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Abstract—We study the performance of contention based  In this paper we study the performance of contention based
medium access control (MAC) protocols. In particular, we po-  MAC protocols, with a specific emphasis on DCF and EDCA.

vide a simple and accurate method for estimating the througput ;
of IEEE 802 11 DCF and IEEE 802116 EDCA. Our method is There have been several previous works on the performance

based on a rigorous analysis of the Markov chain associated of DC_F; these_ include simulz’?\tion_ ;tudies [1], [2] as well as
with the back-off process at the contending nodes. Our restd analytical studies based on simplified models of the DCF [3],

provide new insights into the operation of the IEEE 802.11 [4], [5], [6], [7], [8]. Most of the analytical work is basecha
DCF and IEEE 802.1:!.8 E.DCA. Although We. focus on the IEEE decoup"ng approximation, first proposed by Bianchiin [Bg_:’
802.11 MAC protocol in this paper, the techniques developedre  hapceforth refer to the simplified model with this decouglin
applicable to a wide variety of contention based MAC protocts. . . "
assumption as Bianchi’'s model. More recently, there hase al
|. INTRODUCTION been several studies [9], [10], [11], [12], [13] evaluatithg
Wireless local area networks (WLANS) based on the IEEgerformance of EDCF, an earlier version of EDCA (see [14]).
802.11 standard are one of the fastest growing wirelessaccéd/ith the exception of [13], where the authors develop an
technologies in the world today. They provide an effectivextension of Bianchi’s model for analyzing EDCF, all these
means of achieving wireless data connectivity in homeslipubstudies are simuation based.
places and offices. The low-cost and high-speed WLANs The main contribution of this paper is a novel technique
can be integrated within the cellular coverage to provider estimating the throughput and other parameters of éster
hotspot coverage for high-speed data services, thus bagonif contention based MAC protocols. Our technigque is based
an integral part of next generation wireless communicati@m a rigorous analysis of a Markovian model of the system,
networks. and does not require the decoupling assumption of Bianchi.
The fundamental access mechanism of IEEE 802.11 MA@ fact, through the insights it yields into the system dynam
is the Distributed Coordination Function (DCF). The DCF is &s, it provides intuitive justification of Bianchi’s simifiting
carrier sense multiple access protocol with collision deace assumptions. The technique is easy to apply, and we use it to
(CSMA/CA). In addition to DCF, the IEEE 802.11 standar@nalyse the IEEE 802.11 DCF as well the EDCA protocol
also defines an optional Point Coordination Function (PCH, IEEE 802.11e. It can easily be applied to other MAC
which uses a central coordinator for assigning the trarsaoris protocols as well. We now briefly sketch the key ideas behind
right to stations, thus guaranteeing collision free actedke our approach.
shared wireless medium. While DCF has gained enormous® common feature of all contention based MAC protocols
popularity and been widely deployed, the use of PCF has baerthe concept oback-off stagdor a station. Stations can be
rather limited. in different back-off stages; the back-off stage for a etati
Whereas the IEEE 802.11 standard was targeted at bekpends on the number of collisions that it has encountered
effort service for data transfer, it is expected that in th&nce its last successful transmission (and, possiblgrdti
future WLANs will need to support a mix of QoS-sensitiveformation) and can be thought of as its estimate of the ctirren
multimedia and interactive traffic, in addition to data fiaf level of contention at all stations. Stations use this est#m
which is only sensitive to the throughput. Future WLANg$o control their access probabilities. The key observati@n
must therefore provide service differentiation in ordeb&tter make in this paper is that, when the number of stations is
support the diverse QoS requirements of applications ngnilarge, the Markov chain associated with the back-off preces
on them. A new standard, namely IEEE 802.11e, has been pstays close to what we call gypical state, which can be
posed for this purpose; it defines two new access mechanisotstained as the uniqueguilibriumpoint of the drift equations
EDCA (an enhancement to DCF), and HCF (an enhancemaessociated with the back-off process. We can obtain quite
to PCF). Of the two, EDCA appears to be gaining more earficcurate estimates of the throughput and other paramefters o
acceptance. interest by assuming the system to be in this typical state at



DIFS

all times.

We find that the accuracy of the throughput estimates ob-
tained using our technique is about the same as those otbtaine _ Sk B SIS
using Bianchi's analysis. But, in addition, we are able to -
provide some key insights about the system dynamics; in fact orFs
our results provide a justification for Bianchi’'s approxiioa, o ey —— —
which may be of separate interest.

The rest of the paper is organized as follows. We provide a
brief description of DCF and EDCA, and discuss some related Fig. 2. RTSICTS Access Method.
work, in the next section. Our technique for performance
evaluation is discussed in the context of DCF in sectiorAi.

extension of our technique in the context of EDCA is discdsse .
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proofs are deferred to Appendix A and B. problem (see, for example, [17]). A station that wishes twse
a DATA frame first senses the channel for a DIFS duration.
[I. DCF, EDCA, AND RELATED WORK If the channel is determined to be idle, then a RTS frame

In this section, we provide a brief description of DCF ané sent to the destination. Otherwise, the back-off alpamit
EDCA, and discuss some related work in the literature. We triggered after the end of the current transmission and a
start with a description of DCF. further DIFS interval. Upon successful transmission of the

RTS frame, the destination waits for a SIFS interval, and the
A. IEEE 802.11 DCF sends a CTS frame back to the source. The source can start

The DCF is a Carrier Sense Multiple Access with Colsending the DATA frame a SIFS interval after the reception
lision Avoidance (CSMA/CA) MAC protocol. The collision of the CTS frame. As in the basic access mechanism, upon
avoidance scheme of DCF is based on the binary exponengatcessful reception of the DATA frame, the destinatiortsvai
back-off (BEB) scheme [15], [16]. The DCF defines twdor a SIFS interval, and then sends an ACK frame back to the
access mechanisms for packet transmissidi@sic access source. A station that hears either the RTS, CTS, or DATA

mechanismandRTS/CTS access mechanism frame updates its NAV based on the Duration/ID field of the
o corresponding frame (see Figure 2). The four way handshake
ré prevents any DATA-DATA collisions that might occur due

to the hidden terminal problem. Since the RTS and CTS
frames are very small in size, the RTS/CTS access scheme
- significantly reduces bandwidth loss due to collisions.

oter NAV (DATA) Er— The back-off procedure is implemented by means of the
back-off counterand back-off stagesinitially, upon receiving
a new frame to be transmitted, the station starts in back-
off stage 0, with the contention window (W) size set
Fig. 1. Basic Access Method. to CW,,:n. Following an unsuccessful transmission attempt
(collision), the back-off stage is incremented byand the
In the basic access mechanism (see Figure 1), any statioontention window size is doubled until the maximum size
before transmitting a DATA frame, senses the channel forod the contention window(CW,,..., is reached, after which
duration of time equal to the Distributed Interframe Spadbe back-off stage and the contention window size remain
(DIFS) to check if it is idle. If the channel is determined ® bunchanged on subsequent collisions. The back-off windoev si
idle, the station starts the transmission of a DATA framd. Ahs well as the back-off stage are set back to their initialesl
stations which hear the transmission of the DATA frame sef CW,,;, and0 after a successful transmission attempt or if
their Network Allocation Vector (NAV) to the expected lehgt the retry countlimit for the frame is reached. At the start of
of the transmission, as indicated in the Duration/ID field afach back-off stage, the back-off counter is set to an intege
the DATA frame. This is called theirtual carrier sensing chosen uniformly at random between zero and the véaluié
mechanism. The channel is considered to be busy if either thfethe contention window for the current back-off stage. The
physical carrier sensing or the virtual carrier sensindgcaigs back-off counter is decremented Ibyn every subsequent slot,
so, and in that case, the station enters into a wait periad long as the channel is sensed idle in that slot. (Hereta slo
determined by the back-off procedure to be explained laté.an interval of fixed duration specified by the protocol.iIf
Upon successful reception of the DATA frame, the destimatidransmission by some other station is detected, then thiersta
station waits for a SIFS interval following the DATA frame freezes its back-off counter, and resumes its count fronrevhe
and then sends an ACK frame back to the source statibeft off after the end of the transmission plus an addigibn
indicating successful reception of the DATA frame. DIFS interval. When the back-off counter reachethe station

|
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transmits. C. Related Work

The scheme described above treats all stations equally. Theyne of the earliest analyses of the throughput of DCF
IEEE 802.11e task group (TGe) is working on an extensiqfias carried out in [4] using a greatly simplified back-off
to the current IEEE 802.11 standard in order to provid@odel, namely that the back-off counter value is geometri-
QoS in WLANS via service differentiation. We now describgg)ly distributed with constantparameterp, irrespective of
the enhanced distributed channel access (EDCA) mechanigqg current back-off stage of the station. A more realistic
which is an extension of the DCF mechanism, as specified{{pdel was proposed in the seminal paper of Bianchi [3].
the most recent draft [18] published by the TGe. Here, the evolution of the back-off stage at each node is

described by a Markov process; the Markov chains at difteren
B. IEEE 802.11e EDCA nodes evolve independently, but in @amvironmenspecified by
the collision probabilityp for any transmission attempt. The

The EDCA has been designed from the perspective parametep is a constant derived from theeantransmission
providing QoS in WLANSs. The notion of aaccess category probability in the associated Markov chains. This formiolat
(AC) is used to achieve service differentiation. The EDCAeads to a fixed point equation far Note that the model is
defines four different ACs, each maintaining its own channghalogous to mean-field models in statistical physics; tig o
access function (an enhanced variant of the DCF). Each Afieraction between the Markov processes at different siode
on a station contends for a transmission opportunity (TXOR) through the parameter, which represents a mean value of
with its own set of EDCA parameters. A TXOP is the intervahe environment. It is not a goal in [3] to provide a rigorous
of time when a station has the right to initiate transmissionjustification of the mean-field assumption. The assumption
The main differences between the EDCA and DCF are: s justified through simulations, which show that the model

1) The minimum specified idle duration time, called th@redictions are quite accurate. _
arbitration inter frame spacéAIFS), is not a constant _ Several subsequent studies have built on the work of
value (DIFS) as in the DCF. Each AC has its own valyBianchi. In [7], the authors obtain similar fixed point equa-

for the AIFS, denoted AIFS[AC], which is calculated adions using the same decoupling assumption but without the
follows: Markovian assumptions of Bianchi; extensions of this fixed

point formulation are studied in [8]In [6], the authors present
AIFS[AC] = SIFS + AIFSN[AC], an approximate delay analysis based on Bianchi’s model, and

where AIFSN denotes the arbitration inter frame spacdSC €xtend the model to account for channel errors.
number and is different for different ACs (see Table I). More recently, severgl Works_ have evaluated the perfor-
2) The contention window imitsC'Wiin* and CWinaz, mance of EDCF, an earlier version of EDCA (see [14]). Most

are different for different ACs (see Table ). of these have employed simulation [9], [10], [11], [12]. An
exception is [13], where the authors use an externsion of

The collisions between the contending channel access fugganchi's model to analyze the performance of IEEE 802.11e
tions within a station are resolved within the station sugac protocol.

that the data frames from the higher priority AC receives the oyr approach differs fundamentally from the work de-
TXOP and the data frames from the lower priority collidingcriped above in that we do not make the decoupling assump-
AC(s) behave as if there were an external collision on thgy introduced by Bianchi, and common to all of them. In-
wireless medium. The motivation is to provide low delay angeaq, starting from a Markov chain description that eiblic
high throuhput to multimedia and other real time traffic. &lotiakes into account the interactions between stations, we sh
that EDCA does not provide any service guanrantees, Rht in a large system, namely one with a large number of sta-
it establishes a probabilistic priority mechanism to @BC tions, the Markov chain converges taypical state. Thus, one
bandwidth based on the access categories. In section IV, W& approximate the collision probability seen by any ing|
develop and analyze a simple model for EDCA. station by that seen in the typical state. Our analysis fheze
provides a rigorous justification for Bianchi’'s model, wiic
has been the basis of much subsequent work. In addition,
it provides an alternative approach to performance arslysi

TABLE |
DEFAULT EDCA PARAMETER SET [18]

| Category (AC)/Info. | CWiin | CWmaa | AIFSN ]of MAC protocols; performance measures of interest can be
AC_BK/Background] aCW,.im aCW o 7 derived directly from analysis of the typical state. We date
AC_BE/Best Effort | aCW,im aCWoan 3 this approach by showing that the performance predictions t
A0 _VINideo aCWnin /2 aCWim D) obtained are close to those seen in simulations, both for the
AC_VONoice aCWinin/4 | aCWipnin/2 2

fIn order to avoid confusion arising from the superficiallyniar ter-
minology, we emphasize that tHfexed pointswe talk of in this work are
different from the fixed points in [3], [7], [8]. Their fixed jputs are for thel-
dimensional coupling parametgr our fixed points are for the-dimensional
state descriptor in a joint Markovian representation of ltaek-off stages at
*The parameteraCW,,.», andaCWn,q. depend on the physical layer. all n stations. The details are provided in the next section.



IEEE 802.11 DCF and IEEE 802.11e EDCA protocols. The state of the system at timecan be represented by
Finally, we point out that we focus on DCF and EDC/Aa vectorX, (t) = (Xno(t), ..., Xna(t)) denoting the number

protocols in this paper because they are likely to be the tvab stations in each of the back-off stageshrough M. It is

most widely deployed wireless MAC protocols in the neagasy to see thaX,(¢), t = 0,1,... forms an irreducible and

future; however, we do not specifically advocate their usaperiodic Markov chain on the state space

Several works (see, for example, [19], [20], [21], and the M

references therein) have identified the limitations of ¢hes ¢ 2 {I c ZM+1 . sz —n:a; > 0 for all Z} _

protocols, and proposed alternative MAC protcols that can =0

provide better performance. The techniques developedisn t

paper are very general, and can be applied to evaluate

Epf%)(rinciple, one could solve for the stationary distrilouti
performance of these alternative MAC protocols as well.

»(t) and thereby obtain parameters of interest about the
system. However, the number of stated/*!, is too large
I1l. PERFORMANCEEVALUATION OF IEEE 802.11 DCF to make this feasible for systems of practical interest. The
y insight we provide in this paper is that, whenis large
and exact computation expensive), the Markov chsip(t)
stays close to what we calltgpical state Moreover, accurate
A. The Model estimates of various parameters such as throughput can be
We consider a wireless LAN with stations employing the Obtained by assuming tha(, (¢) is in this typical state at all
IEEE 802.11 DCF. Every station can hear every other stationt/mes.
the network, i.e., there are no hidden stations. Our disouss \We remark for purposes of comparison that Bianchi [3]
covers bothad hoc networkswhere there is no central accessnodels the system as a Markov chain with (typically) an even
point (AP) through which all the traffic must pass, as wellrger state space of sizé/+1)" by considering the back-off
asintrastructure based networksvhere an AP connects thestage at each station. The analysis is simplified by repgacin
wireless network with the wired infrastructure. In order tehis n-dimensional Markov chain by 1-dimensional Markov
simplify the analysis, we assume, in common with moghains (with M+1 states each) which aassumedo be con-
related work, that all stations always have a packet to semfitionally independent, conditional on the collision pabiiity
The throughput obtained under such saturation COI’]ditiSI’lSpi, We do not make any such independence assumptions.
commonly referred to as theaturation throughputin some We now proceed with the analysis of the Markov chain

cases (see, for example, [22]), it can be shown that the gue .
at all the nodes are stable if the arrival rate at each nodegie (). Let us look at the expected changeXi(t) over one

less than the saturation throughput. titfe slot. Forz(™) € 5, let
We make the following additional assumptions: FM (@™ 2 EB{X,(t+1) — X, (1) X (t) = 2™}
o (A1) The back-off durations are geometrically dis- — Z lPl(”)(x(")),
tributed, i.e., when a station is in back-off stagé makes Lzt S,
a transmission attempt in the next slot with a probability
p;. In order to maintain the same average waiting time agere Pl(")(:c(”)) is the probability of making a transition

In this section, we present a performance analysis of D
We start with a description of our model.

in the IEEE 802.11 DCF, we sgi = 2, where; from (™ to (™ 41 over one time slot. We now compute
is the contention window size in back-off stage £ (2™ for i € {0,1, ..., M}.

) éﬁczc)es-l:c?jl ?raa%l;-;?sssié?]gei és rtiseetrett? Ogclin?ftlcie;]i? as First considet = 0. Let I(z(™)) £ H?io(l—p i)zgn)’ where
defined in Section 11-A is: in'fir'{ite This a)ésum tion is ’no ; denotes the transmission probability for a station in back-
2 TR P . off stagei. Note that/(z("™)) is the probability of an idle slot
necessary for our analysis, but simplifies the expositiq - ) 4
Ié]-\en the system is in statel™. The following events can

considerably. We note that such an assumption WOoUsult in a change in the number of stations in back-off stage

in most cases result in a slight over-estimation of tq?_
saturation throughput. '

All stations use the same back-off parameters. There are A successful transmission by a station in back-off stage

M + 1 back-off stages, labele@ito M. We adopt a discrete i € {1,2,..., M}, resulting in an increase in the number
time model indexed by the slot numberTo avoid confusion, of stations in back-off stage.

note that the term “slot” in our usage refers to a different , An unsuccessful transmission attempt by one or more
quantity from the slot in the IEEE 802.11 protocol descapti stations in back-off stag@, resulting in a decrease in the

We use the term to denote the time period at the end of which  nhumber of stations in back-off stage

stations may modify their back-off counters. In particuthe

duration of a slot is not a fixed physical layer parametefor the former event to occur, the station itself must trahsm
but varies depending on whether it represents an idle slahjd no other station in the network should transmit; this has
a successful transmission or a collision. We shall denage throbability 15—;11(x(”>). Noting that there areE") stations in
components of a d-dimensional vectoby (z¢, z1, ...,z4—1). the back-off stage to choose from, and summing overwe



obtain t due to a successful transmission is thus:

. ™) ()

Z ;" pi———= 1) 2y 1) @)

i=1 L=pi MEMY
to be the expected increase in the number of stations in bagkstation in back-off stagéd/ — 1 transmits with a probability
off stage0 due to successful transmissions by stations in othgg;_; and, if at least one other station in the network also

back-off stages. Likewise, we find transmits, an event of probabilitf1 — 117(;6);:)7)1)' then the
) I(z(™) station enters into back-off stagel. The expected increase
Zo Po (1 - q) (2) in the number of stations in back-off stagé at timet due
) ~ to collisions is thus
to be the expected decrease in the number of stations in (n)
back-off stage) due to unsuccessful transmission attempts by wg\}l)_lqu (1 _ M) ) (8)
stations in back-off stagé. Combining Egs.(1) and (2), we I —=py—
obtain Combining Egs.(7) and (8), we obtain
fé )(:c( )) = ;Iz( )pil(—ipi) - IE) )Po- (3 fz(\,{)(x(n)) = xg\,{),lprl <1 - #>_x%{)le(—7]@;

Next, _Ieti € {1,2,...,M — 1}. We now need to consider the Collecting Egs.(3), (6), and (9), at one place, we have
following events:

M n
« A transmission attempt by a station in back-off stage f{") ((n) — Z xl@pim _ I(()n)p(b (10)
« An unsuccessful attempt by a station in back-off stage e L —pi
()¢ (n)y — .(n) _ _ )
A station in back-off stage attempts to transmit with proba- [ @) = @isipia (1 1— pi1) o0 <i< M,
bility p;, following which, it either moves to back-off stage (11)
(successful transmission) or to back-off stagel (collision). )/ () () I(z(™) ) I(z(™)
Thus, the expected decrease in the number of stations in baf*jq (@) = xp_ 1 Pr— <1 - m) — M PMTT o
off stagei at timet is - (12)
Let
A station in back-off stage — 1 transmits with probability M
p;—1 and moves to back-off stageif it suffers a collision, Bp 2 {z € RM* . in = niz; >0},
i.e., if one or more others station in ltrr(]e(nq)etwork also trahsm v Z
which happens with probablht(l 1*1’1’*1)' Thus, andE £ B, /n. Let f(®) : RM+1 _, RM+1 pe the function
() I(z(™) with componentgfi(”) specified by Egs.(3), (6), and (9). It is
T;-1Pi-1 (1 - m) : (%) essentially the one-step drift of the Markov chaii, (¢). We

, _ _ , _ have so far defined the functiofi”) (z) for = € S,, only; we
is the expected increase in the number of stations in back-gf\, extend the definition of ™ to z € B, by using the

stagei due to unsuccessful transmission attempts by statio

: _ e 108%me equations on the extended domain.
in back-off stage — 1. Combining Eqgs.(4) and (5), we obtain . . .
In Appendix A, we analyze an appropriately scaled version,

fi(”)(x(")) _ ) (1 B I(z(™) > 2™y (6) Y. (t) = X,(|nt])/n, of the processX,,(¢) for n = 1,2, ...,

T;_1Pi—1 i Pi

I =pia and show that for alt > 0, it satisfies:
forie {1,2,....M —1}. lim sup ||Y.(s) =Y (s)|| =0 a.s.,
Finally, leti = M. In this case, we need to consider the "0 0%sst
following events: where Y (¢) is a deterministic process given by the unique
« A successful transmission attempt by a station in back-(ﬁ?lunon of the differential equation
stageM. ay(t) _
« An unsuccessful transmission attempt by a station in dt F(Y(#)) fort >0,

back-off stagel — 1. with initial condition y° = lim,,_.c Y, (0) = X (0)/n, where
A station in back-off stagé/ transmits with probabilitypy; F(z) = lim,—.. ™ (nz) for z € E. In words, we prove a
and, if no other station in the network transmits, an event #ifnctional ‘law of large numbers’ limit theorem for the pess
probability Il(f—;;{) then the station moves to back-off stagdx (). We also show that the error involved in approximating
0; otherwise it stays in the back-off stagd. The expected Xx(t) with nY (t/n) is (almost surely)(n”) for all 5 > 1/2.
decrease in the number of stations in back-off stafat time In Appendix B, we show that the equatiofi(z) = 0



TABLE I
IEEE 802.11 DSSS PHYARAMETER SET [23] AND OTHER
PARAMETERSUSED TO OBTAIN NUMERICAL RESULTS

has a unique solution If\M = 1, we can further show
that Y (¢) converges tar from all possible initial states. We
conjecture that such a result holds for afl (as observed in

our simulations). | PARAMETER | VALUE |
In view of the results in Appendix A and B, we can expect Basic Bit Rate (BBR) 1Mb/s
that, for larget, the processX, (¢) remains close to the Bit Rate (BR) 11Mb/s
unique pointz(™ ¢ B, satisfying ) (2(™) = 0, which PHY Header (PH) 192 bits
will henceforth be referred to as the equilibrium point oé th MAC Header (MH) 272 bits
system. H PH/BBR + MH/BR
. ACK 112/BR + PH/BBR
B. Throughput.CaIcuIatlon RTS 160/BR + PH/BBR
We now estimate the throughput of I.EEE 80211 DCF, CTS 112/BR + PH/BBR
2?3u$|r;ﬁ tr;;;hcla_esglstem stays close to its equilibiriunntpoi Propagation Delayd] 18
: SIFS 10us
« T £ The normalized throughput of the system. Slot Time @) 20us
« P, £ The conditional collision probability. DIES 50us
« I £ The probability of an idle slot in state™.
« P £ The payload duration
« T. £ The average time the channel is sensed busy during
a collision. that, with a probability/ a slot is idle; with a probability of
« T, £ The average time the channel is sensed buéy—I)(1— P.) it contains a successful transmission, and with
because of a successful transmission. a probability of(1—1I) P, it contains a collision. And plugging
« o £ The duration of an idle slot. this is Eq.(5),we obtain
Note that some of the above defined quantities may vary 1-0nH1-~Pr)P
with n. For the sake of brevity, we do not make explicit this T= (1-0)(1—-P)T,+ (1—1)P.T.+ Io (15)

dependence.

To calculate the throughput, observe that a station in ba
off stagei, transmits with a probability;, and the transmission
is successful if no other station in the network transmits,

'[J]e values ofT, and T, depend on the access mechanism
Cbeing used. Lety be the propagation delay, then one can
éeadily obtain (for details, see [3])

event of probability . 17" = RTS+CTS+ H+ P+ ACK+
— 3SIFS 445+ DIFS
_ o - T7%* = RTS + DIFS +§
Since ther_e are; stations in pack-off ;tagae the probal?ll|ty stas —H+ P+ ACK + SIFS + 25 + DIFS
that a station in back-off stagetransmits successfully is
T T’ = H+ P+ DIFS +§ (16)
(n)
Ti PiT Di where T7*s (correspondingly,7°%*) and T'*¢ (correspond-

ij]r%gly, Tb2%) represent thd,. and 7T values for the RTS/CTS
based access (correspondingly, basic access) mechamism, r
spectively; the parametefsl’S, CT'S, H, ACK, DIFS, and

Summing over all possible back-off stages, we obtain t
probability of a successful transmission to be

M () T SIF'S are all physical layer dependent. We will use the values
in Pig i of these parameters as defined in the DSSS PHY (see Table
i=0 ' ).
Since the probability that at least one station transmita in
given slot is1 — I, we have C. Performance Comparison
M CON We have performed extensive simulations with different
Po=1— =0 Pit—p; (13) Vvalues ofM andW;. The simulation results match extremely
L=1 well with the numerical results obtained using our techaiqu
The normalized throughput of the system can be expressedagd Bianchi’'s model. The results for the RTS/CTS access
Expected Payload duration per slot mechanism with\/ = 5 and W, = 128 are shown in Figures

= Slot duration (14) 3-5. As is evident in these figures (error bars are barely
. visible), the variation of results across various simolatiuns
The expected paquad durat|on_per slpt(ls— I_)(l N PC)_I_D' is quite small, thereby showing the high confidence level of
The expected duration of a slot is readily obtained conider the simulation results. An interesting thing to note is that
fIn this paper, we consider the payload duration to be fixediakke althoth our teChnique and Bianchi's model are fundam@ntal
payload duration can also be analyzed as in [3]. different, they both result in (roughly) the same fixed point
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Fig. 3. Success probabilityl (— P.) for M = 5 and W = 128. .
Fig. 5. ThroughputT) for M = 5 and Wy = 128.
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| we setpy; = W where W, ; is the contention
window size of the typé: AC in back-off stagej.
« (A2) The back-off stage is reset toonly after a success-
] ful transmission.
| e (A3) The minimum idle duration time is the same,
/ T — DIF'S, for all ACs.
o | o (A4) The internal collision avoidance mechanism (see
o » ® ® w % 20 section II-B) is not used. Note that the throughput under
pumeerortioces this assumption provides a lower bound on the actual sat-

Fig. 4. Attempt probability { — I) for M = 5 and W = 128. uration throughput. It is possible to carry out the analysis
without this assumption but, for ease of exposition, we

do not do so.

(in terms of P, and I), and correspondingly, the estimates

of throughput obtained using the two techniques are very

close. Similar results have been obtained for the basicsaccl?e_t _Mk +L W’“”’. den(_)te the f_‘“mber of b.aCk'Oﬁ stages and
mechanism as well. An interesting special cae+£ 1) under minimum contention window size, respectively, for the tjpe

which it is possible to calculate the exact throughput of DCIA—hC’ ke él’ 2’];“’ K}. Lgt X’“é(t)l’(j fef {0, 1’,"" M.’“}’ denote
is discussed in Appendix C. the number of typé: ACs in back-off stagg at timet. Let

A N i
IV. PERFORMANCEEVALUATION OF IEEE 802.1E EDCA S A7) ik € {1,200 K} € {0, 1, My}
K
In this section, we analyze a simplified version of the IEgRBNd M = 3o (M. + 1). Then X, (1) ~ { Xk (t)}(k,j)es ’
802.11e EDCA mechanism [18]. We start with a descriptidigPresents the state of the system at tim@learly, X, (¢) for
of our model. t=0,1,..., is a Markov chain o0, 1, ...,n}*, and satisfies:

A. The Model

We consider a WLAN withn stations using the IEEE
802.11e EDCA protocol. Each station can hear every othgr
st_at|on in the network, i.e., there are no h|d_den stations. O|rreducible (see [7, Theorem 8.1], for a similar proof). Girit
discussion covers botaAd hoc networksand intrastructure has only finitely many states, it follows that, (¢) is positive

based networkSThere arex” different access categories (ACS)rgcyrrent and possesses a stationary distribution. Hawive

each maintaining its own set of back-off parameters. Eagfiag not appear possible to obtain a closed form expression

station maintains a separate transmit queue for éach AC. i} the stationary distribution ok, (¢). Therefore, we proceed
gueues are assumed to be saturated, i.e., they always ha\ég  the previous section

packet to send. We make the following additional assumption
« (A1) The back-off durations are geometrically distributed, Let Z,. denote the set of non-negative integers, and let
i.e., the typek AC at a station, when in back-off stage M,

J, transmits with probabilityp, ;. In order to keep the g 2 {x = {ap;}:ap, €Ly, Zxk-ﬂ' =n,1<k< K}
average waiting time the same as in IEEE 802.11e EDCA, ' par

M,
> Xty =nforke{l,2,. K}
7=0

can easily be shown that the Markov chai¥,(t) is



We denote the one-step drift of,,(¢) by
f(n)(x(n)) SE{X,(t+1) = X, ()| X0 (t) = x(n)}
= > RTE),

Lx(M)+1eS,

I11-B. Further, let

« T(k) = The normalized throughput of typeAC.

« P.(k) = The conditional collision probability for typé-
AC.

« T £ The normalized throughput of the system.

for 2(") € 5,; here P")(2(™)) is the probability of making Arguing as in the derivation of (13), far € {1,2,..., K}, we

a transition fromz(™ to 2™ + [ over one time slot. Set obtain
f@ (™) = 0 for z(™M£S,. Arguing as in Section llI-A,

we obtain fork € {1,2,..., K}:

My N T@™)
fro (@) = fok,jpk,j 1T—or.  TkoPkO
=0 — Dk,j
)
() (n)y _ () , @) N
frj (@) = L, j—1Pk,j—1 (1 1— prj1 L, Pk.j>

j € {1727 "'aMk - 1}5

](I(n)) )
1—pra—1

" ](I(n))
s

fé%k (I(")) = Il(:])wk_lpk,Mkfl (1 —
(7)
— Pk, M,

z(™
where I (z(™) =] jyes(1 = prj)". Let

M,

B, £ {x: {zr,;}: Za:;w- =n,1<k< K;ap; > O},
§=0

andE £ B, /n.

The results derived in Appendix A and B for IEEE 802.1
DCF can easily be extended to IEEE 802.11e EDCA.

My P
Zj:() Lk, Pk,i T=py,

and
_ (1-1) - P(k)P
T%%_O_IML_RHE+O—JV¥E+IU (18)
where ;
P Zteges ThaPhi Ty
‘o 1-1
SummingT (k) overk € {1,2, ..., K}, we obtain
K
_ (1-1)A - P(k)P
T_E%O—JML—RHL+Q—Jﬂyn+IU (19)

Note that the values of; and 7T, depend on the access
mechanism in use (see (16)).

C. Performance Comparison

In this section, we compare the throughput estimates ob-
tained using our technique with the ones obtained using
simulations. We consider the parameter values given ineTabl
iI-B, with aCW,,.., = 128. We have performed extensive
ﬁ{'mulations under three different settings:

particular, under a similar set of assumptions, we can showe (A) AIFSN is set to{2,2,2,2} and internal collision

that the sequence of scaled stochastic processes

Y. (t) = X,n(|nt])/n, forn=1,2,...,

converges (in the same sense, and with the same error bounds, (C) AIFSN

as discussed for DCF earlier) to the deterministic lifiit)
given by the unique solution of the differential equation
dY (t)

—_— = >
o F(Y(t)) fort >0,

resolution is disabled.
o (B) AIFSN is set t0o{2,2,2,2} and internal collision
resolution is enabled.
is set to{7,3,2,2} and internal collision
resolution is enabled.

Note that the scenario considered in setting (A) is the oat th
is captured by the analytical model. By comparing the result
obtained under settings (A) and (B), we can determine the
effect of internal collision resolution on the throughptiA&s.

with initial condition y° = lim, o ¥;,(0) = X(0)/n, and Likewise, by comparing the results obtained under settBys
F(z) = lim, .o f"(nz) for = € E. The only difference and (C), the effect of variabldI F'S on the throughput of ACs
from the DCF case earlier is that™ is now given by Eq.(17) can be singled out.

instead of by Egs.(3), (6), and (9)

The results are shown in Figures 6-10. Note thatytfexis

Likewise, following the line of analysis in Appendix B, wejs broken in Figures 8-10 in order to make the differences
can also show that there is a unique paint E that satisfies petween the curves more visible; the theoretical predistio

F(z) = 0; we call it the equilibrium point. Using the intuition jn these cases match the simulation results very closely.
that for larget, the processX,,(t) should remain close to Note that the error bars are barely visible, showing the high
the pointz(") € B, satisfying f(")(2(™)) = 0, we obtain a confidence level of the simulation results. As expected, we
throughput analysis of IEEE 802.11e EDCA. find that the throughput estimates obtained using our tegfeni
match very well with the simulated results under setting. (A)
Furthermore, with internal collision resolution enablede

We now estimate the throughput of IEEE 802.11e EDCAAggregate throughput rises in setting (B) as expectedyuitin
assuming that the system stays fixed at its equilibirium tpoithere is some decrease in the throughput of low priority ACs.
(") at all times. LetP,,I, andT be as defined in SectionWe also find that increasing th&/ F'S values of low priority

B. Throughput Calculation
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ACs in setting (C) results in a further improvement of the

aggregate throughput but that it reduces the throughputs of

low priority ACs nearly to zero. The inference to be drawﬁaturation_ throughput and other performgnce measures of
is that differences in AIFS have a greater impact on servi terest without having to calculate the stationary disttion

differentiation than differences in congestion windowesiz of the Markov chain, which would be infeasible for systems

Moreover, the proposed values for AIFS in the IEEE 802.1% realistic size. .
EDCA protocol run the risk of starving, or being excessively 10 the best of our knowledge, our technique for performance
unfair, to low priority traffic classes. This aspect meriisther 2nalysis of MAC protocols is the first one of its kind with a
investigation. An interesting future research challengaily duantifiable accuracy. Our results provide a rigorous fjoati
be account for the different AIFS values of different ACstiet tion for the decoupling approximation of Bianchi [3]. Fihyal
analytical model. At present, accounting for the differargs ~ @lthough we focused on two representative MAC protcols
values appears to be difficult in the Markovian framework th4 EEE 802.11 DCF and IEEE 802.11e EDCA), the techniques
we have developed in this paper. devgloped_m the paper are quite general and are applicable t
a wide variety of MAC protocols.
V. CONCLUDING REMARKS Our performance analysis is based on the assumption that

We studied the performance of contention based mediuhe system remains at its equilibrium point at all times. A
access control (MAC) protocols. We developed a novel techatural refinement is to consider fluctuations around thistpo
nique for estimating the throughput, and other parametevhich will typically be small. A mathematical framework
of interest, of such protocols. Our technique is based onfa studying such fluctuations is provided by the diffusion
rigorous analysis of a Markovian framework developed in thegpproximation (a functional central limit theorem for the
paper. The analysis shows that in a limiting regime of largdarkov process). This is a topic for future research. Selypnd
system sizes, the stochastic evolution of the back-offegagve observed the importance of different AIFS values in
at different stations converges to a deterministic evoiyti achieving service differentiation. It remains to extendr ou
moreover, this deterministic process has a unique fixedtpoianalysis techniques to deal with this, and with other forms
Thus, our analysis provides insight into the dynamics of thad heterogeneity. Finally, we have assumed throughoutathat
MAC protocols, showing that they guide the system to modes can hear each other; accounting for the hidden node
typical operating point This then allows us to obtain theproblem remains an important research challenge.
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Furthermore, we have

Inp{™ — ¢;| < Ko < oo fori=0,1,2,..., M.

whenever

2™ — 2™ < 1/coM,

wheren(co, M) is a constant that depends only om and M.

We need some preparation before we can state our main result.

Henceforth, we uséz| to denote thel.? norm of z. Forz™ ¢ E,,,

let
M

1"y &[0 -

i=0

n)yz (™)
Py

Strictly speaking, the functiof is not really the same for different
for the sake of brevity, we will continue to follow the abovetation.
We start with the following simple result:

Lemma 1. Considerz™ ¢ E, and ™ ¢ E,,, with ||z —
(™| < 1/cM. Suppose Assumption 1 holds. Then,

I(nz™) — I(ma ™,

(MY < 2coM||z'™ — 2
whenevem and m are large enough.

Proof: Without loss of generality, suppose > n. Using the

definition of I(z(™), and observing that =2 < (1 — p{™)" <
(1- pl(.m))"‘, we have forn large enough:
K na (.")
I(na™) 17 (1=p")
m - m mz(m)
Ima™) 5 (1 pl™)
M
n n:v(n) TLIE(m)
<T[a-»") :
=0
al (n) _y(m)
<[ - pmy ===
i=0
_ n)_.(m
S(1_11)(()70) Mnl||z(™) —z(m))|
< e2c0]\1||ac(")7m(m)||‘
Now we have
(m)
(n)y _ )y | () _ L(maz™)
I(nz*") — I(mx )‘—‘In:c ‘ ‘1 T (™) ‘
<1 I(ma(™)
- I(nz(™)
< ‘ 1— efzcozwuz(")fﬂm)u ‘
< 2coM ||z — 2™,

proving the claim.

The following corollary is an easy consequence of the prdof o

Lemma 1.

Corollary 1. Considerz™ ¢ E, and ™ € E,,, with [|z(™) —
(™) || < 1/¢M. Suppose Assumption 1 holds. Then,

(n) (m)

I(nz'™) _ I(mz'™) < 260M||x(n) .
L-p”  1-p™

(m)H

1 €{0,1,..., M}, whenevem and m are large enough.

For eachn, define a functionF™ (™) on E, by setting
FM (2™ = ™ (ng(™), We have the following result:

Lemma 2. Suppose Assumption 1 holds. Then the sequgRc®’}
is uniformly bounded, i.e., there exists a consté@hk oo such that
|F™) (™) < C for all 2™ € E, and for all n. Moreover, for
z™ € E,,, ™ € E,, andm,n large enough, we have

IF™ (@) = F (@) < n(eo, M)« = 2],

Proof: To prove that{ F(™)} is uniformly bounded, observe that
in view of Assumption 1, we have

|F5™ (™)) < co,
|F™ (2™)] < ¢ fori € {1, ...,
|F5 ()] < co,

M_1}7

for all n. Thus, we havel| F™ ()| < M |F™ (™) <
co(M + 1) for all z™ € E, and for alln.
Now observe thatnz!™ p{™ — ma{™p{™| < co[|z™ — =™

Using Egs. (10), (11), and (12), along with Corollary 1, foK i <
M — 1 we have

|F (@) = F (@) < InaDpiy — ma(")p")|
+ |n1’(n) E”) Em) m)l
nap 1 @) ma M pm T (@)
1-pi") 1-p{™
ey IE™) ) 2
< 2collz™™ — 2| + ———5 e Tip T i
MO
o | T @y e (gm)
+ ma{™p™ ( (n)) I (m))
1—p;_ 1—p~
< 2¢olla™ — 2| + col|z™ — 2™ || + 2 M || — 2™
= (3co + 22 M) ||z\™ — 2™

Similarly, it can be shown thatF{™ (z(™) — F{™ (2(™)| <
(2co + coM + 23 M + 2c3 M?)||z(™) — 2™, and|F<">( )y —
FUM (20™)] < (3co + 43 M)||z™ — 2. Now since

M
”F(n)(x(n)) _ F(m)(y;(m))H < Z |Fi(n)(x(n)) _ F%_(m)(l,(rn)”7

=0

the result follows by taking;(co, M) = 2co + 4coM + 4c3M +

43 M2,

Remark 3. The above lemma implies that for a Cauchy sequence

{z™} in E, the sequencéF, (z(™)} is Cauchy inR™ 1,
Define a functionF'(xz) on E as follows:

F(z) = lim F™(z™),

n— oo

(22)

where{z(™} is any sequence if satisfyingz™ ¢ E,, andz™ —
x. The existence of the limit in Eq. (22) follows from RemarkTa&.
prove the uniqueness, 1¢x:(™} and{y™} be two sequences iR,
satisfying:
2™ 4™ e E,, and lim ™ = lim y™ = 2.
n—0o0 n—0o0

Then for n large enough, we would havgy™ — (")!\ <e
1/coM, which, in view of Lemma 2, implies thatF™ (z(™)
FM (M) < n(co,M)e, showing thatlim, .. F™ (z™) =
limy, 0o F'(™) (y("

Remark 4. The definition ofF'(z) and Lemma 2 imply thak'(z) <
Cforall z € E.

A

Remark 5. An alternative, but equivalent, way of defining the

function F could be to first define for alh > 1 a function £
on E by settingF'™ (z) = f™ (nz), for z € E, and then takeF’



as the pointwise limit of the sequence of functidtg’ (z). for |kM/2| < n. Thus, we have

The following result is a direct consequence of Lemma 2, the Z WHB(M < (2kM + 1)M+1 (2CO)LkM/2J
1 =

definition of F'(x), and the boundedness #f(x) (see Remark 4). 5 [kM/2]! -
k

Lemma 3. Suppose Assumption 1 holds. Then the fucniign) is | ot
Lipschitz continuous, i.e., there exists a constAnk oo such that Do 2 (2M + )M H!
for all z,y € E, we have ’

d
1F () - F)|| < K|z — y]]. o

M1 (2c0)FM/2)
|kM /2]

. for £ > 1. Now observing thaB; (n) = 0 for all / such that|!|| > 2n,
Lemma 4. Suppose Assumption 1 holds. Then the funciidn) = e optain
o= > s

Dy & (2kM + 1)
Next, we obtain a closed form expression for the functio:):

(Fo(x), ..., Far(x)), defined by Eq.(22), satisfies:

M
Fo(z) = Y eis L(z) — woco, (23) Hltl=zn
i=0 < ZDk £G <
Fi(z) = wi—1ci—1(1 — L(x)) — wic;, fori=1,.... M — 1, (24) et ’
Fu(w) = za—aear—1 (1= L(z)) — waen L(z), (25) proving the claim.
where ¢; = lim7Hoonp,(-”) for i € {0,..,M}, and L(z) = The following result follows directly from the proof of Lenarb.
M _—c¢z; ‘
[lizoe : Corollary 2. Forn > 1, leth, =3, ||l||26l("). Then the sequence
Proof: Considerz € E, with rational co-ordinates, i.ez; — 1=} is uniformly bounded, i.e., there exists a constant oo such

pi/q; for i € {0,1,..., MY}, wherep;, ¢; are nonnegative integers. (hathn < H forall n > 1.

Letg = LOM(qo, .., gur), whereLC'M denotes the least commom  \ye are now ready to prove the almost sure convergence of the
multlple. Opserve thatr € En for n = gk, wherek > 1 is an sequence Z, (t)} to a deterministic process.
integer. In view of the definition of’(x), we have that

Theorem 1. Suppose Assumption 1 hold$n, o Z,(0) = 2°,

F(x) = limg—oo P () = limy—.oo ") (gka), and Z(t) satisfies:
which, in view of Egs.(10)-(12) satisfies Eqs.(23)-(25)r o irra- o t
tional z € E, the result now follows by appealing to the Lipschitz Z(t)==z +/0 F(Z(s))ds for t > 0.

continuity of F(z) (see Lemma 3).

The following result (which is similar to the notion of unifa  1hen for everyt > 0, we have
convergence) is now an easy consequence of the definitidf("bf lim sup |[Zn(s) — Z(s)|| =0 a.s.
Egs.(10)-(12), and Lemma 4. n—o0 g<s<t

Lemma 5. Suppose Assumption 1 holds. Then there exists a sequence Proof: From Theorem 4.1 in [24, Chapter 6, pp. 327], we have
{6~} of numbers satisfying: that the jump Markov procesg,(t) with intensitiequLISH/n =

sup ||F(n) (x(n)) _ F(x(n))” <& and lim 5. =0 nPl(”) (nk) satisfies fort less than the first infinity of jumps:

z(M ek, t
Zn(t) = Za(0)+ D _In"'Y; <n / P}")(nzn(s))ds), (27)
For | € ZM*L, let B\ 2 sup, s P™(z). We have the ; 0

following result where Y;(u) are independent standard Poisson processes. Now for

Lemma 6. For n > 1, let g, = 3, ||l||ﬁz(n)- Then the sequence eachi ¢ En,.leth(u) = ﬁ(u) —u, thenYi(u) is a qusson process
{gn} is uniformly bounded, i.e., there exists a const@nt oo such centered at its mean. It is well known theit(u) satisfies:
thatg, < G for all n > 1. e
lim sup n~ Yi(nu) =0 a.s., forallv > 0. (28)
Proof: Consider the set of state = {I : ||/|| < M}. Observe "0 0susy
that for alll € So, we have|l;] < ||l|| < M fori € {0,1,..., M}

: (n)
Thus, [; can take at mos2M + 1 values, and therefore the total Now observe that for" € £y, we have

Eg\r/\;ber of states b is no more than2M + 1)™ ™. Hence, we Finy(@™) = £ (na™) = Z 1P (na™),
S g™ < (20 + )M, pret e,
1€Sy and therefore,

Now consider the set of states, = {I : kM < ||l|| < (k+1)M} _ —19 b o)

for £ > 1. A similar argument as above shows that the number of Zn(t) = Zn(0) + Zln Yi{n o P (nZn(s))ds

states inS, can be no more that@kM + 1)+, Also, note that Lo

for a jump of magnitudd|l|| > kM to occur, more tharjkM /2| / F (7 ds. 29
nodes must transmit during the current slot; the probabiftwhich + 0 (Zn(s))ds (29)

is smaller than Let

n co\ LkM/2] (QCO)LM\/I/QJ X
<LkM/2J> (Z) S TTRMR]T (26) en(t) 2 sup

0<s<t

)

Zn(s) — Zn(0) — /Ou F™(Z,(s))ds




then using Lemma 6, we obtain
= sup

Zln Yl< /P()nZn )d)H
0<s<t
< Z l1]ln =Y <n/ ﬂf")dé’)
< annn Y +np"M1).

The strong law of large numbers (applied to the independent

En

(30)

crement procesy(.)), the uniform boundedness of the sequence
{g:} = {3, 118"} (see Lemma 6), and the dominated conver-

gence theorem, together imply that

<Z hm [ < /ﬁ(")ds)—oas

Using the Lipschitz continuity of’ and Lemma 5, we have fér> 0
that

120 (t) —

lim e, (t
n—o0

Z() < 11Zn(0) = 2°|| + en(t)+
<N1Zn(0) = 2"l + en(t)+

/ (1F(Za(s)) = F(Za()]| + IIF (Za(s)) —

0

F(Z(s))l)ds
< N1Zn(0) = 2°ll + en(t) + 6t +/0 K|[Zn(s) — Z(s)| ds.

Appealing to Gronwall’'s Inequality (see, for example, [2hpendix
5, pp. 498)), it follows that

1Zn(t) = Z@W)]| < (1Zn(0) = 2°|| + €n(t) + ut)e™"
The result now follows by noting that
lim (|| Z,(0) — 2°|| + en(t) 4+ 6nt) =0

Our goal is to prove a result similar to Theorem 1 for the segae
of stochastic processe§Y,(t)}. We will do this by comparing
{Y.(t)} with {Z,.(¢)} as follows:

that [N (ns) — ns| for s > 0 is a submartingale. Using thé?

maximum inequality forp = 4, we obtain

E { (oi‘ii’t IN(ns) — ns|>4} <§)4 E{(N(nt) — nt)"}.

Using the Markov Inequality, and observing thB{(N(nt) —
nt)*} = nt 4 2n*t?, we obtain

<

E{(N(nt) — nt)*}

IN

] ]P’<sup |N(ns)—ns|>na—1)
[ 0

<s<t (n*—1)*
< < > nt + 2n°t” n?¢?
- (n~ — 1
<12n *”2 (32)

for large enough:. Now we claim that for alle € S,, and allp > 0,
the Markov chainX, (t) satisties:

IF’< sup
p<q<p+n®

To prove the above claim observe that for the event

{ sup |\Xn<q>—x||>n“ﬁ}
p<qg<p+n®

to occur, there must be at least one time slot, out ofrithi¢ime slots
following the p*® time slot, in whichn!=>=? /2 = n'/*6 /2 or more
nodes transmit. Since the probability of a node transngtig no
bigger thanp(") = c¢o/n, we have that the random variablé =
Bernoulli(n,co/n) stochastically dominates the random variable
corresponding to the number of nodes that transmit duringne t
slot. A standard application of Chernoff Bound shows that:

- o —nl/8
[ Xn(q) — || > n' P Xn(p) = :c) < 2n%e /16
(33)

—1/8 /16
)

P(N > n'/'/2) <2¢7 "

and Eq.(33) follows by using the union bound. Now observe itha
{ sup |N(ns) — [ns]] < no‘}

0<s<t
occurs, then the total number of jumps upto timef the processes
Z,(t) andY, (¢) combined, is no bigger thetnt+n“. Appealing to

Theorem 2. Suppose Assumption 1 holds. Then the sequendB§ union bound once again, we have that the second term (8.
{V,.(t)} and {Z.(t)}, defined by Eqgs.(20) and (21), respectivelyS N0 bigger than

satisfy:

lim sup ||Ya(s) —
n—00 0<s<t

Zn(s)|| =0 a.s., for allt > 0.

Proof: Let vy, (t) £ SUPp< <y |Yn(s) —
Yn(t) = sup [|Xn(N(ns)) —

0<s<t

Zn(s)]|. Note that
Xa([ns))l

We need to prove thaim, ... y»(t) = 0 a.s. for all ¢ > 0. Let
B =1/16 anda = 7/8. We have

sup |N(ns) —

nfﬁ) SIP’<O<

n~?| sup |N(ns)—
0<s<t

P (fyn (t) > [ns]| > na) +

P (10> sl <)
<P < sup |N(ns)—mns| >n" — 1) +
0<s<t
P (100> 0™ sup [N(ns) — [ns] < 0°) (31)
0<s<t

Now observing thatV(ns) —ns for s > 0 is a martinagle, it follows

2n® (2nt + *rza)(fnl/g/16 <t/n?, (34)

for large enought. Combining Egs.(34) and (32), we obtain
P (fyn(t) > nfﬁ) <

for large enough, which implies that

i]P) (%L(t) > nfﬁ) < 00,

n=1

12t + ¢
n3/2 "’

andlim, .. v»(t) = 0 a.s. now follows from the first Borel-Cantelli
Lemma.

Remark 6. Using the LP maximum inequality fop = 4~, v > 1,
and making appropriate changes to the proof of Theorem Vrg, o
can show thaf? (y»(t) > n~" i.0.) = 0 for all 8 < 1/2. Thus for
any 8 < 1/2, there exists a corresponding integdfs < oo such
that v, (t) < n=? for n > Ng.

Combining the results in Theorems 1 and V-C, gives the désire
result:



Theorem 3. Suppose Assumption 1 holdisy,, .. Y;,,(0) = ¢°, and
Y (t) satisfies:

Y(t)=y°+ /Ot F(Y(s))ds for t > 0. (35)

Then for everyt > 0, we have
lim sup ||[Ya(s) =Y (s)||=0 a.s.
t

n—00 <5<

Remark 7. The Lipschitz continuity o’ guarantees that for all

for example, [24, Chapter 3]); and the metric used®: +1[0, o)
could be the one specified in [24, Chapter 3] that induces the
Skorohod topology omDya+1]0, 00). For a detailed discussion of
these metrics and related concepts, we refer the readeflo [2

The following theorem characterizes the error involved pprax-
imating Z,, (t) with X (¢):

Theorem 4. LetV,,(t) and V' (t) be as above, theW, (t) £ Vi, (t)+
Van(t), whereVi, = V and Va, (t) = O(t/\/n).

4° € E, there exists a unique solution to the initial value probleriR€mark 8. A consequence of the above result is that for large

(IVP) corresponding to Eq.(35).

Theorem 3 shows the convergence {f,(¢)} to Y (¢), over

X, (t) can be well approximated byY (t/n)+n'/?V (t/n). In view
of Remark 6, the error in such an approximation is almost lsure
bounded byO(n?) for any 3 > 1/2. Also, sinceV/(t) has a finite

bounded intervals of time. For finite, but largeRemark 6 shows that variance for allt, the error in approximatingX,, (t) with nY (¢/n)

the difference betweeli, (t) and Z,,(t) is O(n~") for all 3 < 1/2.
Next, we will characterize the error involved in approximgtZ, (t)
with Y'(¢), following the approach given in [25].

SetW, ™ (u) = n= 2, (nu) and letV,, (t) = /a(Z. (t)— X (t)).
Then, Eq.(29) can be rewritten as

Va(t) = > 1w ( /O t P}")(nzn(s))ds)

+ / VA(E™ (Za(s)) — F™(X(s)))ds,

which suggests the following limiting equation:
t t
V()£ W (/ ﬂl(X(s))ds) +/ OF (X (s))V(s)ds, (36)
7 0 0

where Gi(z) = lim,—oo P™ (na™) for € E, and {z™}

satisfies:
™ e E, forn=1,2,.., and lim 2™ — z.

The existence and uniqueness of the above limit can easiéhdsn.
Let ® be the solution of the matrix equation
0

a@(t, s) = 0F(X(¢))®(t,s), ®(s,s) =1,

37

and let .
U(t) & zl:lWl </0 ﬂl(X(s))ds) .

Then, we have

V(t) = /0 B(t, s)dU ().

Observe that sinc (t) is Gaussian with zero meaV,(t) is Gaussian
with zero mean and covariance matrix

C’ov(V(:‘,),V(r)):/0 T@(t,s)C(X(s))@(r,s)Tds,

where

Clz)=>_UTBi(x).

From Corollary 2, we have thatip_ . C(z) < H < co. ThusV (t)
is well defined.

Let Dgm+a [07 OO) = {m : [0, OO)
RM+Lfor all ¢ > 0lims_¢4 x(s) = 2(t) andlims_;— x(s) exists,
i.e., the space of right continuous functions having lefnits.

—

is also almost surely bounded lsy(n?) for any g > 1/2.

Proof: We have
t
Valt) =Y n 21y (n / Pl(")(nZn(s))ds>
1 0

+ /Ot VR(F™ (Z,(s)) = F™ (X (s)))ds,
= Vin(t) + Van(t),

where

Vin(t) 23 021y (n i
1
t

+ OF (X (s))Vn(s)ds +

P (nZ,(9)ds

Voult) & [ VA(P(X(3) = P (3)) ds +
/O N (Fn(X(s) T2V, (s)) — F(X(s) + n*1/2vn(s))) ds.
Using Egs.(10)-(12), Egs.(23)-(25), and notipgp!™ — ¢;| < Ko

(see Remark 2), it follows that there exists a consfgnt< oo such
that for alln large enough, we have

sup [|Fu(w) = F@)]| < Ka/n.
Thus Va, (t) < 2K:1t/+/n = O(t/+/n). Now turning toVa,(t), let
Un(t) 23 07217, (n tP(")(nZn(s))ds ,
S (n 0 e)
and
en(t) = | Vi (F(X(s)) = Fu(X(s))) ds +

/Ot Vi (Fa(X() 0 2Vi(s)) = F(X() + 07 2Vi(s)) ) ds.

Using the results in [24, Chapter 4], it can be shown tat= U,
with U as above. Using the Lipschitz continuity of F, we have

Henceforth, we will use the symbok” to denote the convergence
in distribution in Dga+1[0, 00), or equivalently, weak convergence . L )
in P (Dga11]0,00))- the set of Borel probability measures on@"d hence (using Gronwall’s inequality)
Dymi1[0,00). For the sake of definiteness, the metric used on
P (Drum+1]0,00)) can be assumed to be the Prohorov metric (see,

Va(t)] < U (1) +/O K|V (s)ds,

sup [V (s)] < sup [Un (s)]e™".
s<t s<t



SinceU, = U andU is continuous, it follows thatup, ., Un(s) =

two different fixed points of f. Then, in view of Egs.(23)-(25), we

sup,, U(s), and hence thel,, are stochastically bounded onhave thatr must satisfy:

bounded intervals. Furthermore, it is easy to see from Eg5(25)

that OF is continuous and bounded, which together with the fact

thatV,, are stochastically bounded on bounded intervals implias th
en = 0. With ® as above, we have

Vi (t) = Un(t) + en(t) +/O O(t, $)OF (X (8)) (Un(t) + en(t))ds.

M
Toco = ZcimiL(x), (39)

i=0
Zic; = xi—1ci—1(1 — L(x)), fori=1,...,M — 1, (40)
l’AIC]uL(:E) = IE]\/[71C]L{71(1 — L(l’)), (41)

and y must satisfy a similar set of equations. Now the following

Finally, noting that the mappind : Dgar41(0, 00) — Dgar+1[0, 00)
given by

Jo(t)

t
=0(t) + / D(t,s)0F (X (s))8(s)ds
0
is continuous, the result follows from the continuous mapptheo-
rem (see, for example, [24, Chapter 3, pg. 103]).

APPENDIXB (ADDITIONAL MATERIAL)

In the previous section, we proved the convergence of theeseg
of stochastic processef, (t)} to the deterministic proces¥ (t)
satisfying:

Y (t) = Y(0) + /t F(Y(s))ds for t > 0,

where F'(z) is given by Eqgs.(23)-(25). We would now like to further
investigate the behavior df (¢) for larget. In particular, we would
like to determine whether the vector differential equation

d

dt
has an equilibrium point. Supposing it does, we would likefihal
out whether that equilibrium point is unique. If the equilibn point
does exists and is unique, we would like to determine if trecgss
Y (t) started from an arbitrary initial state would converge te th
equilibrium point.

Y(t) = F(Y (1)), (38)

A. Existence of Equilibrium Points

In this section, we will prove that the differential equatispecified
by (38) has at least one equilibrium point. The issue of tHhqueness
will be dealt with in the next section.

Define a functionf(x) on E as follows:

f(z) =2+ F(z), forz € E.
From Egs.(23)-(25), it is easily seen that the functjtie) mapsE

possibilities can arise:

1) L(z) = L(y). In this case, we havg™— = ¥ for all
i€ {1,2,...,M}. SinceM z; = M yi = n, we have

x =y, which contradicts our initial assumption that# y.

2) L(z) > L(y). In this case, we havez% < g forall
i€ {1,2,...M}. If zop < yo, thenz; < y;, for all ¢ €
{1,2,..., M}. However, this is not possible singg™  z;
S M, yi = n. Hence, we must have, > yo. Now let

A .
k= min

ixy < Y
ie{0,1,..., ]\/I}{ vi}

Also, let a; £ x; — ;. From the definition ofk, it follows
thata; > 0 for ¢ € {0,1,....k — 1}, anda; < 0 for ¢ €

{k,k+1,..,M}. SinceM z; = M y; = n, we have
Zfﬁo a; = 0. In particular, we have

k—1 M
E aq — E a;
i=k

=0
Using the definition ofL(x) and L(y), we have that

M M M
L(z) = H e Ci%i — He*Ci(yrFai) = L(y) He*‘:iai
=0 =0 =0

k—1 M
s [T T
=0 i=k

< L(y)eick’l E?;ol ai o= Ck itk ai

L(y)e*(%fl*%) Zf;o] a;
< L(y),

which contradicts our initial assumption thafz) > L(y).
3) L(z) < L(y). In this case also, one arrives at a contradiction,
like in the previous case.

into itself. SinceE is a compact subset &"/**, Brouwer's fixed = Since one of the above cases must occur, we have proved teat
point theorem guarantees the existence of at least one foietl @  have at most one fixed point, and, in view of Proposition 2 réseilt

f
Proposition 1. The fuctionf has at least one fixed point if.

Remark 9. Note that any fixed point of is an equilibrium point of

follows.

C. Convergence to Equilibrium Point

In this section, we will investigate whether the procését),

the vector differential equation specified by (38). To séx sBuppose started from any arbitrary initial state ifi, converges to the unique

x € Eis a fixed point off. Thenf(x) = z, implying that'(z) = 0;
thus showing thatr is indeed an equilibrium point of the vector
differential equation specified by (38). Similarly, we hdhat any
equilibrium point of the vector differential equation sgied by (38)
is a fixed point off.

B. Unigueness of Equilibrium Point
We will now establish the uniqueness of the equilibrium foin

Proposition 2. The vector differential equation specified by (38) has
a unique equilibrium point.

Proof: Let us suppose that the vector differential equation

to

equilibrium point. We have the following result fav = 1:

Proposition 3. SupposeV = 1. Then the proces¥ () started from
any arbitrary initial state inE, converges to the unique equilibrium
point § satisfying F'(3) = 0.

Proof: For M = 1, the set of equations given by (38) simplify

dydot(t) = Clyl(t)L(y) — yO(t)Co(l _ L(y)), (42)
dydl—t(t) =yo(t)co(l — L(y)) — y1(t)c1 L(y). (43)

specified by (38), has more than one equilibrium points. Tten Now ¢ satisfiesgoco(1 — L(§)) = ciy1L(). Observe that for

function f must have more than one fixed points. ketandy be all y(t) with yo(t) > go, we have

dyo(t)

_ _dyi(®)
== = == < 0. Now



consider the Lyapunov functioh(y(t)) = (y(t) — )T (y(t) —4). It  we get
is straightforward to show that

CAW) = ()~ 5" Ty() < 0 for y(1) # 5,

which implies thaflim:—.. y(t) = §.

—n—1i —i—1

Ps(ipipr 'po" "+ 1—Fo" " — (n —i)poBa”

i—2 .
n—i—1/. —t——n—i— n—j [T — i—j—n—7
PE T i+ )pipipo T 4+ Y Py J<i J)Po po" T+
3=0

i) =
Py =i+ pops" (1 —-P1 1), 0<i<n (45)

APPENDIXC (ADDITIONAL MATERIAL) Note that the summation term in Eq.(45) exists onlyfor 2. Since
the sum of stationary probabilities across all the systeatestmust

In this section we evaluate the throughput of DCF under aiapectdual one, we have n
case, namelyM = 1. For M = 1, the stationary distribution of Zpé -1 (46)
the Markov chainX, (t) (see section IlI-A) can be computed, and =

thereby, one can compute the exact throughput of DCF. Wevsitr ) . .
the computation of the stationary distribution &f, (¢). Observe that we have+ 1 equations im+ 1 unknowns. We leave it

for the reader to verify that these equations are lineadgp@endent,

and therefore the stationary probabilies can be obtainedobsing
Computation of Stationary Distribution these equations.
Throughput Calculation

Once we have the stationary probabilities, we can calcutete
Sn = {(21,22) : 71,22 € Ny21 + T2 = 171, 22 > 0} throughput and other parameters of interest about the raydter

whereN denotes the set of integers. Observe thatcontainsn + 1 ke A0, 1’A'"’ M, let

states. More precisel§, = {(0,n), (1,n — 1), ..., (n,0)}. Let P& o T* £ The expected system throughput given the system is in

Let S,, denote the set of the system states fér= 1, i.e,

be the steady state probability of the system being in giaie— ). stgteA(k:, n—k). o o
We now formulate the set of global balance equations thatbean ¢ P. = The collision probability given the system is in state
solved to obtain the stationary distribution &, (¢). (k,n — k).

For the sake of brevity, lep; £ 1 — pi, i € {0,1,..., M}. Now « I* 2 The probability of an idle slot given the system is in state
consider the statén,0): The system leaves this state if there is a (k,n — k).

collision, an event of probability « T £ The system throughput. N
. « P. = The conditional collision probability.
(1—=p0" —npopo" ). « I 2 The probability of an idle slot.

Observe thaf* = (1—po)*(1—p1)"~". Arguing as in the derivation

The system can enter the stdie 0) only from the statg§n — 1, 1), .
Y dte 0) only dn ) of Eq.(13), we obtain

provided the station in back-off stagetransmits successfully, an
event of probabilitypi1po™. Balancing the probability flux entering L (n— k) Ik
and leaving the statén, 0), we have PE—1_- PO, — Pri—p; (47)
n —n —n—1 n—1_ _—mn

Ps(1=po" —npopo™ ) = Ps™ pip0”- 44)  and the expected system throughput when the system is ia stat
Now consider the stat@:—1,): The system leaves this state if therdk,n — k) is given by:
is a successful transmission by a station in back-off staga event & &
of probability Tk — 1-I")QA - F)P

ip1pr B Y (1—-1%)1 - PF)Ts + (1 — I*F)PFT. + I*o

(48)

Since the probability that the system is in stéken — k) is given

or if there is an unsuccessful transmission involving astieane .
by Pg, we have

station in back-off stagé, an event of probability

1-p5" " = (n—@)poBo" "' + (n—i)popi" " (1~ D). r= Z;)PST (49

n

The system can enter the stdie— ¢,¢) from the state Similarly, we havel = S™"_ PET* and P, = " PEPY.

e (n—1i— 1,7+ 1): Following a successful transmission by a ]
station in back-off stage, an event of probability Performance Comparison
. i n—i—1, We now compare the exact results obtained by using the above
(i + 1)p1piPo ’ approach, with the numerical results obtained using ounrtiecie
e (n—i+1,i—1): Following a collision involving exactly one and Bianchi's model. Note that our technique relies on thet fa
station in back-off stag8, and one or more stations in back-offthat for sufficiently larget, the processX,(t) stays close to the

stagel, an event of probability equilibrium pointz(™ that satisfiesf™ (z(™) = 0. To demonstrate
. . the effectiveness of our technique, we compare the randaonplsa
(n—i+1)popo" "1 —p1 ); paths of the system with the deterministic trajectory otetdiusing:
e (n—4j,7) for 0 < j < i— 2: Following a collision involving a(k+1) = 2(k) + ™ (x(k)),
i — 7 stations in back-off stage, an event of probability
for n = 50, with 2(0) = (50,0). As shown in Figure 11, not only
=3\ i j_nj does the system converge to a neighborhood of the equitibpioint
i—j )"0 po— = for large ¢, but also the random trajectory of the system stays close

to the above deterministic trajectory at all times (see Té@o3, for
Balancing the probability flux leaving and entering theestat—:,7), a proof of such a result). Further, we see that the conveegémc



a neighborhood of the equilibrium point is quite rapid (Witi00
slots).

— Sample Path 1
—=— Sample Path 2
sample Path 3
Sample Path 4
—— Sample Path 5
— Analytical

Number of stations in the back-off stage 1

L L L L L L L L L ,
(] 20 40 60 80 100 120 140 160 180 200
Slot

Fig. 11. Random system trajectories converging to a neigidoal of the
equilibrium point.

TABLE Il
THROUGHPUT:Wy =32, M = 1.
Stations Throughput (T)
Exact BM oT TABLE V

5 0.4664 | 0.4666 | 0.4669 IDLE SLOT PROBABILITY: Wy =32, M = 1.
15| 0.4486 | 0.4484 | 0.4487 Stations| Idle Slot Probability {)
25 | 0.4229 | 0.4228 | 0.4230 Exact | BM T

55 | 0.3348 | 0.3348 | 0.3348 5 07693 1 0.7689 1 07681
80 1 0.2543 1 0.2544 | 0.2543 15 | 0.5245 | 0.5244 | 0.5231
100 | 0.1918 | 0.1918 | 0.1918 o5 | 0.3782 | 0.3781 | 0.3771

55 0.1544 | 0.1544 | 0.1541
80 0.0743 | 0.0743 | 0.0742

TABLE IV 100 0.0411 | 0.0411 | 0.0410
CONDITIONAL COLLISION PROBABILITY: Wy = 32, M = 1.

Stations| Conditional Coll. Probability £.)
Exact BM oT
) 0.1008 | 0.1022 0.1008
15 0.2713 | 0.2727 0.2717
25 0.3961 | 0.3970 0.3965
55 0.6528 | 0.6530 0.6531
80 0.7879 | 0.7880 0.7881
100 0.8611 | 0.8611 0.8612

Tables IlI-V show various parameters of interest obtaingdgithe
exact analysis, Bianchi’'s model (BM), and our technique Ohe
results shown are for RTS/CTS access mechanism Wih= 32. It
is clear that both our technique and Bianchi’s model areeexity
accurate even for smatl; and, as expected, their accuracy increases
asn increases.



