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Abstract— We study the performance of contention based
medium access control (MAC) protocols. In particular, we pro-
vide a simple and accurate method for estimating the throughput
of IEEE 802.11 DCF and IEEE 802.11e EDCA. Our method is
based on a rigorous analysis of the Markov chain associated
with the back-off process at the contending nodes. Our results
provide new insights into the operation of the IEEE 802.11
DCF and IEEE 802.11e EDCA. Although we focus on the IEEE
802.11 MAC protocol in this paper, the techniques developedare
applicable to a wide variety of contention based MAC protocols.

I. I NTRODUCTION

Wireless local area networks (WLANs) based on the IEEE
802.11 standard are one of the fastest growing wireless access
technologies in the world today. They provide an effective
means of achieving wireless data connectivity in homes, public
places and offices. The low-cost and high-speed WLANs
can be integrated within the cellular coverage to provide
hotspot coverage for high-speed data services, thus becoming
an integral part of next generation wireless communication
networks.

The fundamental access mechanism of IEEE 802.11 MAC
is the Distributed Coordination Function (DCF). The DCF is a
carrier sense multiple access protocol with collision avoidance
(CSMA/CA). In addition to DCF, the IEEE 802.11 standard
also defines an optional Point Coordination Function (PCF),
which uses a central coordinator for assigning the transmission
right to stations, thus guaranteeing collision free accessto the
shared wireless medium. While DCF has gained enormous
popularity and been widely deployed, the use of PCF has been
rather limited.

Whereas the IEEE 802.11 standard was targeted at best-
effort service for data transfer, it is expected that in the
future WLANs will need to support a mix of QoS-sensitive,
multimedia and interactive traffic, in addition to data traffic
which is only sensitive to the throughput. Future WLANs
must therefore provide service differentiation in order tobetter
support the diverse QoS requirements of applications running
on them. A new standard, namely IEEE 802.11e, has been pro-
posed for this purpose; it defines two new access mechanisms:
EDCA (an enhancement to DCF), and HCF (an enhancement
to PCF). Of the two, EDCA appears to be gaining more early
acceptance.

In this paper we study the performance of contention based
MAC protocols, with a specific emphasis on DCF and EDCA.
There have been several previous works on the performance
of DCF; these include simulation studies [1], [2] as well as
analytical studies based on simplified models of the DCF [3],
[4], [5], [6], [7], [8]. Most of the analytical work is based on a
decoupling approximation, first proposed by Bianchi in [3];we
henceforth refer to the simplified model with this decoupling
assumption as Bianchi’s model. More recently, there have also
been several studies [9], [10], [11], [12], [13] evaluatingthe
performance of EDCF, an earlier version of EDCA (see [14]).
With the exception of [13], where the authors develop an
extension of Bianchi’s model for analyzing EDCF, all these
studies are simuation based.

The main contribution of this paper is a novel technique
for estimating the throughput and other parameters of interest
of contention based MAC protocols. Our technique is based
on a rigorous analysis of a Markovian model of the system,
and does not require the decoupling assumption of Bianchi.
In fact, through the insights it yields into the system dynam-
ics, it provides intuitive justification of Bianchi’s simplifying
assumptions. The technique is easy to apply, and we use it to
analyse the IEEE 802.11 DCF as well the EDCA protocol
in IEEE 802.11e. It can easily be applied to other MAC
protocols as well. We now briefly sketch the key ideas behind
our approach.

A common feature of all contention based MAC protocols
is the concept ofback-off stagefor a station. Stations can be
in different back-off stages; the back-off stage for a station
depends on the number of collisions that it has encountered
since its last successful transmission (and, possibly, other in-
formation) and can be thought of as its estimate of the current
level of contention at all stations. Stations use this estimate
to control their access probabilities. The key observationwe
make in this paper is that, when the number of stations is
large, the Markov chain associated with the back-off process
stays close to what we call atypical state, which can be
obtained as the uniqueequilibriumpoint of the drift equations
associated with the back-off process. We can obtain quite
accurate estimates of the throughput and other parameters of
interest by assuming the system to be in this typical state at



all times.
We find that the accuracy of the throughput estimates ob-

tained using our technique is about the same as those obtained
using Bianchi’s analysis. But, in addition, we are able to
provide some key insights about the system dynamics; in fact,
our results provide a justification for Bianchi’s approximation,
which may be of separate interest.

The rest of the paper is organized as follows. We provide a
brief description of DCF and EDCA, and discuss some related
work, in the next section. Our technique for performance
evaluation is discussed in the context of DCF in section III.An
extension of our technique in the context of EDCA is discussed
in section IV. Some concluding remarks are presented in
section V. Due to space constraints, all technical details and
proofs are deferred to Appendix A and B.

II. DCF, EDCA, AND RELATED WORK

In this section, we provide a brief description of DCF and
EDCA, and discuss some related work in the literature. We
start with a description of DCF.

A. IEEE 802.11 DCF

The DCF is a Carrier Sense Multiple Access with Col-
lision Avoidance (CSMA/CA) MAC protocol. The collision
avoidance scheme of DCF is based on the binary exponential
back-off (BEB) scheme [15], [16]. The DCF defines two
access mechanisms for packet transmissions:basic access
mechanism, andRTS/CTS access mechanism.
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Fig. 1. Basic Access Method.

In the basic access mechanism (see Figure 1), any station,
before transmitting a DATA frame, senses the channel for a
duration of time equal to the Distributed Interframe Space
(DIFS) to check if it is idle. If the channel is determined to be
idle, the station starts the transmission of a DATA frame. All
stations which hear the transmission of the DATA frame set
their Network Allocation Vector (NAV) to the expected length
of the transmission, as indicated in the Duration/ID field of
the DATA frame. This is called thevirtual carrier sensing
mechanism. The channel is considered to be busy if either the
physical carrier sensing or the virtual carrier sensing indicates
so, and in that case, the station enters into a wait period
determined by the back-off procedure to be explained later.
Upon successful reception of the DATA frame, the destination
station waits for a SIFS interval following the DATA frame,
and then sends an ACK frame back to the source station
indicating successful reception of the DATA frame.
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Fig. 2. RTS/CTS Access Method.

The RTS/CTS access meachnism uses a four-way handshake
in order to reduce bandwidth loss due to the hidden terminal
problem (see, for example, [17]). A station that wishes to send
a DATA frame first senses the channel for a DIFS duration.
If the channel is determined to be idle, then a RTS frame
is sent to the destination. Otherwise, the back-off algorithm
is triggered after the end of the current transmission and a
further DIFS interval. Upon successful transmission of the
RTS frame, the destination waits for a SIFS interval, and then
sends a CTS frame back to the source. The source can start
sending the DATA frame a SIFS interval after the reception
of the CTS frame. As in the basic access mechanism, upon
successful reception of the DATA frame, the destination waits
for a SIFS interval, and then sends an ACK frame back to the
source. A station that hears either the RTS, CTS, or DATA
frame updates its NAV based on the Duration/ID field of the
corresponding frame (see Figure 2). The four way handshake
prevents any DATA-DATA collisions that might occur due
to the hidden terminal problem. Since the RTS and CTS
frames are very small in size, the RTS/CTS access scheme
significantly reduces bandwidth loss due to collisions.

The back-off procedure is implemented by means of the
back-off counterandback-off stages. Initially, upon receiving
a new frame to be transmitted, the station starts in back-
off stage 0, with the contention window (CW ) size set
to CWmin. Following an unsuccessful transmission attempt
(collision), the back-off stage is incremented by1 and the
contention window size is doubled until the maximum size
of the contention window,CWmax, is reached, after which
the back-off stage and the contention window size remain
unchanged on subsequent collisions. The back-off window size
as well as the back-off stage are set back to their initial values
of CWmin and0 after a successful transmission attempt or if
the retry count limit for the frame is reached. At the start of
each back-off stage, the back-off counter is set to an integer
chosen uniformly at random between zero and the valueCW
of the contention window for the current back-off stage. The
back-off counter is decremented by1 in every subsequent slot,
as long as the channel is sensed idle in that slot. (Here, a slot
is an interval of fixed duration specified by the protocol.) Ifa
transmission by some other station is detected, then the station
freezes its back-off counter, and resumes its count from where
it left off after the end of the transmission plus an additional
DIFS interval. When the back-off counter reaches0, the station



transmits.
The scheme described above treats all stations equally. The

IEEE 802.11e task group (TGe) is working on an extension
to the current IEEE 802.11 standard in order to provide
QoS in WLANs via service differentiation. We now describe
the enhanced distributed channel access (EDCA) mechanism,
which is an extension of the DCF mechanism, as specified in
the most recent draft [18] published by the TGe.

B. IEEE 802.11e EDCA

The EDCA has been designed from the perspective of
providing QoS in WLANs. The notion of anaccess category
(AC) is used to achieve service differentiation. The EDCA
defines four different ACs, each maintaining its own channel
access function (an enhanced variant of the DCF). Each AC
on a station contends for a transmission opportunity (TXOP)
with its own set of EDCA parameters. A TXOP is the interval
of time when a station has the right to initiate transmissions.
The main differences between the EDCA and DCF are:

1) The minimum specified idle duration time, called the
arbitration inter frame space(AIFS), is not a constant
value (DIFS) as in the DCF. Each AC has its own value
for the AIFS, denoted AIFS[AC], which is calculated as
follows:

AIFS[AC] = SIFS + AIFSN [AC],

where AIFSN denotes the arbitration inter frame space
number and is different for different ACs (see Table I).

2) The contention window limits,CWmin
∗ and CWmax,

are different for different ACs (see Table I).

The collisions between the contending channel access func-
tions within a station are resolved within the station such
that the data frames from the higher priority AC receives the
TXOP and the data frames from the lower priority colliding
AC(s) behave as if there were an external collision on the
wireless medium. The motivation is to provide low delay and
high throuhput to multimedia and other real time traffic. Note
that EDCA does not provide any service guanrantees, but
it establishes a probabilistic priority mechanism to allocate
bandwidth based on the access categories. In section IV, we
develop and analyze a simple model for EDCA.

TABLE I

DEFAULT EDCA PARAMETER SET [18]

Category (AC)/Info. CWmin CWmax AIFSN

AC BK/Background aCWmin aCWmax 7
AC BE/Best Effort aCWmin aCWmax 3

AC V I/Video aCWmin/2 aCWmin 2
AC V O/Voice aCWmin/4 aCWmin/2 2

∗The parametersaCWmin andaCWmax depend on the physical layer.

C. Related Work

One of the earliest analyses of the throughput of DCF
was carried out in [4] using a greatly simplified back-off
model, namely that the back-off counter value is geometri-
cally distributed withconstantparameterp, irrespective of
the current back-off stage of the station. A more realistic
model was proposed in the seminal paper of Bianchi [3].
Here, the evolution of the back-off stage at each node is
described by a Markov process; the Markov chains at different
nodes evolve independently, but in anenvironmentspecified by
the collision probabilityp for any transmission attempt. The
parameterp is a constant derived from themeantransmission
probability in the associated Markov chains. This formulation
leads to a fixed point equation forp. Note that the model is
analogous to mean-field models in statistical physics; the only
interaction between the Markov processes at different nodes
is through the parameterp, which represents a mean value of
the environment. It is not a goal in [3] to provide a rigorous
justification of the mean-field assumption. The assumption
is justified through simulations, which show that the model
predictions are quite accurate.

Several subsequent studies have built on the work of
Bianchi. In [7], the authors obtain similar fixed point equa-
tions using the same decoupling assumption but without the
Markovian assumptions of Bianchi; extensions of this fixed
point formulation are studied in [8].† In [6], the authors present
an approximate delay analysis based on Bianchi’s model, and
also extend the model to account for channel errors.

More recently, several works have evaluated the perfor-
mance of EDCF, an earlier version of EDCA (see [14]). Most
of these have employed simulation [9], [10], [11], [12]. An
exception is [13], where the authors use an externsion of
Bianchi’s model to analyze the performance of IEEE 802.11e
MAC protocol.

Our approach differs fundamentally from the work de-
scribed above in that we do not make the decoupling assump-
tion introduced by Bianchi, and common to all of them. In-
stead, starting from a Markov chain description that explicitly
takes into account the interactions between stations, we show
that in a large system, namely one with a large number of sta-
tions, the Markov chain converges to atypical state. Thus, one
can approximate the collision probability seen by any single
station by that seen in the typical state. Our analysis therefore
provides a rigorous justification for Bianchi’s model, which
has been the basis of much subsequent work. In addition,
it provides an alternative approach to performance analysis
of MAC protocols; performance measures of interest can be
derived directly from analysis of the typical state. We validate
this approach by showing that the performance predictions thus
obtained are close to those seen in simulations, both for the

†In order to avoid confusion arising from the superficially similar ter-
minology, we emphasize that thefixed pointswe talk of in this work are
different from the fixed points in [3], [7], [8]. Their fixed points are for the1-
dimensional coupling parameterp; our fixed points are for then-dimensional
state descriptor in a joint Markovian representation of theback-off stages at
all n stations. The details are provided in the next section.



IEEE 802.11 DCF and IEEE 802.11e EDCA protocols.
Finally, we point out that we focus on DCF and EDCA

protocols in this paper because they are likely to be the two
most widely deployed wireless MAC protocols in the near
future; however, we do not specifically advocate their use.
Several works (see, for example, [19], [20], [21], and the
references therein) have identified the limitations of these
protocols, and proposed alternative MAC protcols that can
provide better performance. The techniques developed in this
paper are very general, and can be applied to evaluate the
performance of these alternative MAC protocols as well.

III. PERFORMANCEEVALUATION OF IEEE 802.11 DCF

In this section, we present a performance analysis of DCF.
We start with a description of our model.

A. The Model

We consider a wireless LAN withn stations employing the
IEEE 802.11 DCF. Every station can hear every other station in
the network, i.e., there are no hidden stations. Our discussion
covers bothad hoc networks, where there is no central access
point (AP) through which all the traffic must pass, as well
as intrastructure based networks, where an AP connects the
wireless network with the wired infrastructure. In order to
simplify the analysis, we assume, in common with most
related work, that all stations always have a packet to send.
The throughput obtained under such saturation conditions is
commonly referred to as thesaturation throughput. In some
cases (see, for example, [22]), it can be shown that the queues
at all the nodes are stable if the arrival rate at each node is
less than the saturation throughput.

We make the following additional assumptions:

• (A1) The back-off durations are geometrically dis-
tributed, i.e., when a station is in back-off stagei, it makes
a transmission attempt in the next slot with a probability
pi. In order to maintain the same average waiting time as
in the IEEE 802.11 DCF, we setpi = 2

Wi+1 , whereWi

is the contention window size in back-off stagei.
• (A2) The back-off stage is reset to0 only after a

successful transmission, i.e., the retry count limit, as
defined in Section II-A, is infinite. This assumption is not
necessary for our analysis, but simplifies the exposition
considerably. We note that such an assumption would
in most cases result in a slight over-estimation of the
saturation throughput.

All stations use the same back-off parameters. There are
M + 1 back-off stages, labeled0 to M . We adopt a discrete
time model indexed by the slot numbert. To avoid confusion,
note that the term “slot” in our usage refers to a different
quantity from the slot in the IEEE 802.11 protocol description.
We use the term to denote the time period at the end of which
stations may modify their back-off counters. In particular, the
duration of a slot is not a fixed physical layer parameter,
but varies depending on whether it represents an idle slot,
a successful transmission or a collision. We shall denote the
components of a d-dimensional vectorx by (x0, x1, ..., xd−1).

The state of the system at timet can be represented by
a vectorXn(t) = (Xn0(t), ..., XnM (t)) denoting the number
of stations in each of the back-off stages0 throughM . It is
easy to see thatXn(t), t = 0, 1, . . . forms an irreducible and
aperiodic Markov chain on the state space

Sn ,

{

x ∈ Z
M+1 :

M
∑

i=0

xi = n; xi ≥ 0 for all i

}

.

In principle, one could solve for the stationary distribution
of Xn(t) and thereby obtain parameters of interest about the
system. However, the number of states,nM+1, is too large
to make this feasible for systems of practical interest. The
key insight we provide in this paper is that, whenn is large
(and exact computation expensive), the Markov chainXn(t)
stays close to what we call atypical state. Moreover, accurate
estimates of various parameters such as throughput can be
obtained by assuming thatXn(t) is in this typical state at all
times.

We remark for purposes of comparison that Bianchi [3]
models the system as a Markov chain with (typically) an even
larger state space of size(M +1)n by considering the back-off
stage at each station. The analysis is simplified by replacing
this n-dimensional Markov chain byn 1-dimensional Markov
chains (with M+1 states each) which areassumedto be con-
ditionally independent, conditional on the collision probability
p. We do not make any such independence assumptions.

We now proceed with the analysis of the Markov chain
Xn(t). Let us look at the expected change inXn(t) over one
time slot. Forx(n) ∈ Sn, let

f (n)(x(n)) , E{Xn(t + 1) − Xn(t)|Xn(t) = x(n)}

=
∑

l:x(n)+l∈Sn

lP
(n)
l (x(n)),

where P
(n)
l (x(n)) is the probability of making a transition

from x(n) to x(n) + l over one time slot. We now compute
f

(n)
i (x(n)) for i ∈ {0, 1, ..., M}.

First consideri = 0. Let I(x(n)) ,
∏M

i=0(1−pi)
x
(n)
i , where

pi denotes the transmission probability for a station in back-
off stagei. Note thatI(x(n)) is the probability of an idle slot
when the system is in statex(n). The following events can
result in a change in the number of stations in back-off stage
0:

• A successful transmission by a station in back-off stagei,
i ∈ {1, 2, ..., M}, resulting in an increase in the number
of stations in back-off stage0.

• An unsuccessful transmission attempt by one or more
stations in back-off stage0, resulting in a decrease in the
number of stations in back-off stage0.

For the former event to occur, the station itself must transmit
and no other station in the network should transmit; this has
probability pi

1−pi
I(x(n)). Noting that there arex(n)

i stations in
the back-off stagei to choose from, and summing overi, we



obtain
M
∑

i=1

x
(n)
i pi

I(x(n))

1 − pi

(1)

to be the expected increase in the number of stations in back-
off stage0 due to successful transmissions by stations in other
back-off stages. Likewise, we find

x
(n)
0 p0

(

1 −
I(x(n))

1 − p0

)

(2)

to be the expected decrease in the number of stations in
back-off stage0 due to unsuccessful transmission attempts by
stations in back-off stage0. Combining Eqs.(1) and (2), we
obtain

f
(n)
0 (x(n)) =

M
∑

i=0

x
(n)
i pi

I(x(n))

1 − pi

− x
(n)
0 p0. (3)

Next, let i ∈ {1, 2, ..., M − 1}. We now need to consider the
following events:

• A transmission attempt by a station in back-off stagei.
• An unsuccessful attempt by a station in back-off stage

i − 1.

A station in back-off stagei attempts to transmit with proba-
bility pi, following which, it either moves to back-off stage0
(successful transmission) or to back-off stagei+1 (collision).
Thus, the expected decrease in the number of stations in back-
off stagei at time t is

x
(n)
i pi. (4)

A station in back-off stagei − 1 transmits with probability
pi−1 and moves to back-off stagei if it suffers a collision,
i.e., if one or more others station in the network also transmit,
which happens with probability

(

1 − I(x(n))
1−pi−1

)

. Thus,

x
(n)
i−1pi−1

(

1 −
I(x(n))

1 − pi−1

)

. (5)

is the expected increase in the number of stations in back-off
stagei due to unsuccessful transmission attempts by stations
in back-off stagei− 1. Combining Eqs.(4) and (5), we obtain

f
(n)
i (x(n)) = x

(n)
i−1pi−1

(

1 −
I(x(n))

1 − pi−1

)

− x
(n)
i pi (6)

for i ∈ {1, 2, ..., M − 1}.
Finally, let i = M . In this case, we need to consider the

following events:

• A successful transmission attempt by a station in back-off
stageM .

• An unsuccessful transmission attempt by a station in
back-off stageM − 1.

A station in back-off stageM transmits with probabilitypM

and, if no other station in the network transmits, an event of
probability I(x(n))

1−pM
, then the station moves to back-off stage

0; otherwise it stays in the back-off stageM . The expected
decrease in the number of stations in back-off stageM at time

t due to a successful transmission is thus:

x
(n)
M pM

I(x(n))

1 − pM

. (7)

A station in back-off stageM −1 transmits with a probability
pM−1 and, if at least one other station in the network also

transmits, an event of probability
(

1 − I(x(n))
1−pM−1

)

, then the
station enters into back-off stageM . The expected increase
in the number of stations in back-off stageM at time t due
to collisions is thus

x
(n)
M−1pM−1

(

1 −
I(x(n))

1 − pM−1

)

. (8)

Combining Eqs.(7) and (8), we obtain

f
(n)
M (x(n)) = x

(n)
M−1pM−1

(

1 −
I(x(n))

1 − pM−1

)

−x
(n)
M pM

I(x(n))

1 − pm

.

(9)

Collecting Eqs.(3), (6), and (9), at one place, we have

f
(n)
0 (x(n)) =

M
∑

i=0

x
(n)
i pi

I(x(n))

1 − pi

− x
(n)
0 p0, (10)

f
(n)
i (x(n)) = x

(n)
i−1pi−1

(

1 −
I(x(n))

1 − pi−1

)

− x
(n)
i pi, 0 < i < M,

(11)

f
(n)
M (x(n)) = x

(n)
M−1pM−1

(

1 −
I(x(n))

1 − pM−1

)

− x
(n)
M pM

I(x(n))

1 − pM

.

(12)

Let

Bn , {x ∈ R
M+1 :

M
∑

i=0

xi = n; xi ≥ 0},

and E , Bn/n. Let f (n) : R
M+1 → R

M+1 be the function
with componentsf (n)

i specified by Eqs.(3), (6), and (9). It is
essentially the one-step drift of the Markov chainXn(t). We
have so far defined the functionf (n)(x) for x ∈ Sn only; we
now extend the definition off (n) to x ∈ Bn by using the
same equations on the extended domain.

In Appendix A, we analyze an appropriately scaled version,
Yn(t) = Xn(⌊nt⌋)/n, of the processXn(t) for n = 1, 2, ...,
and show that for allt ≥ 0, it satisfies:

lim
n→∞

sup
0≤s≤t

‖Yn(s) − Y (s)‖ = 0 a.s.,

where Y (t) is a deterministic process given by the unique
solution of the differential equation

dY (t)

dt
= F (Y (t)) for t ≥ 0,

with initial condition y0 = limn→∞ Yn(0) = X(0)/n, where
F (x) = limn→∞ f (n)(nx) for x ∈ E. In words, we prove a
functional ‘law of large numbers’ limit theorem for the process
Yn(·). We also show that the error involved in approximating
Xn(t) with nY (t/n) is (almost surely)O(nβ) for all β > 1/2.

In Appendix B, we show that the equationF (x) = 0



has a unique solution IfM = 1, we can further show
that Y (t) converges tox from all possible initial states. We
conjecture that such a result holds for allM (as observed in
our simulations).

In view of the results in Appendix A and B, we can expect
that, for large t, the processXn(t) remains close to the
unique pointx(n) ∈ Bn satisfying f (n)(x(n)) = 0, which
will henceforth be referred to as the equilibrium point of the
system.

B. Throughput Calculation

We now estimate the throughput of IEEE 802.11 DCF,
assuming that the system stays close to its equilibirium point
x(n) at all times. Let

• T , The normalized throughput of the system.
• Pc , The conditional collision probability.
• I , The probability of an idle slot in statex(n).
• P , The payload duration‡.
• Tc , The average time the channel is sensed busy during

a collision.
• Ts , The average time the channel is sensed busy

because of a successful transmission.
• σ , The duration of an idle slot.

Note that some of the above defined quantities may vary
with n. For the sake of brevity, we do not make explicit this
dependence.

To calculate the throughput, observe that a station in back-
off stagei, transmits with a probabilitypi, and the transmission
is successful if no other station in the network transmits, an
event of probability

I

1 − pi

.

Since there arex(n)
i stations in back-off stagei, the probability

that a station in back-off stagei transmits successfully is

x
(n)
i pi

I

1 − pi

.

Summing over all possible back-off stages, we obtain the
probability of a successful transmission to be

M
∑

i=0

x
(n)
i pi

I

1 − pi

.

Since the probability that at least one station transmits ina
given slot is1 − I, we have

Pc = 1 −

∑M

i=0 x
(n)
i pi

I
1−pi

1 − I
(13)

The normalized throughput of the system can be expressed as

T =
Expected Payload duration per slot

Slot duration
. (14)

The expected payload duration per slot is(1 − I)(1 − Pc)P .
The expected duration of a slot is readily obtained considering

‡In this paper, we consider the payload duration to be fixed. Variable
payload duration can also be analyzed as in [3].

TABLE II

IEEE 802.11 DSSS PHY PARAMETER SET [23] AND OTHER

PARAMETERSUSED TO OBTAIN NUMERICAL RESULTS

PARAMETER VALUE

Basic Bit Rate (BBR) 1Mb/s
Bit Rate (BR) 11Mb/s

PHY Header (PH) 192 bits
MAC Header (MH) 272 bits

H PH/BBR + MH/BR
ACK 112/BR + PH/BBR
RTS 160/BR + PH/BBR
CTS 112/BR + PH/BBR

Propagation Delay (δ) 1µs
SIFS 10µs

Slot Time (σ) 20µs
DIFS 50µs

that, with a probabilityI a slot is idle; with a probability of
(1−I)(1−Pc) it contains a successful transmission, and with
a probability of(1−I)Pc it contains a collision. And plugging
this is Eq.(5),we obtain

T =
(1 − I)(1 − Pc)P

(1 − I)(1 − P )Ts + (1 − I)PcTc + Iσ
(15)

The values ofTc and Ts depend on the access mechanism
being used. Letδ be the propagation delay, then one can
readily obtain (for details, see [3])

T rts
s = RTS + CTS + H + P + ACK+

3SIFS + 4δ + DIFS

T rts
c = RTS + DIFS + δ

T bas
s = H + P + ACK + SIFS + 2δ + DIFS

T bas
c = H + P + DIFS + δ (16)

where T rts
c (correspondingly,T bas

c ) and T rts
s (correspond-

ingly, T bas
s ) represent theTc andTs values for the RTS/CTS

based access (correspondingly, basic access) mechanism, re-
spectively; the parametersRTS, CTS, H , ACK, DIFS, and
SIFS are all physical layer dependent. We will use the values
of these parameters as defined in the DSSS PHY (see Table
II).

C. Performance Comparison

We have performed extensive simulations with different
values ofM andW0. The simulation results match extremely
well with the numerical results obtained using our technique
and Bianchi’s model. The results for the RTS/CTS access
mechanism withM = 5 andW0 = 128 are shown in Figures
3-5. As is evident in these figures (error bars are barely
visible), the variation of results across various simulation runs
is quite small, thereby showing the high confidence level of
the simulation results. An interesting thing to note is that
although our technique and Bianchi’s model are fundamentally
different, they both result in (roughly) the same fixed point
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(in terms of Pc and I), and correspondingly, the estimates
of throughput obtained using the two techniques are very
close. Similar results have been obtained for the basic access
mechanism as well. An interesting special case (M = 1) under
which it is possible to calculate the exact throughput of DCF
is discussed in Appendix C.

IV. PERFORMANCEEVALUATION OF IEEE 802.11E EDCA

In this section, we analyze a simplified version of the IEEE
802.11e EDCA mechanism [18]. We start with a description
of our model.

A. The Model

We consider a WLAN withn stations using the IEEE
802.11e EDCA protocol. Each station can hear every other
station in the network, i.e., there are no hidden stations. Our
discussion covers bothad hoc networksand intrastructure
based networks. There areK different access categories (ACs),
each maintaining its own set of back-off parameters. Each
station maintains a separate transmit queue for each AC. All
queues are assumed to be saturated, i.e., they always have a
packet to send. We make the following additional assumptions:

• (A1) The back-off durations are geometrically distributed,
i.e., the type-k AC at a station, when in back-off stage
j, transmits with probabilitypk,j . In order to keep the
average waiting time the same as in IEEE 802.11e EDCA,
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Fig. 5. Throughput (T ) for M = 5 andW0 = 128.

we set pk,j = 2
Wk,j+1 , where Wk,j is the contention

window size of the type-k AC in back-off stagej.
• (A2) The back-off stage is reset to0 only after a success-

ful transmission.
• (A3) The minimum idle duration time is the same,

DIFS, for all ACs.
• (A4) The internal collision avoidance mechanism (see

section II-B) is not used. Note that the throughput under
this assumption provides a lower bound on the actual sat-
uration throughput. It is possible to carry out the analysis
without this assumption but, for ease of exposition, we
do not do so.

Let Mk + 1, Wk,0, denote the number of back-off stages and
minimum contention window size, respectively, for the type-k
AC, k ∈ {1, 2, ..., K}. Let Xk,j(t), j ∈ {0, 1, ..., Mk}, denote
the number of type-k ACs in back-off stagej at time t. Let

S , {(k, j) : k ∈ {1, 2, ..., K}; j ∈ {0, 1, ..., Mk}}

andM =
∑K

k=0(Mk + 1). ThenXn(t) = {Xk,j(t)}(k,j)∈S
,

represents the state of the system at timet. Clearly,Xn(t) for
t = 0, 1, ..., is a Markov chain on{0, 1, ..., n}M , and satisfies:

Mk
∑

j=0

Xk,j(t) = n for k ∈ {1, 2, ..., K}.

It can easily be shown that the Markov chainXn(t) is
irreducible (see [7, Theorem 8.1], for a similar proof). Since it
has only finitely many states, it follows thatXn(t) is positive
recurrent and possesses a stationary distribution. However, it
does not appear possible to obtain a closed form expression
for the stationary distribution ofXn(t). Therefore, we proceed
as in the previous section.

Let Z+ denote the set of non-negative integers, and let

Sn ,

{

x = {xk,j} : xk,j ∈ Z+,

Mk
∑

j=0

xk,j = n, 1 ≤ k ≤ K
}

.



We denote the one-step drift ofXn(t) by

f (n)(x(n)) , E{Xn(t + 1) − Xn(t)|Xn(t) = x(n)}

=
∑

l:x(n)+l∈Sn

lP
(n)
l (x(n)),

for x(n) ∈ Sn; hereP
(n)
l (x(n)) is the probability of making

a transition fromx(n) to x(n) + l over one time slot. Set
f (n)(x(n)) = 0 for x(n)∈/ Sn. Arguing as in Section III-A,
we obtain fork ∈ {1, 2, ..., K}:

f
(n)
k,0 (x(n)) =

Mk
∑

j=0

x
(n)
k,j pk,j

I(x(n))

1 − pk,j

− x
(n)
k,0pk,0,

f
(n)
k,j (x(n)) = x

(n)
k,j−1pk,j−1

(

1 −
I(x(n))

1 − pk,j−1

)

− x
(n)
k,j pk,j ,

j ∈ {1, 2, ..., Mk − 1},

f
(n)
k,Mk

(x(n)) = x
(n)
k,Mk−1pk,Mk−1

(

1 −
I(x(n))

1 − pk,Mk−1

)

− x
(n)
k,Mk

pk,Mk

I(x(n))

1 − pk,Mk

(17)

whereI(x(n)) =
∏

(k,j)∈S(1 − pk,j)
x
(n)
k,j . Let

Bn ,

{

x = {xk,j} :

Mk
∑

j=0

xk,j = n, 1 ≤ k ≤ K; xk,j ≥ 0
}

,

andE , Bn/n.
The results derived in Appendix A and B for IEEE 802.11

DCF can easily be extended to IEEE 802.11e EDCA. In
particular, under a similar set of assumptions, we can show
that the sequence of scaled stochastic processes

Yn(t) = Xn(⌊nt⌋)/n, for n = 1, 2, ...,

converges (in the same sense, and with the same error bounds,
as discussed for DCF earlier) to the deterministic limitY (t)
given by the unique solution of the differential equation

dY (t)

dt
= F (Y (t)) for t ≥ 0,

with initial condition y0 = limn→∞ Yn(0) = X(0)/n, and
F (x) = limn→∞ f (n)(nx) for x ∈ E. The only difference
from the DCF case earlier is thatf (n) is now given by Eq.(17)
instead of by Eqs.(3), (6), and (9)

Likewise, following the line of analysis in Appendix B, we
can also show that there is a unique pointx ∈ E that satisfies
F (x) = 0; we call it the equilibrium point. Using the intuition
that for larget, the processXn(t) should remain close to
the pointx(n) ∈ Bn satisfyingf (n)(x(n)) = 0, we obtain a
throughput analysis of IEEE 802.11e EDCA.

B. Throughput Calculation

We now estimate the throughput of IEEE 802.11e EDCA,
assuming that the system stays fixed at its equilibirium point
x(n) at all times. LetPc, I, and T be as defined in Section

III-B. Further, let

• T (k) , The normalized throughput of type-k AC.
• Pc(k) , The conditional collision probability for type-k

AC.
• T , The normalized throughput of the system.

Arguing as in the derivation of (13), fork ∈ {1, 2, ..., K}, we
obtain

Pc(k) = 1 −

∑Mk

j=0 xk,jpk,j
I

1−pk,j

1 − I

and

T (k) =
(1 − I)(1 − Pc(k))P

(1 − I)(1 − Pc)Ts + (1 − I)PcTc + Iσ
(18)

where

Pc = 1 −

∑

(k,j)∈S xk,jpk,j
I

1−pk,j

1 − I

SummingT (k) over k ∈ {1, 2, ..., K}, we obtain

T =

K
∑

k=0

(1 − I)(1 − Pc(k))P

(1 − I)(1 − Pc)Ts + (1 − I)PcTc + Iσ
(19)

Note that the values ofTs and Tc depend on the access
mechanism in use (see (16)).

C. Performance Comparison

In this section, we compare the throughput estimates ob-
tained using our technique with the ones obtained using
simulations. We consider the parameter values given in Table
II-B, with aCWmin = 128. We have performed extensive
simulations under three different settings:

• (A) AIFSN is set to{2, 2, 2, 2} and internal collision
resolution is disabled.

• (B) AIFSN is set to{2, 2, 2, 2} and internal collision
resolution is enabled.

• (C) AIFSN is set to{7, 3, 2, 2} and internal collision
resolution is enabled.

Note that the scenario considered in setting (A) is the one that
is captured by the analytical model. By comparing the results
obtained under settings (A) and (B), we can determine the
effect of internal collision resolution on the throughput of ACs.
Likewise, by comparing the results obtained under settings(B)
and (C), the effect of variableAIFS on the throughput of ACs
can be singled out.

The results are shown in Figures 6-10. Note that they-axis
is broken in Figures 8-10 in order to make the differences
between the curves more visible; the theoretical predictions
in these cases match the simulation results very closely.
Note that the error bars are barely visible, showing the high
confidence level of the simulation results. As expected, we
find that the throughput estimates obtained using our technique
match very well with the simulated results under setting (A).
Furthermore, with internal collision resolution enabled,the
aggregate throughput rises in setting (B) as expected, although
there is some decrease in the throughput of low priority ACs.
We also find that increasing theAIFS values of low priority
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Fig. 6. Throughput of ACBK for aCWmin = 128.

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Number of Nodes

T
hr

ou
gh

pu
t o

f A
C

_B
E

Simulation: with Int. Coll. Res. and AIFS = {7,3,2,2}
Error bars of length = 2 x Std. Deviation
Simulation: with Int. Coll. Res. and AIFS = {2,2,2,2}
Error bars of length = 2 x Std. Deviation
Simulation: w/o Int. Coll. Res. and AIFS = {2,2,2,2}
Error bars of length = 2 x Std. Deviation
Our Technique

Fig. 7. Throughput of ACBE for aCWmin = 128.

ACs in setting (C) results in a further improvement of the
aggregate throughput but that it reduces the throughputs of
low priority ACs nearly to zero. The inference to be drawn
is that differences in AIFS have a greater impact on service
differentiation than differences in congestion window sizes.
Moreover, the proposed values for AIFS in the IEEE 802.11e
EDCA protocol run the risk of starving, or being excessively
unfair, to low priority traffic classes. This aspect merits further
investigation. An interesting future research challenge would
be account for the different AIFS values of different ACs in the
analytical model. At present, accounting for the differentAIFS
values appears to be difficult in the Markovian framework that
we have developed in this paper.

V. CONCLUDING REMARKS

We studied the performance of contention based medium
access control (MAC) protocols. We developed a novel tech-
nique for estimating the throughput, and other parameters
of interest, of such protocols. Our technique is based on a
rigorous analysis of a Markovian framework developed in the
paper. The analysis shows that in a limiting regime of large
system sizes, the stochastic evolution of the back-off stages
at different stations converges to a deterministic evolution;
moreover, this deterministic process has a unique fixed point.
Thus, our analysis provides insight into the dynamics of the
MAC protocols, showing that they guide the system to a
typical operating point. This then allows us to obtain the
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Fig. 9. Throughput of ACVO for aCWmin = 128.

saturation throughput and other performance measures of
interest without having to calculate the stationary distribution
of the Markov chain, which would be infeasible for systems
of realistic size.

To the best of our knowledge, our technique for performance
analysis of MAC protocols is the first one of its kind with a
quantifiable accuracy. Our results provide a rigorous justifica-
tion for the decoupling approximation of Bianchi [3]. Finally,
although we focused on two representative MAC protcols
(IEEE 802.11 DCF and IEEE 802.11e EDCA), the techniques
developed in the paper are quite general and are applicable to
a wide variety of MAC protocols.

Our performance analysis is based on the assumption that
the system remains at its equilibrium point at all times. A
natural refinement is to consider fluctuations around this point,
which will typically be small. A mathematical framework
for studying such fluctuations is provided by the diffusion
approximation (a functional central limit theorem for the
Markov process). This is a topic for future research. Secondly,
we observed the importance of different AIFS values in
achieving service differentiation. It remains to extend our
analysis techniques to deal with this, and with other forms
of heterogeneity. Finally, we have assumed throughout thatall
nodes can hear each other; accounting for the hidden node
problem remains an important research challenge.
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APPENDIX A (ADDITIONAL MATERIAL)

Recall the setting of Section III-A. For eachn, let En , {k/n :
k ∈ Sn}, and consider the family of stochastic process{Yn(t)}
defined as follows:

Yn(t) ,
Xn(⌊nt⌋)

n
. (20)

Observe that each for eachn, Yn(t) is just a scaled version (where
the scaling is both in time as well as magnitude) ofXn(t). We also
define another family of stochastic process{Zn(t)} as follows:

Zn(t) ,
Xn(N(nt))

n
, (21)

whereN(t) is a Poisson process with unit intensity, independent of
the sequence of Markov chains{Xn(t)}. Observe that{Zn(t)} is
a sequence of jump Markov process onEn, with transition rates
(intensities)q(n)

k,k+l/n = nP
(n)
l (nk), for k ∈ En.

We will need the following assumption:

Assumption 1. There exists a constantc0 < ∞ such thatp(n)
0 =

c0/n for all n.

Remark 1. We note that in IEEE 802.11 standard,p
(n)
0 and M are

both fixed, independent of the number of nodes in the network.We
allow for the p

(n)
0 to scale withn to avoid trivialites; for example,

if M and p
(n)
0 were both kept fixed for alln, then asn → ∞ the

throughput would drop to zero and all the nodes would eventually be
in the back-off stageM with probability1. The above choice ofp(n)

0

precludes this possibility even whenM does not scale withn. Finally,
we would like to point out that most of our results will continue to
hold as long asp(n)

0 = Θ(1/n).

Remark 2. Note that the way transmission probabilities are chosen
in the IEEE 802.11 DCF, Assumption 1 would imply that there exists
finite positive constantsc1, ..., cM satisfying:

lim
n→∞

np
(n)
i = ci for i ∈ {1, ..., M},

where
c0 = 2c1 = · · · = 2McM .



Furthermore, we have

|np
(n)
i − ci| ≤ K0 < ∞ for i = 0, 1, 2, ..., M.

We need some preparation before we can state our main result.
Henceforth, we use‖x‖ to denote theL2 norm ofx. For x(n) ∈ En,
let

I(x(n)) ,

M
Y

i=0

(1 − p
(n)
i )x(n)

.

Strictly speaking, the functionI is not really the same for differentn;
for the sake of brevity, we will continue to follow the above notation.
We start with the following simple result:

Lemma 1. Considerx(n) ∈ En and x(m) ∈ Em, with ‖x(n) −
x(m)‖ < 1/cM . Suppose Assumption 1 holds. Then,

?

?

?
I(nx(n)) − I(mx(m))

?

?

?
≤ 2c0M‖x(n) − x(m)‖,

whenevern and m are large enough.

Proof: Without loss of generality, supposem ≥ n. Using the
definition of I(x(n)), and observing thate−2c0 ≤ (1 − p

(n)
i )n ≤

(1 − p
(m)
i )m, we have forn large enough:

I(nx(n))

I(mx(m))
=

M
Y

i=0

(1 − p
(n)
i )nx

(n)
i

(1 − p
(m)
i )mx

(m)
i

≤
M
Y

i=0

(1 − p
(n)
i )nx

(n)
i

−nx
(m)
i

≤
M
Y

i=0

(1 − p
(n)
i )−n‖x(n)−x(m)‖

≤ (1 − p
(n)
0 )−Mn‖x(n)−x(m)‖

≤ e2c0M‖x(n)−x(m)‖.

Now we have
?

?

?
I(nx(n)) − I(mx(m))

?

?

?
=
?

?

?
I(nx(n))

?

?

?

?

?

?

?

1 − I(mx(m))

I(nx(n))

?

?

?

?

≤
?

?

?

?

1 − I(mx(m))

I(nx(n))

?

?

?

?

≤
?

?

?
1 − e−2c0M‖x(n)−x(m)‖

?

?

?

≤ 2c0M‖x(n) − x(m)‖,
proving the claim.

The following corollary is an easy consequence of the proof of
Lemma 1.

Corollary 1. Considerx(n) ∈ En and x(m) ∈ Em, with ‖x(n) −
x(m)‖ < 1/cM . Suppose Assumption 1 holds. Then,

?

?

?

?

?

I(nx(n))

1 − p
(n)
i

− I(mx(m))

1 − p
(m)
i

?

?

?

?

?

≤ 2c0M‖x(n) − x(m)‖,

i ∈ {0, 1, ..., M}, whenevern and m are large enough.

For each n, define a functionF (n)(x(n)) on En by setting
F (n)(x(n)) = f (n)(nx(n)). We have the following result:

Lemma 2. Suppose Assumption 1 holds. Then the sequence{F (n)}
is uniformly bounded, i.e., there exists a constantC < ∞ such that
‖F (n)(x(n))‖ ≤ C for all x(n) ∈ En and for all n. Moreover, for
x(m) ∈ Em, x(n) ∈ En, and m, n large enough, we have

‖F (n)(x(n)) − F (m)(x(m))‖ ≤ η(c0, M)‖x(n) − x(m)‖,

whenever
‖x(n) − x(m)‖ < 1/c0M,

whereη(c0, M) is a constant that depends only onc0 and M .

Proof: To prove that{F (n)} is uniformly bounded, observe that
in view of Assumption 1, we have

|F (n)
0 (x(n))| ≤ c0,

|F (n)
i (x(n))| ≤ c0 for i ∈ {1, ..., M − 1},

|F (n)
M (x(n))| ≤ c0,

for all n. Thus, we have‖F (n)(x(n))‖ ≤ PM
i=0 |F

(n)
i (x(n))| ≤

c0(M + 1) for all x(n) ∈ En and for alln.
Now observe that|nx

(n)
i p

(n)
i −mx

(m)
i p

(m)
i | ≤ c0‖x(n) − x(m)‖.

Using Eqs. (10), (11), and (12), along with Corollary 1, for1 ≤ i ≤
M − 1 we have

|F (n)
i (x(n)) − F

(m)
i (x(m))| ≤ |nx

(n)
i−1p

(n)
i−1 − mx

(m)
i−1p

(m)
i−1|

+ |nx
(n)
i p

(n)
i − mx

(m)
i p

(m)
i |

+

?

?

?

?

?

nx
(n)
i−1p

(n)
i−1I

(n)(x(n))

1 − p
(n)
i−1

− mx
(m)
i−1p

(m)
i−1I

(m)(x(m))

1 − p
(m)
i−1

?

?

?

?

?

≤ 2c0‖x(n) − x(m)‖ +
I(n)(x(n))

1 − p
(n)
i−1

|nx
(n)
i−1p

(n)
i−1 − mx

(m)
i−1p

(m)
i−1|

+ mx
(m)
i−1p

(m)
i−1

?

?

?

?

?

I(n)(x(n))

1 − p
(n)
i−1

− I(m)(x(m))

1 − p
(m)
i−1

?

?

?

?

?

≤ 2c0‖x(n) − x(m)‖ + c0‖x(n) − x(m)‖ + 2c2
0M‖x(n) − x(m)‖

= (3c0 + 2c2
0M)‖x(n) − x(m)‖

Similarly, it can be shown that|F (n)
0 (x(n)) − F

(m)
0 (x(m))| ≤

(2c0 + c0M + 2c2
0M + 2c2

0M
2)‖x(n) − x(m)‖, and |F (n)

M (x(n)) −
F

(m)
M (x(m))| ≤ (3c0 + 4c2

0M)‖x(n) − x(m)‖. Now since

‖F (n)(x(n)) − F (m)(x(m))‖ ≤
M
X

i=0

|F (n)
i (x(n)) − F

(m)
i (x(m))|,

the result follows by takingη(c0, M) = 2c0 + 4c0M + 4c2
0M +

4c2
0M

2.

Remark 3. The above lemma implies that for a Cauchy sequence
{x(n)} in E, the sequence{Fn(x(n))} is Cauchy inR

M+1.

Define a functionF (x) on E as follows:

F (x) = lim
n→∞

F (n)(x(n)), (22)

where{x(n)} is any sequence inE satisfyingx(n) ∈ En andx(n) →
x. The existence of the limit in Eq. (22) follows from Remark 3.To
prove the uniqueness, let{x(n)} and{y(n)} be two sequences inE,
satisfying:

x(n), y(n) ∈ En, and lim
n→∞

x(n) = lim
n→∞

y(n) = x.

Then for n large enough, we would have‖y(n) − x(n)‖ ≤ ǫ <
1/c0M , which, in view of Lemma 2, implies that‖F (n)(x(n)) −
F (n)(y(n))‖ ≤ η(c0, M)ǫ, showing thatlimn→∞ F (n)(x(n)) =
limn→∞ F (n)(y(n)).

Remark 4. The definition ofF (x) and Lemma 2 imply thatF (x) ≤
C for all x ∈ E.

Remark 5. An alternative, but equivalent, way of defining the
function F could be to first define for alln ≥ 1 a function F̂ (n)

on E by settingF̂ (n)(x) = f (n)(nx), for x ∈ E, and then takeF



as the pointwise limit of the sequence of functionsF̂ (n)(x).

The following result is a direct consequence of Lemma 2, the
definition of F (x), and the boundedness ofF (x) (see Remark 4).

Lemma 3. Suppose Assumption 1 holds. Then the fucntionF (x) is
Lipschitz continuous, i.e., there exists a constantK < ∞ such that
for all x, y ∈ E, we have

‖F (x) − F (y)‖ ≤ K‖x − y‖.

Next, we obtain a closed form expression for the functionF (x):

Lemma 4. Suppose Assumption 1 holds. Then the functionF (x) =
(F0(x), ..., FM (x)), defined by Eq.(22), satisfies:

F0(x) =

M
X

i=0

cixiL(x) − x0c0, (23)

Fi(x) = xi−1ci−1(1 − L(x)) − xici, for i = 1, ..., M − 1, (24)

FM (x) = xM−1cM−1(1 − L(x)) − xMcML(x), (25)

where ci = limn→∞np
(n)
i for i ∈ {0, ..., M}, and L(x) =

QM
i=0 e−cixi .

Proof: Considerx ∈ E, with rational co-ordinates, i.e.,xi =
pi/qi for i ∈ {0, 1, ..., M}, wherepi, qi are nonnegative integers.
Let q = LCM(q0, ..., qM ), whereLCM denotes the least commom
multiple. Observe thatx ∈ En for n = qk, where k ≥ 1 is an
integer. In view of the definition ofF (x), we have that

F (x) = limk→∞F (qk)(x) = limk→∞f (qk)(qkx),

which, in view of Eqs.(10)-(12) satisfies Eqs.(23)-(25). For an irra-
tional x ∈ E, the result now follows by appealing to the Lipschitz
continuity of F (x) (see Lemma 3).

The following result (which is similar to the notion of uniform
convergence) is now an easy consequence of the definition ofF (n),
Eqs.(10)-(12), and Lemma 4.

Lemma 5. Suppose Assumption 1 holds. Then there exists a sequence
{δn} of numbers satisfying:

sup
x(n)∈En

‖F (n)(x(n)) − F (x(n))‖ ≤ δn and limn→∞ δn = 0.

For l ∈ Z
M+1, let β

(n)
l , supx∈Sn

P
(n)
l (x). We have the

following result:

Lemma 6. For n ≥ 1, let gn =
P

l ‖l‖β
(n)
l . Then the sequence

{gn} is uniformly bounded, i.e., there exists a constantG < ∞ such
that gn ≤ G for all n ≥ 1.

Proof: Consider the set of statesS0 = {l : ‖l‖ ≤ M}. Observe
that for all l ∈ S0, we have|li| ≤ ‖l‖ ≤ M for i ∈ {0, 1, ..., M}.
Thus, li can take at most2M + 1 values, and therefore the total
number of states inS0 is no more than(2M + 1)M+1. Hence, we
have

X

l∈S0

‖l‖β(n)
l ≤ (2M + 1)M+1.

Now consider the set of statesSk = {l : kM ≤ ‖l‖ ≤ (k + 1)M}
for k ≥ 1. A similar argument as above shows that the number of
states inSk can be no more than(2kM + 1)M+1. Also, note that
for a jump of magnitude‖l‖ ≥ kM to occur, more than⌊kM/2⌋
nodes must transmit during the current slot; the probability of which
is smaller than

 

n

⌊kM/2⌋

!

“ c0

n

”⌊kM/2⌋

≤ (2c0)
⌊kM/2⌋

⌊kM/2⌋! , (26)

for ⌊kM/2⌋ ≤ n. Thus, we have

X

l∈Sk

‖l‖β(n)
l ≤ (2kM + 1)M+1 (2c0)

⌊kM/2⌋

⌊kM/2⌋! .

Let
D0 , (2M + 1)M+1,

and

Dk , (2kM + 1)M+1 (2c0)
⌊kM/2⌋

⌊kM/2⌋!
for k ≥ 1. Now observing thatβl(n) = 0 for all l such that‖l‖ > 2n,
we obtain

gn =
X

l:‖l‖≤2n

‖l‖β(n)
l

≤
∞
X

k=1

Dk , G < ∞,

proving the claim.
The following result follows directly from the proof of Lemma 6.

Corollary 2. For n ≥ 1, let hn =
P

l ‖l‖2β
(n)
l . Then the sequence

{hn} is uniformly bounded, i.e., there exists a constantH < ∞ such
that hn ≤ H for all n ≥ 1.

We are now ready to prove the almost sure convergence of the
sequence{Zn(t)} to a deterministic process.

Theorem 1. Suppose Assumption 1 holds,limn→∞ Zn(0) = z0,
and Z(t) satisfies:

Z(t) = z0 +

Z t

0

F (Z(s))ds for t ≥ 0.

Then for everyt ≥ 0, we have

lim
n→∞

sup
0≤s≤t

‖Zn(s) − Z(s)‖ = 0 a.s.

Proof: From Theorem 4.1 in [24, Chapter 6, pp. 327], we have
that the jump Markov processZn(t) with intensitiesq

(n)

k,k+l/n =

nP
(n)
l (nk) satisfies fort less than the first infinity of jumps:

Zn(t) = Zn(0) +
X

l

ln−1Yl

„

n

Z t

0

P
(n)
l (nZn(s))ds

«

, (27)

where Yl(u) are independent standard Poisson processes. Now for
eachl ∈ En, let Ŷl(u) , Yl(u)−u, thenŶl(u) is a Poisson process
centered at its mean. It is well known thatŶl(u) satisfies:

lim
n→∞

sup
0≤u≤v

n−1Ŷl(nu) = 0 a.s., for all v ≥ 0. (28)

Now observe that forx(n) ∈ En, we have

F(n)(x
(n)) = f (n)(nx(n)) =

X

l:nx(n)+l∈Sn

lP
(n)
l (nx(n)),

and therefore,

Zn(t) = Zn(0) +
X

l

ln−1Ŷl

„

n

Z t

0

P
(n)
l (nZn(s))ds

«

+

Z t

0

F (n)(Zn(s))ds. (29)

Let

ǫn(t) , sup
0≤s≤t

w

w

w

w

Zn(s) − Zn(0) −
Z u

0

F (n)(Zn(s))ds

w

w

w

w

,



then using Lemma 6, we obtain

ǫn(t) = sup
0≤s≤t

w

w

w

w

w

X

l

ln−1Ŷl

„

n

Z t

0

P
(n)
l (nZn(s))ds

«

w

w

w

w

w

≤
X

l

‖l‖n−1Ŷl

„

n

Z t

0

β
(n)
l ds

«

(30)

≤
X

l

‖l‖n−1(Yl(nβ
(n)
l t) + nβ

(n)
l t).

The strong law of large numbers (applied to the independent in-
crement processYl(.)), the uniform boundedness of the sequence
{gn} = {Pl ‖l‖β

(n)
l } (see Lemma 6), and the dominated conver-

gence theorem, together imply that

lim
n→∞

ǫn(t) ≤
X

l

lim
n→∞

‖l‖n−1Ŷl

„

n

Z t

0

β
(n)
l ds

«

= 0 a.s.

Using the Lipschitz continuity ofF and Lemma 5, we have fort ≥ 0
that

‖Zn(t) − Z(t)‖ ≤ ‖Zn(0) − z0‖ + ǫn(t)+
Z t

0

‖F (n)(Zn(s)) − F (Z(s))‖ds

≤ ‖Zn(0) − z0‖ + ǫn(t)+
Z t

0

(‖F (n)(Zn(s)) − F (Zn(s))‖ + ‖F (Zn(s)) − F (Z(s))‖)ds

≤ ‖Zn(0) − z0‖ + ǫn(t) + δnt +

Z t

0

K‖Zn(s) − Z(s)‖ds.

Appealing to Gronwall’s Inequality (see, for example, [24,Appendix
5, pp. 498]), it follows that

‖Zn(t) − Z(t)‖ ≤ (‖Zn(0) − z0‖ + ǫn(t) + δnt)eKt.

The result now follows by noting that

lim
n→∞

(‖Zn(0) − z0‖ + ǫn(t) + δnt) = 0.

Our goal is to prove a result similar to Theorem 1 for the sequence
of stochastic processes{Yn(t)}. We will do this by comparing
{Yn(t)} with {Zn(t)} as follows:

Theorem 2. Suppose Assumption 1 holds. Then the sequences
{Yn(t)} and {Zn(t)}, defined by Eqs.(20) and (21), respectively,
satisfy:

lim
n→∞

sup
0≤s≤t

‖Yn(s) − Zn(s)‖ = 0 a.s., for all t ≥ 0.

Proof: Let γn(t) , sup0≤s≤t ‖Yn(s) − Zn(s)‖. Note that

γn(t) = sup
0≤s≤t

‖Xn(N(ns)) − Xn([ns])‖.

We need to prove thatlimn→∞ γn(t) = 0 a.s. for all t ≥ 0. Let
β , 1/16 andα , 7/8. We have

P

“

γn(t) > n−β
”

≤ P

„

sup
0≤s≤t

|N(ns) − [ns]| > nα

«

+

P

„

γn(t) > n−β | sup
0≤s≤t

|N(ns) − [ns]| ≤ nα

«

≤ P

„

sup
0≤s≤t

|N(ns) − ns| > nα − 1

«

+

P

„

γn(t) > n−β | sup
0≤s≤t

|N(ns) − [ns]| ≤ nα

«

(31)

Now observing thatN(ns)−ns for s ≥ 0 is a martinagle, it follows

that |N(ns) − ns| for s ≥ 0 is a submartingale. Using theLp

maximum inequality forp = 4, we obtain

E

(

„

sup
0≤s≤t

|N(ns) − ns|
«4
)

≤
„

4

3

«4

E{(N(nt) − nt)4}.

Using the Markov Inequality, and observing thatE{(N(nt) −
nt)4} = nt + 2n2t2, we obtain

P

„

sup
0≤s≤t

|N(ns) − ns| > nα − 1

«

≤ E{(N(nt) − nt)4}
(nα − 1)4

≤
„

4

3

«4
nt + 2n2t2

(nα − 1)4

≤ 12n−3/2t2, (32)

for large enoughn. Now we claim that for allx ∈ Sn and allp ≥ 0,
the Markov chainXn(t) satisties:

P

„

sup
p≤q≤p+nα

‖Xn(q) − x‖ > n1−β |Xn(p) = x

«

≤ 2nαe−n1/8/16

(33)
To prove the above claim observe that for the event



sup
p≤q≤p+nα

‖Xn(q) − x‖ > n1−β

ff

to occur, there must be at least one time slot, out of thenα time slots
following thepth time slot, in whichn1−α−β/2 = n1/16/2 or more
nodes transmit. Since the probability of a node transmitting is no
bigger thanp

(n)
0 = c0/n, we have that the random variableN =

Bernoulli(n, c0/n) stochastically dominates the random variable
corresponding to the number of nodes that transmit during a time
slot. A standard application of Chernoff Bound shows that:

P(N > n1/16/2) ≤ 2e−n−1/8/16,

and Eq.(33) follows by using the union bound. Now observe that if


sup
0≤s≤t

|N(ns) − [ns]| ≤ nα

ff

occurs, then the total number of jumps upto timet of the processes
Zn(t) andYn(t) combined, is no bigger than2nt+nα. Appealing to
the union bound once again, we have that the second term in Eq.(31)
is no bigger than

2nα(2nt + nα)e−n1/8/16 ≤ t/n3/2, (34)

for large enoughn. Combining Eqs.(34) and (32), we obtain

P

“

γn(t) > n−β
”

≤ 12t2 + t

n3/2
,

for large enoughn, which implies that
∞
X

n=1

P

“

γn(t) > n−β
”

< ∞,

andlimn→∞ γn(t) = 0 a.s. now follows from the first Borel-Cantelli
Lemma.

Remark 6. Using theLp maximum inequality forp = 4γ, γ > 1,
and making appropriate changes to the proof of Theorem V-C, one
can show thatP

`

γn(t) > n−β i.o.
´

= 0 for all β < 1/2. Thus for
any β < 1/2, there exists a corresponding integerNβ < ∞ such
that γn(t) < n−β for n ≥ Nβ .

Combining the results in Theorems 1 and V-C, gives the desired
result:



Theorem 3. Suppose Assumption 1 holds,limn→∞ Yn(0) = y0, and
Y (t) satisfies:

Y (t) = y0 +

Z t

0

F (Y (s))ds for t ≥ 0. (35)

Then for everyt ≥ 0, we have

lim
n→∞

sup
0≤s≤t

‖Yn(s) − Y (s)‖ = 0 a.s.

Remark 7. The Lipschitz continuity ofF guarantees that for all
y0 ∈ E, there exists a unique solution to the initial value problem
(IVP) corresponding to Eq.(35).

Theorem 3 shows the convergence of{Yn(t)} to Y (t), over
bounded intervals of time. For finite, but largen, Remark 6 shows that
the difference betweenYn(t) andZn(t) is O(n−β) for all β < 1/2.
Next, we will characterize the error involved in approximating Zn(t)
with Y (t), following the approach given in [25].

SetW (n)
l (u) = n−1/2Ŷl(nu) and letVn(t) =

√
n(Zn(t)−X(t)).

Then, Eq.(29) can be rewritten as

Vn(t) =
X

l

lW
(n)
l

„
Z t

0

P
(n)
l (nZn(s))ds

«

+

Z t

0

√
n(F (n)(Zn(s)) − F (n)(X(s)))ds,

which suggests the following limiting equation:

V (t) ,
X

l

lWl

„
Z t

0

βl(X(s))ds

«

+

Z t

0

∂F (X(s))V (s)ds, (36)

where βl(x) = limn→∞ P
(n)
l (nx(n)) for x ∈ E, and {x(n)}

satisfies:

x(n) ∈ En for n = 1, 2, ..., and lim
n→∞

x(n) → x.

The existence and uniqueness of the above limit can easily beshown.
Let Φ be the solution of the matrix equation

∂

∂t
Φ(t, s) = ∂F (X(t))Φ(t, s), Φ(s, s) = I, (37)

and let

U(t) ,
X

l

lWl

„
Z t

0

βl(X(s))ds

«

.

Then, we have

V (t) =

Z t

0

Φ(t, s)dU(s).

Observe that sinceU(t) is Gaussian with zero mean,V (t) is Gaussian
with zero mean and covariance matrix

Cov(V (t), V (r)) =

Z t∧r

0

Φ(t, s)C(X(s))Φ(r, s)T ds,

where
C(x) =

X

l

llT βl(x).

From Corollary 2, we have thatsupx∈E C(x) ≤ H < ∞. ThusV (t)
is well defined.

Let DRM+1 [0,∞) = {x : [0,∞) →
R

M+1|for all t ≥ 0 lims→t+ x(s) = x(t) and lims→t− x(s) exists},
i.e., the space of right continuous functions having left limits.
Henceforth, we will use the symbol “⇒” to denote the convergence
in distribution in DRM+1 [0,∞), or equivalently, weak convergence
in P (DRM+1 [0,∞))- the set of Borel probability measures on
DRM+1 [0,∞). For the sake of definiteness, the metric used on
P (DRM+1 [0,∞)) can be assumed to be the Prohorov metric (see,

for example, [24, Chapter 3]); and the metric used onDRM+1 [0,∞)
could be the one specified in [24, Chapter 3] that induces the
Skorohod topology onDRM+1 [0,∞). For a detailed discussion of
these metrics and related concepts, we refer the reader to [26].

The following theorem characterizes the error involved in approx-
imating Zn(t) with X(t):

Theorem 4. LetVn(t) andV (t) be as above, thenVn(t) , V1n(t)+
V2n(t), whereV1n ⇒ V and V2n(t) = O(t/

√
n).

Remark 8. A consequence of the above result is that for largen,
Xn(t) can be well approximated bynY (t/n)+n1/2V (t/n). In view
of Remark 6, the error in such an approximation is almost surely
bounded byO(nβ) for any β > 1/2. Also, sinceV (t) has a finite
variance for all t, the error in approximatingXn(t) with nY (t/n)
is also almost surely bounded byO(nβ) for any β > 1/2.

Proof: We have

Vn(t) =
X

l

n−1/2lŶ
(n)

l

„

n

Z t

0

P
(n)
l (nZn(s))ds

«

+

Z t

0

√
n(F (n)(Zn(s)) − F (n)(X(s)))ds,

= V1n(t) + V2n(t),

where

V1n(t) ,
X

l

n−1/2lŶ
(n)

l

„

n

Z t

0

P
(n)
l (nZn(s))ds

«

+
Z t

0

∂F (X(s))Vn(s)ds +

Z t

0

√
n
“

F (X(s) + n−1/2Vn(s)) − F (X(s))
”

− ∂F (X(s))Vn(s)ds,

V2n(t) ,

Z t

0

√
n (F (X(s)) − Fn(X(s))) ds +

Z t

0

√
n
“

Fn(X(s) + n−1/2Vn(s)) − F (X(s) + n−1/2Vn(s))
”

ds.

Using Eqs.(10)-(12), Eqs.(23)-(25), and noting|np
(n)
i − ci| ≤ K0

(see Remark 2), it follows that there exists a constantK1 < ∞ such
that for all n large enough, we have

sup
x∈En

‖Fn(x) − F (x)‖ ≤ K1/n.

ThusV2n(t) ≤ 2K1t/
√

n = O(t/
√

n). Now turning toV2n(t), let

Un(t) ,
X

l

n−1/2lŶ
(n)

l

„

n

Z t

0

P
(n)
l (nZn(s))ds

«

,

and

en(t) ,

Z t

0

√
n (F (X(s)) − Fn(X(s))) ds +

Z t

0

√
n
“

Fn(X(s) + n−1/2Vn(s)) − F (X(s) + n−1/2Vn(s))
”

ds.

Using the results in [24, Chapter 4], it can be shown thatUn ⇒ U ,
with U as above. Using the Lipschitz continuity of F, we have

|Vn(t)| ≤ |Un(t)| +
Z t

0

K|Vn(s)|ds,

and hence (using Gronwall’s inequality)

sup
s≤t

|Vn(s)| ≤ sup
s≤t

|Un(s)|eMt.



SinceUn ⇒ U andU is continuous, it follows thatsups≤t Un(s) ⇒
sups≤t U(s), and hence theVn are stochastically bounded on
bounded intervals. Furthermore, it is easy to see from Eqs.(23)-(25)
that ∂F is continuous and bounded, which together with the fact
that Vn are stochastically bounded on bounded intervals implies that
en ⇒ 0. With Φ as above, we have

Vn(t) = Un(t) + en(t) +

Z t

0

Φ(t, s)∂F (X(s))(Un(t) + en(t))ds.

Finally, noting that the mappingJ : DRM+1 [0,∞) → DRM+1 [0,∞)
given by

Jθ(t) = θ(t) +

Z t

0

Φ(t, s)∂F (X(s))θ(s)ds

is continuous, the result follows from the continuous mapping theo-
rem (see, for example, [24, Chapter 3, pg. 103]).

APPENDIX B (ADDITIONAL MATERIAL)
In the previous section, we proved the convergence of the sequence

of stochastic processes{Yn(t)} to the deterministic processY (t)
satisfying:

Y (t) = Y (0) +

Z t

0

F (Y (s))ds for t ≥ 0,

whereF (x) is given by Eqs.(23)-(25). We would now like to further
investigate the behavior ofY (t) for large t. In particular, we would
like to determine whether the vector differential equation

d

dt
Y (t) = F (Y (t)), (38)

has an equilibrium point. Supposing it does, we would like tofind
out whether that equilibrium point is unique. If the equilibrium point
does exists and is unique, we would like to determine if the process
Y (t) started from an arbitrary initial state would converge to the
equilibrium point.

A. Existence of Equilibrium Points
In this section, we will prove that the differential equation specified

by (38) has at least one equilibrium point. The issue of the uniqueness
will be dealt with in the next section.

Define a functionf(x) on E as follows:

f(x) = x + F (x), for x ∈ E.

From Eqs.(23)-(25), it is easily seen that the functionf(x) mapsE
into itself. SinceE is a compact subset ofRM+1, Brouwer’s fixed
point theorem guarantees the existence of at least one fixed point of
f :

Proposition 1. The fuctionf has at least one fixed point inE.

Remark 9. Note that any fixed point off is an equilibrium point of
the vector differential equation specified by (38). To see this, suppose
x ∈ E is a fixed point off . Thenf(x) = x, implying thatF (x) = 0;
thus showing thatx is indeed an equilibrium point of the vector
differential equation specified by (38). Similarly, we havethat any
equilibrium point of the vector differential equation specified by (38)
is a fixed point off .

B. Uniqueness of Equilibrium Point
We will now establish the uniqueness of the equilibrium point:

Proposition 2. The vector differential equation specified by (38) has
a unique equilibrium point.

Proof: Let us suppose that the vector differential equation
specified by (38), has more than one equilibrium points. Thenthe
function f must have more than one fixed points. Letx and y be

two different fixed points off . Then, in view of Eqs.(23)-(25), we
have thatx must satisfy:

x0c0 =

M
X

i=0

cixiL(x), (39)

xici = xi−1ci−1(1 − L(x)), for i = 1, ..., M − 1, (40)

xMcML(x) = xM−1cM−1(1 − L(x)), (41)

and y must satisfy a similar set of equations. Now the following
possibilities can arise:

1) L(x) = L(y). In this case, we have xi
xi−1

= yi
yi−1

for all

i ∈ {1, 2, ..., M}. Since
PM

i=0 xi =
PM

i=0 yi = n, we have
x = y, which contradicts our initial assumption thatx 6= y.

2) L(x) > L(y). In this case, we have xi
xi−1

< yi
yi−1

for all
i ∈ {1, 2, ..., M}. If x0 ≤ y0, then xi < yi, for all i ∈
{1, 2, ..., M}. However, this is not possible since

PM
i=0 xi =

PM
i=0 yi = n. Hence, we must havex0 > y0. Now let

k , min
i∈{0,1,...,M}

{i : xi < yi}

Also, let ai , xi − yi. From the definition ofk, it follows
that ai ≥ 0 for i ∈ {0, 1, ..., k − 1}, and ai < 0 for i ∈
{k, k + 1, ..., M}. Since

PM
i=0 xi =

PM
i=0 yi = n, we have

PM
i=0 ai = 0. In particular, we have

k−1
X

i=0

ai = −
M
X

i=k

ai

Using the definition ofL(x) andL(y), we have that

L(x) =
M
Y

i=0

e−cixi =
M
Y

i=0

e−ci(yi+ai) = L(y)
M
Y

i=0

e−ciai

= L(y)
k−1
Y

i=0

e−ciai

M
Y

i=k

e−ciai

< L(y)e−ck−1
Pk−1

i=0 aie−ck
Pm

i=k ai

= L(y)e−(ck−1−ck)
Pk−1

i=0 ai

< L(y),

which contradicts our initial assumption thatL(x) > L(y).
3) L(x) < L(y). In this case also, one arrives at a contradiction,

like in the previous case.
Since one of the above cases must occur, we have proved thatf can
have at most one fixed point, and, in view of Proposition 2, theresult
follows.

C. Convergence to Equilibrium Point
In this section, we will investigate whether the processY (t),

started from any arbitrary initial state inE, converges to the unique
equilibrium point. We have the following result forM = 1:

Proposition 3. SupposeM = 1. Then the processY (t) started from
any arbitrary initial state inE, converges to the unique equilibrium
point ŷ satisfyingF (ŷ) = 0.

Proof: For M = 1, the set of equations given by (38) simplify
to

dy0(t)

dt
= c1y1(t)L(y) − y0(t)c0(1 − L(y)), (42)

dy1(t)

dt
= y0(t)c0(1 − L(y)) − y1(t)c1L(y). (43)

Now ŷ satisfies ŷ0c0(1 − L(ŷ)) = c1y1L(ŷ). Observe that for
all y(t) with y0(t) > ŷ0, we have dy0(t)

dt
= − dy1(t)

dt
< 0. Now



consider the Lyapunov functionλ(y(t)) = (y(t)− ŷ)T (y(t)− ŷ). It
is straightforward to show that

d

dt
λ(y(t)) = (y(t) − ŷ)T d

dt
y(t) < 0 for y(t) 6= ŷ,

which implies thatlimt→∞ y(t) = ŷ.

APPENDIX C (ADDITIONAL MATERIAL)

In this section we evaluate the throughput of DCF under a special
case, namelyM = 1. For M = 1, the stationary distribution of
the Markov chainXn(t) (see section III-A) can be computed, and
thereby, one can compute the exact throughput of DCF. We start with
the computation of the stationary distribution ofXn(t).

Computation of Stationary Distribution

Let Sn denote the set of the system states forM = 1, i.e,

Sn = {(x1, x2) : x1, x2 ∈ N; x1 + x2 = n; x1, x2 ≥ 0}
whereN denotes the set of integers. Observe thatSn containsn + 1
states. More precisely,Sn = {(0, n), (1, n − 1), ..., (n, 0)}. Let P i

S

be the steady state probability of the system being in state(i, n− i).
We now formulate the set of global balance equations that canbe
solved to obtain the stationary distribution ofXn(t).

For the sake of brevity, letpi , 1 − pi, i ∈ {0, 1, ..., M}. Now
consider the state(n, 0): The system leaves this state if there is a
collision, an event of probability

(1 − p0
n − np0p0

n−1).

The system can enter the state(n, 0) only from the state(n− 1, 1),
provided the station in back-off stage1 transmits successfully, an
event of probabilityp1p0

n. Balancing the probability flux entering
and leaving the state(n, 0), we have

P n
S (1 − p0

n − np0p0
n−1) = P n−1

S p1p0
n. (44)

Now consider the state(n−i, i): The system leaves this state if there
is a successful transmission by a station in back-off stage1, an event
of probability

ip1p1
i−1p0

n−i;

or if there is an unsuccessful transmission involving at least one
station in back-off stage0, an event of probability

1 − p0
n−i − (n − i)p0p0

n−i−1 + (n − i)p0p1
n−i−1(1 − p0

i).

The system can enter the state(n − i, i) from the state

• (n − i − 1, i + 1): Following a successful transmission by a
station in back-off stage1, an event of probability

(i + 1)p1p1
ip0

n−i−1;

• (n − i + 1, i − 1): Following a collision involving exactly one
station in back-off stage0, and one or more stations in back-off
stage1, an event of probability

(n − i + 1)p0p0
n−i(1 − p1

i−1);

• (n − j, j) for 0 ≤ j ≤ i − 2: Following a collision involving
i − j stations in back-off stage0, an event of probability

 

n − j

i − j

!

pi−j
0 p0

n−j .

Balancing the probability flux leaving and entering the state (n−i, i),

we get

P i
S(ip1p1

i−1p0
n−i + 1 − p0

n−i − (n − i)p0p0
n−i−1p1

i) =

P n−i−1
S (i + 1)p1p1

ip0
n−i−1 +

i−2
X

j=0

P n−j
S

 

n − j

i − j

!

pi−j
0 p0

n−j+

P n−i+1
S (n − i + 1)p0p0

n−i(1 − p1
i−1), 0 < i < n (45)

Note that the summation term in Eq.(45) exists only fori ≥ 2. Since
the sum of stationary probabilities across all the system states must
equal one, we have

n
X

i=0

P i
S = 1. (46)

Observe that we haven+1 equations inn+1 unknowns. We leave it
for the reader to verify that these equations are linearly independent,
and therefore the stationary probabilies can be obtained bysolving
these equations.

Throughput Calculation
Once we have the stationary probabilities, we can calculatethe

throughput and other parameters of interest about the system. For
k ∈ {0, 1, ..., M}, let:

• T k , The expected system throughput given the system is in
state(k, n − k).

• P k
c , The collision probability given the system is in state

(k, n − k).
• Ik , The probability of an idle slot given the system is in state

(k, n − k).
• T , The system throughput.
• Pc , The conditional collision probability.
• I , The probability of an idle slot.

Observe thatIk = (1−p0)
k(1−p1)

n−k. Arguing as in the derivation
of Eq.(13), we obtain

P k
c = 1 −

kp0
Ik

1−p0
+ (n − k)p1

Ik

1−p1

1 − Ik
(47)

and the expected system throughput when the system is in state
(k, n − k) is given by:

T k =
(1 − Ik)(1 − P k

c )P

(1 − Ik)(1 − P k
c )Ts + (1 − Ik)P k

c Tc + Ikσ
(48)

Since the probability that the system is in state(k, n − k) is given
by P k

S , we have

T =
n
X

k=0

P k
S T k (49)

Similarly, we haveI =
Pn

k=0 P k
S Ik andPc =

Pn
k=0 P k

SP k
c .

Performance Comparison
We now compare the exact results obtained by using the above

approach, with the numerical results obtained using our technique
and Bianchi’s model. Note that our technique relies on the fact
that for sufficiently larget, the processXn(t) stays close to the
equilibrium pointx(n) that satisfiesf (n)(x(n)) = 0. To demonstrate
the effectiveness of our technique, we compare the random sample
paths of the system with the deterministic trajectory obtained using:

x(k + 1) = x(k) + f (n)(x(k)),

for n = 50, with x(0) = (50, 0). As shown in Figure 11, not only
does the system converge to a neighborhood of the equilibrium point
for large t, but also the random trajectory of the system stays close
to the above deterministic trajectory at all times (see Theorem 3, for
a proof of such a result). Further, we see that the convergence to



a neighborhood of the equilibrium point is quite rapid (within 100
slots).
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Fig. 11. Random system trajectories converging to a neighborhood of the
equilibrium point.

TABLE III

THROUGHPUT:W0 = 32, M = 1.

Stations Throughput (T)
Exact BM OT

5 0.4664 0.4666 0.4669
15 0.4486 0.4484 0.4487
25 0.4229 0.4228 0.4230
55 0.3348 0.3348 0.3348
80 0.2543 0.2544 0.2543
100 0.1918 0.1918 0.1918

TABLE IV

CONDITIONAL COLLISION PROBABILITY: W0 = 32, M = 1.

Stations Conditional Coll. Probability (Pc)
Exact BM OT

5 0.1008 0.1022 0.1008
15 0.2713 0.2727 0.2717
25 0.3961 0.3970 0.3965
55 0.6528 0.6530 0.6531
80 0.7879 0.7880 0.7881
100 0.8611 0.8611 0.8612

Tables III-V show various parameters of interest obtained using the
exact analysis, Bianchi’s model (BM), and our technique (OT). The
results shown are for RTS/CTS access mechanism withW0 = 32. It
is clear that both our technique and Bianchi’s model are extremely
accurate even for smalln; and, as expected, their accuracy increases
asn increases.

TABLE V

IDLE SLOT PROBABILITY: W0 = 32, M = 1.

Stations Idle Slot Probability (I)
Exact BM OT

5 0.7692 0.7689 0.7681
15 0.5245 0.5244 0.5231
25 0.3782 0.3781 0.3771
55 0.1544 0.1544 0.1541
80 0.0743 0.0743 0.0742
100 0.0411 0.0411 0.0410


