+C1 ,

so provided R ≥ C1 + log(3Cρ/κ
′) we have ψ(x) ≤ 0.

For x ∈ H+, if (x|x0)o ≤ d(x0, o)−E then by Lemma 5.24 we have ψ(x) ≥ 1. So

we assume (x|x0)o ≥ d(x0, o)−E ≥ d(x0, o)−F . As H+ is an asymptotic shadow,

x ∈ β for a C-quasi-geodesic β from x0 to β(∞) ∈ ∂∞H+. The claim again gives

that

ρ(ηx, β(∞))ed(x0,o) ≤ Cρe−R+C1 ≤ 3−1κ′,

where the last inequality uses R ≥ C1 + log(3Cρ/κ
′). Thus by Lemma 5.22,

ρ(ηx, ∂∞H
−) ≥ ρ(β(∞), ∂∞H

−) − ρ(β(∞), ηx) ≥ (2/3)κ′e−d(x0,o) and ψ(x) ≥ 1

follows. Setting R0 = R1 ∨ (C1 + log(3Cρ/κ
′)) we are done. �

We now set φ(x) = (ψ(x) ∨ 0) ∧ 1. By the above, φ(x) = 0 on H− and φ(x) = 1

on H+, and by Lemma 5.20 both µ(H+∩Γ) and µ(H−∩Γ) are ≥ κµ(Γ)−CeQR ≥
κ
2µ(Γ), assuming as we may that µ(Γ) ≥ 2CeQR/κ. Let α = κ/2.

It remains to bound ‖∇φ‖µ.

If x has (x|x0)o ≤ d(x0, o)−E − 1 where E is the constant of Lemma 5.24, then

any neighbour x′ of x has (x′|x0)o ≤ d(x0, o)−E, so by Lemma 5.24 φ(x) = φ(x′) =

1. Thus |∇φ|(x) = 0. So the support of |∇φ| consists of x with (x|x0)0 ≥ d(x0, o)−
E, i.e. it is a subset of the cone-like set Vx0

:= {x ∈ X : (x|x0)o ≥ d(x0, o)− E}.
We also have the bound |∇φ|(x) � e−(d(x,o)−d(x0,o)) as ρ(·, ∂∞H−) is 1-Lipschitz

on the boundary, and if x and x′ are adjacent then (ηx|ηx′)o ≥ d(o, x) − C so

ρ(ηx, ηx′) � e−d(o,x). Thus

‖∇φ‖pµ,p �
∑

x∈Γ∩Vx0

e−(d(x,o)−d(x0,o))pµ(x) (5.28)

As in [HMT18, (12.13)] we can optimise this bound: the right-hand side of

(5.28) is maximized when the measure µ is all in Vx0 with d(x, o) as small as

possible for x in its support. For this reason, we choose t minimal so that V ′x0
:=

{x ∈ Vx0 : d(o, x) ≤ d(x0, o) − E + t} has k|V ′x0
| ≥ µ(Γ). By Ahlfors regularity

(see Lemma 5.19), we have |V ′x0
| � eQt so keQt � µ(Γ). Since e−(d(x,o)−d(x0,o))p

decreases as d(x, o) increases, we have

‖∇φ‖pµ,p �
∑
x∈V ′x0

ke−(d(x,o)−d(x0,o))p �
t∑
i=0

keQie−ip.

Case 1, p > Q: We have ‖∇φ‖pµ,p � k so Cp,α(Γ) � k1/pµ(Γ)−1/p.

Case 2, p < Q: We have

‖∇φ‖pµ,p � ket(Q−p) � k(µ(Γ)/k)(Q−p)/Q = µ(Γ)(µ(Γ)/k)−p/Q,

and so Cp,α(Γ) � (µ(Γ)/k)−1/Q.
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Case 3, p = Q: We have

‖∇φ‖pµ,p � kt � k log(µ(Γ)/k)

thus Cp,α(Γ) � µ(Γ)−1/pk1/p log1/p(µ(Γ)/k).

In each case the bounds of Theorem 5.14 follow. �

5.4. Weighted profiles and product bounds. Our motivation for bounding

weighted profiles is that they give bounds on (unweighted) profiles of products of

groups by projecting onto the factors. As we later see, in the case that the X factor

is a hyperbolic group and the Y factor a group of polynomial growth, the resulting

upper bounds are sharp.

Theorem 5.29. Let X and Y be bounded degree graphs where Y has finite Assouad–

Nagata dimension d. Let κ be the inverse growth function of Y , i.e. κ(k) = min{t :

∃y ∈ Y with |B(y, t)| > k}. Then for some α0 > 0, for all α ∈ (0, α0],

ΛpX×Y (r) . Ξ
p,α/2
X×Y (r) . max

m≤r
min

1≤k≤m/100d

(
m

κ(k)
+ Ξp,α,kX (m)

)
.

Proof. The first inequality follows from Lemma 5.7.

Let d be the Assouad–Nagata dimension of Y . Suppose Γ ⊂ X × Y has |Γ| =

m ≤ r. Suppose 1 ≤ k ≤ m/100d is given.

Denote by δΓ the counting measure on Γ. Let ΓY = πY (Γ), µY = (πY )∗δΓ be

the weighted projection of Γ onto Y .

Since Y has Assouad–Nagata dimension at most d, there exists c = c(Y ) > 0 so

that we can decompose Y as Y = V0 ∪ · · · ∪ Vd where each Vi consists of a disjoint

union of cκ(k)-separated sets each of diameter ≤ κ(k)/2. Without loss of generality,

µY (V0 ∩ ΓY ) ≥ m/(d + 1). We observe for future use that for each subset A ⊂ Y

with diamA ≤ κ(k)/2 we have |A| ≤ |Nκ(k)/2A| ≤ k, where NC(A) denotes the

C-neighbourhood of A.

Consider V0 ∩ ΓY . There are two cases: either (a) one of the diameter-κ(k)/2

subsets of V0 meets ΓY with weight ≥ m/4(d+ 1), or (b) condition (a) fails.

In case (b), we can split V0 = V ′0 t V ′′0 where we put the components of V0

into V ′0 or V ′′0 in such a way that µ(V ′0 ∩ ΓY ) and µ(V ′′0 ∩ ΓY ) are both ≥ αm for

α = 1/4(d+ 1). It suffices to prove the theorem for this fixed choice of α.

Define f : Y → [0, 1] by f(·) := 1 ∧ 1
cκ(k)d(·, V ′0). Let F : Γ → [0, 1] be the

composition F = f ◦ πY .

Since 0 ≤ F ≤ 1, and δΓ{F = 0} ≥ µY (V ′0 ∩ ΓY ) ≥ αm, and δΓ{F =

1} ≥ µY (V ′′0 ∩ ΓY ) ≥ αm, F is a candidate for bounding Cp,α(Γ). Since f is
1

cκ(k) -Lipschitz, we have ‖∇F‖pµ,p � 1
κ(k)pm. Therefore Cp,α(Γ) � 1

κ(k) and so

δΓ(Γ)Cp,α(Γ) ≤ m/κ(k).

Now suppose we are in case (a). Let U ⊂ V0 be the component set with µY (U ∩
ΓY ) ≥ m/4(d + 1) and diameter ≤ κ(k)/2. Consider Û = π−1

Y (U) ⊂ X × Y

and its neighbourhood Û ′ = Nκ(k)/2Û . We define a weight function ν on Γ by

ν(·) := 0 ∨ (1− d(Û , ·)2/κ(k)), and note that ν is zero outside Û ′.

Let ΓX be the projection ΓX = πX(Û ′ ∩ Γ) with weight µX = (πX)∗ν. Observe

that as δΓ(Γ ∩ Û) = µY (U ∩ ΓY ) ≥ m/4(d + 1), and ν = δΓ on Û , we have

µX(ΓX) ≥ m/4(d+1). On the other hand, as ν ≤ 1, we have µX(ΓX) ≤ ν(Γ) ≤ m.

Moreover, as the fibres of (πX)−1(·) ∩ Û ′ have size at most k, ‖µX‖∞ ≤ k.

For α > 0 fixed, let g : ΓX → [0, 1] be a function with µX{g = 0}, µX{g = 1} ≥
αµX(ΓX) ≥ αm/4(d+ 1), and with ‖∇g‖pµΓ,p � mC

p,α(ΓX)p � m1−pΞp,α,kX (m)p.
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Let G : Γ→ [0, 1] be defined by the product

G(·) = g ◦ πX(·)
(

2

α
ν(·) ∧ 1

)1+ 1
p

.

We bound

δΓ{G = 0} ≥ δΓ{g ◦ πX = 0} ≥ ν{g ◦ πX = 0} = µX{g = 0} ≥ αm.

The bound for δΓ{G = 1} is a little more delicate since µX{g = 1} ≥ αm does not

immediately give that ν{z : g ◦ πX(z)ν(z) = 1} ≥ αm. However, we do get that

ν{G = 1} ≥ α
2m. Indeed, let A = {g ◦ πX = 1} ⊂ Γ. Then

αm ≤ µX {g = 1} = ν(A)

= ν
(
A ∩

{
ν <

α

2

})
+ ν

(
A ∩

{
ν ≥ α

2

})
<
α

2
ν(Γ) + ν {G = 1} ≤ α

2
m+ ν {G = 1} ,

so ν {G = 1} ≥ α
2m, and

δΓ {G = 1} ≥ ν {G = 1} ≥ α

2
m.

We now bound ‖∇G‖pp. If z ∈ Γ, let

‖∇XG‖(z) = max {|G(z)−G(z′)| : zz′ ∈ EΓ, πY (z) = πY (z′)}

and similarly let

‖∇YG‖(z) = max {|G(z)−G(z′)| : zz′ ∈ EΓ, πX(z) = πX(z′)} .

Then ‖∇G‖ = ‖∇XG‖ ∨ ‖∇YG‖ and so ‖∇G‖pp � ‖∇XG‖pp ∨ ‖∇YG‖pp.
If zz′ ∈ EΓ and πY (z) = πY (z′), then ν(z) = ν(z′) and so, using ν(z)p+1 ≤ ν(z),

we can bound:

‖∇XG‖pp =
∑
z∈Γ

max
z′:zz′∈EΓ,

πY (z)=πY (z′)

|G(z)−G(z′)|p

≤ 2p+1

αp+1

∑
z∈Γ

max
z′:zz′∈EΓ,

πY (z)=πY (z′)

|g ◦ πX(z)− g ◦ πX(z′)|pν(z)p+1

�α
∑
x∈ΓX

∑
z∈π−1

X (x)

ν(z) max
x′∈ΓX :x∼x′

|g(x)− g(x′)|p

=
∑
x∈ΓX

|∇g|(x)pµX(x)

= ‖∇g‖pµX ,p � m
1−p Ξp,α,kX (m)p.

To bound ‖∇YG‖p, we use Matousek’s inequality: if a, b ≥ 0 and q ≥ 1 then

|aq − bq| ≤ q|a− b| (aq−1 + bq−1) ≤ 2q|a− b| (aq−1 ∨ bq−1).
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So, using this with q = 1 + 1
p , and the fact that ν(·) is 2/κ(k)-Lipschitz, we have

‖∇YG‖pp =
∑
x∈ΓX

∑
z∈π−1

X (x)

max
z′∈π−1

X (x):

zz′∈EΓ

|G(z)−G(z′)|p

≤ 2p+1

αp+1

∑
x∈ΓX

∑
z∈π−1

X (x)

max
z′∈π−1

X (x):

zz′∈EΓ

|g(x)|p|ν(z)1+ 1
p − ν(z′)1+ 1

p |p

�α,p
∑
x∈ΓX

|g(x)|p
∑

z∈π−1
X (x)

max
z′∈π−1

X (x):

zz′∈EΓ

|ν(z)− ν(z′)|p (ν(z) ∨ ν(z′))

� κ(k)−p
∑
x∈ΓX

|g(x)|pν(π−1
X (x)) = κ(k)−p‖g‖pµX ,p

≤ κ(k)−p‖1‖pµX ,p ≤ κ(k)−pµX(ΓX) ≤ κ(k)−pm.

So

‖∇G‖pp � m1−pΞp,α,kX (m)p ∨mκ(k)−p

and thus

µ(Γ)Cp,α/2(Γ) � m

(
m1−pΞp,α,kX (m)p ∨mκ(k)−p

m

)1/p

� Ξp,α,kX (m) ∨ m

κ(k)
.

The proof is finished by varying k to get the best estimate. �

5.5. Questions on (weighted) capacitance profiles. Using the same method

as for Poincaré profiles [HMT18, Theorem 1], it is not difficult to prove that the un-

weighted capacitance profile is monotone under regular maps. We record a number

of questions about this.

Question 5.30. Does the (Lp, k)-weighted capacity profile Ξp,kX exist for every

bounded degree graph X?

Question 5.31. Is the (Lp, k)-weighted capacity profile (when it exists) monotone

under regular maps?

Question 5.32. Is there a bounded degree graph X and a p ∈ [1,∞] such that

ΞpX(r) 6' ΛpX(r)?

6. Poincaré profiles of product spaces

In this section we prove upper bounds and lower bounds for Poincaré profiles

of certain product spaces. The upper bounds, obtained in §6.2, are an application

of the the results of §5. The lower bounds are proved in §6.3, exploiting a general

lower bound formula for direct product of spaces. Finally, in §6.4, we show our

non-embedding result Theorem 1.13. Its proof combines Poincaré calculations with

further arguments using techniques from §5.

6.1. Hyperbolic times polynomial growth: general estimates. In the par-

ticular case of the product of a hyperbolic group with a virtually nilpotent group,

we find the following upper and lower bounds, which generalise the corresponding

results for hyperbolic groups themselves in [HMT18, Theorem 11]. Recall that a

graph Y has polynomial growth of degree d ≥ 0, if there exist C ≥ 1 such that

for all y ∈ Y and r ≥ 1,

C−1rd ≤ |B(y, r)| ≤ Crd.
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Theorem 6.1. Let G be a finitely generated non-elementary hyperbolic group with

(Ahlfors regular) conformal dimension Q. Let Y be a graph of polynomial growth

of degree d ≥ 0. Then for every ε > 0,

ΛpG×Y (r) .

{
r1− 1

Q+d+ε if p ≤ Q
r1− 1

p+d if p > Q.

If the conformal dimension of G is attained (see discussion following Theorem 1.12),

we have:

ΛpG×Y (r) .


r1− 1

Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if p > Q.

These upper bounds are found using weighted projections and capacity estimates

as in §5.

The following lower bound is stated in the generality used by [HMT18, Theorems

10.1, 11.1 and 11.3]; as we do not work directly with the notion of 1-Poincaré

inequalities in this paper we refer to [HMT18] for definitions and further references.

Theorem 6.2. Let X be a visual Gromov hyperbolic graph with a visual metric on

its boundary that is Ahlfors Q-regular and admits a 1-Poincaré inequality.

Let P be a connected Lie group (or finitely generated group) with polynomial

growth of degree d ≥ 0. Then

ΛpX×P (r) &


r1− 1

Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if p > Q.

As we shall see, these lower bounds for X ×N follow fairly easily from the lower

bounds of the Poincaré profiles for X and P .

Together, these bounds give sharp results when the hyperbolic group acts geo-

metrically on a rank 1 symmetric space HmK or a Fuchsian building Im,n, m ≥ 5,

n ≥ 3, as studied by Bourdon and Bourdon–Pajot [Bou97, BP03]. The isometry

group of Im,n admits a uniform lattice Gm,n generated by generalized reflections,

a presentation5 of which is given by (see [Bou97]):

Gm,n = 〈s1, . . . , sm | sn1 , sn2 , . . . , snm, [s1, s2], [s2, s3], . . . , [sm−1, sm], [sm, s1]〉.
In the case of a rank 1 symmetric space HmK the conformal dimension of the

boundary is Q = (m+ 1) dimRK− 2, while for a group Gm,n it is Q = 1 + log(n−
1)/ arccosh((m − 2)/2) [Bou97, Théorème 1.1.]. In both cases there is a metric

on the boundary that is Ahlfors Q-regular and admits a 1-Poincaré inequality, so

the following immediate corollary to Theorems 6.1 and 6.2 generalises [HMT18,

Theorem 12].

Corollary 6.3. Let H be a finitely generated Gromov hyperbolic group that has its

conformal dimension Q ≥ 1 attained by a metric admitting a 1-Poincaré inequality,

and let P be a discrete or connected Lie group with polynomial growth of degree

d ≥ 0. Then the group G = H × P has

ΛpG(r) '


r1− 1

Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if Q < p <∞.

5Note that this presentation is that of a graph product of cyclic groups Z/nZ indexed by an

m-cycle.
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6.2. Upper bounds for direct products. The upper bound on Poincaré profiles

follows from the capacity profile and product space bounds obtained in §5.

Proof of Theorem 6.1. Suppose Q is the conformal dimension of G, and d the poly-

nomial growth of Y . As Y has (exactly) polynomial growth it is doubling and so

has finite Assouad–Nagata dimension, say d′.

Given 1 ≤ p ≤ Q and ε > 0, choose ε′ = ε′(d,Q, ε) > 0 as described below,

and let X be a graph quasi-isometric to G with Ξp,α,kX (r) . k(r/k)1− 1
Q+ε′ from

Theorem 5.15. Theorem 5.29 gives

ΛpG×Y (r) ' ΛpX×Y (r) . max
m≤r

min
1≤k≤m/100d′

( m

k1/d
+m1− 1

Q+ε′k
1
Q−ε

′
)
.

This is optimised for m = r and k = r(1−ε′Q)/(1−ε′Q+Q
d ), and gives a bound

. r1− 1−ε′Q
Q+d−ε′Qd ≤ r1− 1

Q+d+ε,

where we can choose ε′ = ε′(d,Q, ε) > 0 so that the last inequality holds.

For p > Q, if Q ≥ 1 choose ε′ > 0 so that p > Q + ε′ and let X be a graph

quasi-isometric to G with Ξp,α,kX (r) . k(r/k)1− 1
p from Theorem 5.15. If Q = 0

then G is quasi-isometric to a 3-regular tree X, so Proposition 5.9 again gives

Ξp,α,kX (r) . k
1
p r1− 1

p . In either case, Theorem 5.29 gives

ΛpG×Y (r) . max
m≤r

min
1≤k≤m/100d′

( m

k1/d
+m1− 1

p k
1
p

)
,

which is optimised for m = r and k = r1/(1+ p
d ), giving ΛpG×Y (r) � r1− 1

p+d .

If the conformal dimension is attained then Q ≥ 1 and the bounds for 1 ≤ p < Q

and p > Q follow in a similar way to that above. For p = Q, Theorems 5.15 and

5.29 give

ΛpG×Y (r) . min
1≤k≤m/100d′

( r

k1/d
+ r1− 1

Q k
1
Q log

1
Q ( rk )

)
,

which is optimised for k � (r/ log r)d/(Q+d), giving the desired bound of ΛpG×Y (r) �
r1− 1

Q+d log
1

Q+d r. �

6.3. Lower bounds for direct products. Let us now consider the easier lower

bounds for products. This follows from a generalisation of [BST12, Theorem 3.2]

for Poincaré profiles.

Proposition 6.4. For X and Y infinite graphs,

ΛpX×Y (r) & max {|A| |B| (hp(A) ∧ hp(B)) : A ⊆ X, B ⊆ Y, |A| |B| ≤ r} .

If ΛpX , and likewise ΛpY , satisfy the property that for any r there exists A ⊂ X with

|A| � r and ΛpX(r) � |A|hp(A), then the bound may be written as:

ΛpX×Y (r) & max
1≤k≤r

( r
k

ΛpX(k)
)
∧
(
kΛpY

( r
k

))
.

The result follows immediately from the following lemma concerning Poincaré

constants of products of finite graphs.

Lemma 6.5. For every p ∈ [1,∞) there exists a constant cp such that for all finite

graphs A,B, hp(A×B) ≥ cp(hp(A) ∧ hp(B)).
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Proof. For any f : A×B → R, the triangle and Hölder inequalities give

‖f − fA×B‖p

=
∑

(x,y)∈A×B

∣∣∣∣f(x, y)− 1

|A×B|
∑

(x′,y′)∈A×B

f(x′, y′)

∣∣∣∣p
≤ 1

|A×B|p
∑

(x,y)∈A×B

( ∑
(x′,y′)∈A×B

|f(x, y)− f(x′, y′)|
)p

≤ 1

|A×B|
∑

(x,y)∈A×B

∑
(x′,y′)∈A×B

|f(x, y)− f(x′, y′)|p.

Elementary inequalities and the definition of hp applied to fibres {x} × B and

A× {y′} show that this is

�p
1

|A||B|
∑

(x,y)∈A×B

∑
(x′,y′)∈A×B

(∣∣f(x, y)− f{x}×B
∣∣p +

∣∣f{x}×B − f(x, y′)
∣∣p +

∣∣f(x, y′)− fA×{y′}
∣∣p +

∣∣fA×{y′} − f(x′, y′)
∣∣p)

= 2
∑
x∈A

∑
y∈B

∣∣f(x, y)− f{x}×B
∣∣p + 2

∑
y′∈B

∑
x∈A

∣∣f(x, y′)− fA×{y′}
∣∣p

�
∑
x∈A

hp(B)−p
∑
y∈B
|∇f(x, y)|p +

∑
y′∈B

hp(A)−p
∑
x∈A
|∇f(x, y)|p

� (hp(A) ∧ hp(B))
−p ‖∇f‖pp . �

Proposition 6.4 has the following consequence, when combined with the upper

bound in Theorem 6.1.

Corollary 6.6. Let T be the infinite trivalent tree (quasi-isometric to any non-

abelian free group of finite rank), and let P be a discrete or connected Lie group

with polynomial growth of degree d ≥ 0. Then for 1 ≤ p <∞,

ΛpT×P (r) ' r1− 1
d+p .

Proof. Note that P is quasi-isometric to some bounded degree graph Y with the

same degree of growth and whose Poincaré profile has same asymptotic behavior.

Since T is quasi-isometric to the Cayley graph of a free group on two generators,

which has conformal dimension 0, Theorem 6.1 shows the upper bound on ΛT×P
for any p ≥ 1. The lower bound remains to be shown.

For the tree T , [HMT18, Theorem 10.1] and its proof show that ΛpT (k) ' k1−1/p,

and is attained by a ball of size � k. For a group P with polynomial growth of

degree d, [HMT18, Theorem 7] and its proof via [HMT18, Proposition 9.5] show

that ΛpP (r/k) ' (r/k)1−1/d, and is attained by a subspace of size � r/k. So

Proposition 6.4 gives

ΛpT×P (r) & max
1≤k≤r

r

k
k1−1/p ∧ k

( r
k

)1−1/d

= r max
1≤k≤r

k−1/p ∧ k1/dr−1/d,

which is optimised for k � r1/(1+d/p). �

Corollary 6.6 is the last ingredient needed to complete the proof of Theorem

1.16.
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Proof of Theorem 1.16. If |m| = |n| = 1, then G = BS(m,n) is commensurable to

Z2, so ΛpG(r) ' r1/2 for all p ∈ [1,∞) by [HMT18, Theorem 7]. If |m| = |n| > 1,

then G = BS(m,n) is commensurable to F2 × Z, so ΛpG(r) ' r1− 1
p+1 by Corollary

6.6. Finally, there is a regular map from DL(2, 2) to BS(m,n) whenever |m| 6= |n|
by Theorem 3.1, so ΛpG(r) ' r/ log(r) for all p ∈ [1,∞). By [GJ, Theorem 1] there

is a proper (and hence regular) map G → Aut(T ) × Aff(R) where T is a bounded

valence tree. Since Aut(T ) is quasi-isometric to a 3-regular tree, and Aff(R) has

finite Assouad–Nagata dimension by [HP13], we have ΛpG(r) . ΛpAut(T )×Aff(R)(r) .
r/ log(r) for all p ∈ [1,∞). �

We can now also show the lower bound for products of certain hyperbolic groups

with groups of polynomial growth.

Proof of Theorem 6.2. By [HMT18, Theorems 10.1, 11.1 and 11.3] and their proofs,

we have

ΛpX(r) &


r1− 1

Q if 1 ≤ p < Q

r1− 1
Q log

1
Q (r) if p = Q

r1− 1
p if p > Q.

,

and in each case the lower bound is attained by a set of size � r. So by Proposi-

tion 6.4 for p < Q we have

ΛX×N (r) & max
1≤k≤r

r

k
k1−1/Q ∧ k

( r
k

)1−1/d

� r1−1/(Q+d),

on taking the optimal k � r1/(1+d/Q). For Q > p, as in Corollary 6.6, we have

ΛX×N (r) & max
1≤k≤r

r

k
k1−1/p ∧ k

( r
k

)1−1/d

� r1−1/(p+d).

For p = Q we have

ΛQX×N (r) & max
1≤k≤r

( r
k
k1−1/Q log1/Q k

)
∧
(
k
( r
k

)1−1/d
)

= max
1≤k≤r

(
rk−1/Q log1/Q k

)
∧
(
r1−1/dk1/d

)
.

The optimal value of k is approximately k � rQ/(Q+d) logd/(Q+d) r, giving

ΛQX×N (r) & r1−1/d
(
rQ/(Q+d) logd/(Q+d) r

)1/d

= r1− 1
Q+d log

1
Q+d r. �

We also have completed the proof of Theorem 1.12.

Proof of Theorem 1.12. The bounds follow from Corollary 6.3 in the first two cases,

and from Corollary 6.6 in the third case. �

6.4. Beyond profiles. A more careful analysis of specific weighted subgraphs

yields the following result.

Theorem 6.7. Let X be a hyperbolic graph whose boundary has a visual metric

that is Ahlfors Q-regular for some Q > 1 and admits a 1-Poincaré inequality (hence

has conformal dimension Q). Let Y be a graph with subexponential growth and let

H be a visual hyperbolic graph. If there is a regular map X → H × Y , then the

conformal dimension of H is at least Q.

Recall that a hyperbolic space H is visual if every point in H is within a uni-

formly bounded distance from a geodesic ray from a base point of H. Any discrete

hyperbolic group is visual.
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Proof. It suffices to assume that X is visual by discarding any irrelevant points.

Following the proof of [HMT18, Theorem 11.1], we can replace X by hyperbolic

cone graph Γ (quasi-isometric to X) which has the following key property: for each

t ∈ N, there is a subgraph Γt in the ball of radius t about the base point of Γ

which has � eQt vertices, and so that h1(Γt) � e−t, by [HMT18, (11.2)]. There is

a subtlety here: [HMT18, (11.2)] bounds h1
C(Γt) from below, where the gradient of

f : V Γt → R in the definition of h1
C is |∇Cf |(x) = max{|f(x′) − f(x′′)| : x′, x′′ ∈

B(x,C) ∩ V Γt}. Spaces with Poincaré inequalities are quasi-convex, so any two

points at distance C in Γt can be connected by a path in Γt of uniformly bounded

length. Thus the argument of [HMT18, Proposition 4.3] gives that h1
C(Γt) � h1(Γt),

essentially by the triangle inequality.

Suppose for a contradiction that there is a regular map f : Γ → H × Y as in

the statement of the theorem, where the conformal dimension of H equals Q′ < Q.

Choose Q′′ ∈ (Q′, Q), then there is an Ahlfors Q′′-regular space quasisymmetric

to ∂∞H, and let H ′ be a hyperbolic cone on that space. By [BS00], H ′ is quasi-

isometric to H, so we get a regular map f ′ : Γ→ H ′× Y . Now [HMT18, Corollary

5.10] gives that h1(Γt) � h1
C(f ′(Γt)) for a constant C. Taking a suitable neighbour-

hood Γ′t := [f ′(Γt)]M for some M ≥ 1 of the image f ′(Γt) (essentially to make it

connected), as in [HMT18, §5.2], we have h1
C(f ′(Γt)) � h1(Γ′t) again by the argu-

ment of [HMT18, Proposition 4.3]. Lemma 5.7 gives h1(Γ′t) � C1,α(Γ′t,#), where

# is the counting measure, and α > 0 is any value small enough.

We require the following lemma.

Lemma 6.8. The projection π : H ′ × Y → H ′ is monotone with respect to ca-

pacities: if Γ′ ⊂ V (H ′ × Y ) and π∗# is the push-forward measure on π(Γ′), then

Cp,α(Γ′,#) ≤ Cp,α(π(Γ′), π∗#).

Proof. For any function h : V (πΓ′) → R, π∗#({h ≤ 0}) = #({h ◦ π ≤ 0}) and

π∗#({h ≥ 1}) = #({h ◦ π ≥ 1}). Meanwhile, ‖∇(h ◦ π)‖p#,p ≤ ‖∇h‖
p
π∗#,p

as for

each x ∈ V Γ′, |∇(h ◦ π)|(x) ≤ |∇h|(π(x)). �

Combining our results so far, we have for each t that

e−t � h1(Γt) � h1(Γ′t) � C1,α(Γ′t,#) � C1,α(π(Γ′t), π∗#).

Since Γt lies in a ball of radius t, Γ′t also lies in a ball of radius ≤ At for some

constant A ≥ 1 depending on f ′. As Y has subexponential growth, for each δ > 0

there exists Rδ so that every ball in Y of radius R ≥ Rδ contains at most exp(δR)

points. We fix δ = δ(Q,Q′′, A) later in the proof, and assume t ≥ Rδ, so the fibres

of π|Γ′t : Γ′t → π(Γ′t) have at most k := exp(δAt) points in them.

Therefore, for this value of k Theorem 5.14 gives for α small enough that

C1,α(π(Γ′t), π∗#) ≤ π∗#(π(Γ′t))
−1Ξ1,α,k

H′ (π∗#(π(Γ′t)))

� exp(−Qt)k
1
Q′′ exp(Qt)

1− 1
Q′′

= exp

(
−Qt+

δAt

Q′′
+Qt− Q

Q′′
t

)
.

Since Q′′ < Q, we can choose δ > 0 so that (Q − δA)/Q′′ > A′ > 1 for some A′.

But then as e−t � e−A′t we have a contradiction. �

Remark 6.9. Intuitively what is happening here is that cut(Γt) � e(Q−1)t, while

the weighted projection π(Γ′t) in H can be cut with weight � e(Q′−1)tQ/Q′ , up to

a subexponential factor, and cuts of π(Γ′t) can be lifted back to cuts of Γt (cf.

Lemma 6.8).
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This argument does not work when Q = 1 because the cut sets of balls grow

too slowly. For example, this argument cannot rule out a regular map f : H2
R →

T × Zd: considering balls Γt = B(t) of volume et, using [HMT18, Theorem 11.3]

and Proposition 5.9 the argument gives

te−t � h1(Γt) � C1,α(π(Γ′t)) � e−tk � e−ttd,

which is no contradiction.

We are now able to prove the following non-embedding result, of particular

interest for the products of rank 1 symmetric spaces HmK or Fuchsian buildings

Gm,n with nilpotent groups.

Corollary 6.10 (Theorem 1.13). Assume G1 = H1×P1 and G2 = H2×P2, where

for i = 1, 2 :

• Hi is a non-elementary finitely generated hyperbolic group of conformal

dimension Qi ≥ 0, and

• Pi is a locally compact group with polynomial growth of degree di ≥ 0.

If there exists a regular map G1 → G2, then d1 ≤ d2. Moreover, if H1 has its

conformal dimension Q1 > 1 attained by a metric admitting a 1-Poincaré inequality,

then Q1 ≤ Q2.

Proof. Any such H1 contains a quasi-isometrically embedded 3-regular tree, so by

the monotonicity of Λp and Corollary 6.6 we have ΛpG1
(r) & r1− 1

p+d1 for p ≥ 1.

Theorem 6.1 applied to G2 gives for p > Q2 that ΛpG2
(r) . r1− 1

p+d2 , so the d1 ≤ d2

conclusion follows. The ‘moreover’ statement is given by Theorem 6.7. �

7. Concluding steps

In this section we complete the proofs of most of the theorem stated in the

introduction: Theorems 1.9, 1.5, 1.8, 1.11 and Corollary 1.6,.

Proof of Theorem 1.9. Let G be an algebraically thick connected Lie group. By

Theorem 2.9, we can assume that G is linear and its radical is real-triangulable.

Then by Proposition 1.10, we deduce that it has a closed subgroup isomorphic to

either SOLa, a > 0 or Osc. By Proposition 3.1, if it contains SOLa, then it contains

a coarsely embedded copy of DL(2, 2), and it is analytically thick by Theorem 4.3.

If it contains Osc, then it is analytically thick by Theorem 4.6. We conclude by

Corollary 4.2. �

Proof of Theorem 1.5. By Theorem 1.9, and since algebraic thinness is by definition

the negation of algebraic thickness, it is enough to prove that if G is a connected

unimodular Lie group that is algebraically thin, then it is analytically thin. By

Corollary 2.20, G either has polynomial growth, in which case this follows from

[HMT18, Theorem 8.1.], or we may assume it is a direct product R × S of group

R with polynomial growth and a R-rank 1 simple Lie group S with finite center.

Picking a uniform lattice Γ in S, G is therefore quasi-isometric to R × Γ, and we

conclude by Theorem 6.1. �

Proof of Corollary 1.6. Recall that a polycyclic group has a finite index subgroup

that embeds as a uniform lattice in a solvable unimodular connected Lie group G.

If Γ (or equivalently G) is algebraically thin, then by Proposition 2.4, G must have

polynomial growth, and so is analytically thin [HMT18]. If Γ is algebraically thick

the conclusion follows from Theorem 1.5. �
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Proof of Theorem 1.8. Assouad’s embedding theorem gives (iv) =⇒ (iii), and (iii) =⇒
(ii) is obvious. The separation profile is monotonous under regular maps, and P×HnR
is analytically thin by Theorem 6.1, so we deduce that (ii) =⇒ (i). Finally, assume

G is algebraically thin, then by Corollary 2.20, it is quasi-isometric to a direct prod-

uct (with one factor possibly empty) P ×S, where P has polynomial growth, and S

is simple of rank 1 with finite center. Having finite center, S is Gromov-hyperbolic,

so by Bonk-Schramm’s theorem [BS00], it quasi-isometrically embeds into HnR for

any large enough n. Hence (i) =⇒ (iv). �

Proof of Theorem 1.11. (iv) =⇒ (iii) =⇒ (ii) are obvious. By Theorem 2.9, we can

assume that G is linear and that its radical is real-triangulable. Then (i) =⇒ (iv)

follows from Proposition 1.10. Let us prove (ii) =⇒ (i). Since the separation profile

is monotonous under regular maps, and is ' n/ log n for SOLa, a > 0 and Osc, we

deduce that G is analytically thick, and we conclude using Theorem 1.5. �

8. Questions

This work raises many natural questions. We selected a few of them below.

8.1. Thick/thin dichotomies. A natural question that we left open is: what hap-

pens for non-unimodular connected Lie groups? We risk the following conjecture.

Conjecture 8.1. Theorem 1.5 holds in full generality (without assuming unimod-

ular).

As we mentioned in §1.2.4, an interesting example to look at is the semidirect

product G = Heis3 o(1,0,1)R. Such a group is non-unimodular, algebraically thin,

and one can check by a Lie algebra computation that it is not a subgroup of a

direct product of a Heintze group by a group of polynomial growth. Our conjecture

would imply that Λ1
G(r) . rα for some α < 1.

Question 8.2. Is every finitely generated group either analytically thick or ana-

lytically thin?

We expect the answer to this question to be negative in general, more pre-

cisely, groups containing a very rapidly growing sequence of expanders, and certain

elementary amenable lacunary hyperbolic groups (whose separation profiles were

considered in [Hum17] and [HM20] respectively) are likely to provide counterex-

amples. However, there is at present no obvious candidate for a finitely presented

counterexample. Despite this, there are likely to be many natural situations where

this result does hold. For instance, a popular conjecture [Bes04, Question 1.1] as-

serts that a group G with finite classifying space and no Z2 subgroup either contains

a subgroup isomorphic to BS(m,n) with |m| 6= |n| (and therefore is analytically

thick) or is hyperbolic (so analytically thin).

It follows from [CG19] that for every finitely generated solvable group with expo-

nential growth, and every ε > 0 one has ΛpG(rn) & r1−ε
n on an unbounded sequence

(rn). In particular, a finitely generated solvable group is analytically thin if and

only if it has polynomial growth. In view of our result for polycyclic groups, a

positive answer to the following question seems plausible.

Question 8.3. Does the analytically thick/thin dichotomy holds for the class

of solvable finitely generated groups? In other words, does the bound ΛpG(r) &
r/ log(r) hold for all finitely generated solvable groups of exponential growth?

Here is another reasonable class of groups where to expect a positive answer:
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Question 8.4. Does the analytically thick/thin dichotomy holds for the class of

linear finitely generated groups?

8.2. Groups admitting an embedding of DL(2, 2). A positive answer to the

following question would in particular implies a positive answer to Question 8.3:

Question 8.5. Does DL(2, 2) regularly map to any finitely generated solvable

group with exponential growth?

We suspect the answer is negative, a possible counter-example being (a lattice

in) the group Osc. Note that a positive answer for this specific example would

provide an alternative (potentially less technical) proof of Theorem 4.6.

8.3. Conformal dimension. It is natural to wonder whether Theorem 5.16 is

sharp in the following sense.

Question 8.6. Let Z be a connected non-discrete Ahlfors-regular metric space and

let X be a hyperbolic cone over Z. Is

inf
{
p ≥ 1 : ΛpX(r) ' r1− 1

p

}
equal to the (Ahlfors regular) conformal dimension of Z?

As an example, take Z to be the middle-thirds Sierpinski carpet, whose Ahlfors-

regular conformal dimension Q is currently unknown. Let X be a hyperbolic cone

over Z. By [GS19], we know that Λ1
X(r) 6' r1−1/Q, however the question above is

still open in this case.

Another natural example to consider would be the case of Heintze groups. More

generally,

Question 8.7. What are the Poincaré profiles of Heintze groups E oR?

For example, what are the Poincaré profiles of G = R2 o(1,2) R? We have, see

Figure 8.3:

r1/2 . ΛpG(r) . r2/3 if 1 ≤ p ≤ 2

r1− 1
p . ΛpG(r) . r2/3 if 2 ≤ p < 3

r2/3 . ΛpG(r) . r2/3 log1/3(r) if p = 3

ΛpG(r) ' r1− 1
p if 3 < p <∞;

here the lower bounds come from the embedded R2 and embedded binary trees,

and the upper bounds follow as in Theorem 6.1 from ∂∞G attaining its conformal

dimension 3, but the exact asymptotics remain unclear.
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Sem. Mat. Univ. Politec. Torino, (Special Issue):95–120 (1990), 1989. Conference on

Partial Differential Equations and Geometry (Torino, 1988).

[Pan16] P. Pansu. Large scale conformal maps. To appear in Ann. Sci. Éc. Norm. Supér, 2016.
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