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Abstract

Motivated by questions of bandwidth sharing in the Internet, we examine the
problem of tracking a fair bandwidth allocation for a single link in the face of
fluctuating user demands. We first use rate distortion theory to derive lower bounds
on the variance of the tracking error as a function of the rate at which congestion
feedback is relayed to users. We then combine the estimation and control problems.
We derive the impact of feedback accuracy on performance when using either a
Kalman filtering scheme or a simpler scheme proposed in [2].

1 Introduction and Preliminaries

The problem of sharing bandwidth between elastic users in a telecommunication network
requires feedback from the network to the users about some measure of instantaneous
congestion. For example, in the Internet, TCP uses packet drops caused by buffer overflow
as the feedback mechanism. To what extent can the provision of more detailed feedback
information by the network improve the rate allocation achieved by end users? We
attempt to address this question by relating the accuracy with which user shares track a
desired target to the rate at which they receive feedback.

We consider a slotted time model of N users sharing a single link. Users have dif-
ferent, time-varying utilities for bandwidth. The utility derived by user 7 from receiving
bandwidth z in time slot ¢ is given by u;(x) = w;(t)logz. In keeping with terminology
introduced by Gibbens and Kelly [2], we refer to w;(t) as user i’s willingness to pay at
time t'. If the aggregate load (bandwidth utilisation) on the link is x, then a cost C(z)
is incurred. The objective is to maximize the social welfare in each time slot:

V(x(t)) = Zui(@“i(t)) = C(z(1)), (1)

where x(t) denotes the vector of bandwidth allocations to the individual users, and
z(t) = >, i(t) denotes the aggregate bandwidth utilisation at time ¢. We denote by

!The choice of logarithmic utility functions is for ease of exposition. The results below can be derived
in much greater generality; for example, the analysis extends easily to utility functions of the form
ui(r) = w;(t)*x*~%/(1 — @) for a > 0. Logarithmic utility functions belong to this class and correspond
to the limit o — 1.



p(x) the marginal cost (or price) C’(x)of bandwidth at utilisation x. We assume that C
is strictly increasing and convex or, equivalently, that p is positive and non-decreasing.
We can easily compute the optimal bandwidth allocations in (1); denoting these by
x*(t), we have
ri(t) = 0
p(z*(t))

Here, z*(t) = SN, () and w(t) = SN, w;(t). A solution of the above equation exists
if we assume that p is unbounded, and it is unique since p is non-decreasing?.

How close can we come to the optimal solution above using a decentralized algorithm?
In order to have a suitable metric of closeness, we consider the welfare loss due to deviation
from optimality. Let x(¢) be any rate allocation. If x(t) is close to x*(t), we can use a
Taylor series approximation to the welfare function in a neighbourhood of x*(¢). Recalling
that VV(x*(t)) = 0, we find that the loss of social welfare is given by

where z*(t)p(z*(t)) = w(t). (2)

) = V) = _71 uf (2 (8)) (2a(t) — 25 (1) + %0”(x*(t))(x(t> — ' (t))?

We seek to minimize the above quantity subject to constraints imposed by decentralisa-
tion and imperfect information.

First, we specify a stochastic model of the willingness-to-pay process. We model the
evolution of the willingness-to-pay of each user as an autoregressive process:

wi(t) = pwi(t — 1) + (1 — p)w; + Wie; (1), (4)

where p is assumed to be the same for all users and ¢;(t) is a white Gaussian noise process,
independent for different users. We denote by w(t) the sum of w;(t) over all users. Hence,

w(t) = pw(t—1) + (1 — p)w + we(t),

where W and we(t) denote the sum over i of w; and wW;e;(t) respectively.

This model can be motivated by thinking of the evolution of aggregate willingness to
pay as arising from users entering or leaving the system (or going on or off). Then, the
AR(1) model can be interpreted as an approximation of an M /M /oo model of the number
of active users. Indeed, in the M/M /oo model where customers arrive at the points of
a Poisson process of rate A and depart after independent exponential holding times with
mean 1/, the covariance between the number of customers present at time s and at time
t > s is given by (\/u)e ™= If \/u, the mean number of customers in the system,
is large, then the number of customers is well approximated by an Ornstein-Uhlenbeck
process. An AR(1) model is obtained from this by periodic sampling. If we assume
periodic sampling every § time units, then by setting the AR(1) model parameters p and

2While we do not pursue game-theoretic aspects of bandwidth allocation in this paper, we note that
the optimal bandwidth allocations above are close to being a Nash equilibrium, when the number of
users IV is large and no single user has a disproportionate impact on the system.



Var(e) to be p = e #, and Var(e) = (1 — p*)\/pu, the covariance of the willingness to pay
process matches that of the number of customers in the M /M /oo model.

In the next section, we focus on the communication issue and ignore the control
aspect. We apply rate distortion and quantization theory to assess how accurately users
can estimate the current value of an Ornstein-Uhlenbeck process given delayed feedback
about past values.

In Section 3, we address control and communication jointly. We assess the impact on
welfare loss of feedback accuracy when users employ Kalman filtering. In Section 4 we
do the same for users employing a sub-optimal scheme proposed in [2]. We compare the
structure of the simpler scheme to that of the optimal filter of Section 3.

2 Reconstruction error in the absence of control

2.1 Dedicated feedback

Let us first consider the situation where the resource (link) synthesises feedback individ-
ually for each user. Consider a specific user who receives feedback Y,, based on the price
history before time nd, where ¢ is the frequency of feedback signals generation. Its task is
then to reconstruct the price p(t) at a given time ¢ given the feedback received up to that
time. Let us first consider reconstruction of p(nd) given {Y;,, m < n}. Consistent with
(3) we use mean square error to assess the quality of the reconstruction: the distortion
between the reconstructed signal p(nd) and p(nd) is simply E(p(nd) — p(nd))?. We make
the assumption that the price process is of Ornstein-Uhlenbeck type, i.e.

dp(t) = a(p — p(t))dt + odB;.

The sampled sequence X,, := p(nd) is then a Gauss-Markov process, or an AR(1) process,
described as
Xn+1 = an + (1 - p)ﬁ"‘ Zn,

where p = e, Z, ~ N(0,5), and s = 02(1 — e 2%%)/2a.. We appeal to results of
rate distortion theory for sequential reconstruction to assess the relation between optimal
reconstruction and number of encoding bits per feedback symbol Y;,. Define the sequential
rate distortion function R(D) as

R(D) = lim infl inf I(XT;Y")
n—oo n
where the infimum is taken over all conditional distributions p(Y;*|X7) such that Y{™ is
independent of X, conditionally on X", and E(X,, —Y;,)? < D, forallm=1,...,n.
See [5] for background on this notion. It is shown in [5] that the rate R(D) is a lower
bound to the number of bits per symbol Y,, needed to reconstruct the original sequence
X, in a sequential manner, and with a distortion rate of D.
A computation of R(D) for Gauss-Markov processes is performed in [5], yielding the
formula

B 1 9 S
R(D) = max <0, 3 log (p + 5)) ,



or equivalently, the distortion rate function D(R) is

At a given time point ¢, the user will have access to the feedback signals Y,, such that
md < t — 7, where 7 is the round-trip propagation delay for that user. Assuming that
t — 7 is a multiple of 9, the corresponding distortion would then be,

2

D(R,7) = ¢~ 2" D(R) + ‘27—(1 e,

(0%

or equivalently

0_2 6—2(17-(1 o 6—2046) oo

The ratio of D(oo,7) to D(0,7) is 1 —e™2%7 so that feedback can prove useful only when
aT is not too large, i.e. when the round-trip time 7 is small compared to the critical time
scale o~ ! for the fluctuations in the price process.

Increasing the rate R will produce a measurable improvement when the fraction in
the brackets is of the same order as the other terms in the bracket. This provides a rule
of thumb for inferring when additional feedback will prove useful: increasing R will be
worthwhile in the range [0, R.], where R, is such that the two components in the bracket

are equal, i.e.
1 672(17(1 o 672045)
R, =-log (e :
5 og (e + [ — o2ar

It can be seen that, when 6 < 7, which we expect to be the normal situation, when
more than one packet is sent in each round-trip time, the argument of the logarithm is
maximized when either 6 = 7 or 6 = 0, which yields

1 1
d<T=R < ilog(max(l,Q)) =3

On the other hand, R, can take on large values when 7 < §. In the case when ar <

ad << 1,
1 o
Rcz—log<1—|——>.
2 T

These observations can be summarised as follows. Feedback appears to be useful only
for connections with a round trip time 7 that is of the same order as, or smaller than
the critical time scale a~! of price fluctuations. For feedback synthesised individually
for each traffic source, having more than one bit of feedback per packet does not appear
useful when more than one packet is sent per round trip time.

2.2 Anonymous feedback

We now assume that the resource is no longer aware of the identity of the traffic sources
that generate each individual packet. The feedback signal attached to a given packet is
thus generated based on the history of the global resource usage, but cannot rely on the
history of feedback signals already sent to the corresponding traffic source. This is what



we mean by anonymous feedback. We shall assume that the feedback corresponding to a
given packet is a quantized version of the exact price at the time this packet is treated,
with 2% quantization levels. Quantization theory is surveyed in [3]. It is known for
instance that a Gaussian random variable with variance s optimally quantized over 2%
levels is reconstructed from its quantized version with a mean square error approximately
equal to (mv/3/2)s2 %% for large R.

Suppose users do not exploit the full history of feedback they received, but only use
the most recent signal. This removes the dependence of reconstruction error on sampling
rate. For the same price process statistics as before, denoting by D,(R,7) the mean
square distortion of the price predicted 7 time units in advance by a traffic source, we
thus have the approximate formula

2
D,(R,T) ~ 9

71'\/3 —2ato—2R
—e 2
2c 2

+ 1 - 62&7] )

In the absence of feedback (i.e. for R = 0) the best estimate of price is its mean value,
vielding D,(0,7) = 0%/2a, and the ratio of D,(co,7) to D,(0,7) is again 1 — e 27,
Feedback thus proves useful only when a7 is small.

The corresponding definition of R, is

B — Lo (%) |

2 1 — ef2aT

Assuming that round trip times 7 are of the order of 0.1 second, while o' is of the order
of 100 seconds (think of the duration of a phone call) yields a value of R, = 5.2.

These evaluations rely on optimal coding/decoding, which may not be practical in
the context of the Internet where there are multiple bottlenecks. Indeed, the optimal
quantization levels for a packet at a bottleneck would depend on the path of this packet
through the network prior to reaching this link.

3 A Kalman filtering approach

We now consider the scenario where, in each time slot, the link computes its price based
on the aggregate utilisation in that time slot. This information is quantized and fed
back to users, possibly with some delay. Users have to choose their actions, i.e., their
transmission rates, on the basis of the history of price feedback they have received.

In order to make the analysis tractable, we consider a linearisation of the willingness
to pay, price and transmission rate processes around their mean values. Recalling the
notation introduced in Section 1, let T solve Zp(Z) = w, and let T; = w;/p(T). We shall
henceforth denote p(z) by p and p'(Z) by p'.

Define

vi(t) = wi(t) —w;, yi(t) = z;(t) =Ty, yi (t) = x (t) — Ty, v(t) = w(t) —w, y(t) = x(t) —T.

We can rewrite (4) as



Moreover, (T + y*(t))p(T + y*(t))

w + v(t), which yields on linearisation that

p+7py"(t) = v(D). (6)

Using linearisation together with (6), we now obtain

|
_|_

. vi(t) TP v(t)

yi(t)= —= - ——~=. (7)
p p p+1Ip

Observe that x;(t) — 27 (t) = y;(t) — y7(t). Hence, we obtain from (3), (6) and (7), after

neglecting higher-order terms, that

w; [yi(t)  wi(t) p ()], wE y(t) p ()]’

; T pHIp W |
. (8)
Let F; denote the o-algebra generated by the feedback information available to user ¢
before time ¢. Clearly, the first term above is minimized by taking

(1) = 2. (1) — -t
bi(t) wiv’() pP+TP W

0 _Tigr ()|l

If all users receive the same feedback information, so that F; = F; does not depend on
i, then the above choice of y;(t) yields

Iy TP T
0 = 53t~ S B
so that _ _
T Tp
By(017) == (1- ) Bp()17)

and we see that the second term in (8) is minimized as well.
Define the quantity 3 via [ o Zp'/[p + ZP'] and note that 0 < f < 1. We can now
write the optimal filter equations as
T;

) = 2 i) - sZBlo(017) )

i
and

y(t) = %{vu) — BEu(t)|F]} (10)

If we choose y;(t) as above, then we obtain from (8) that the loss in social welfare is given
by

62
2(1 - p)

where, with an abuse of notation, Var(v(t)|F;) o Var(v(t) — E(v(t)|Fi1))-

We suppose that the only information available to users at the beginning of time slot
t is the history of prices up to the previous time slot, observed with quantization noise.

V(1) - V(x(1) = = Var(u(1)| ), (1)



We take v(t) to be the state of the system at time ¢. Its evolution is described by (4).
We denote the observation at time ¢ by z(¢) defined as

=/

2(t) =p+p'y(t) +n(t) = %v(t) +u(t) + (1), (12)

where u(t) = p— (8/p)E[v(t)|F;] is an Fi-measurable control, and F; = o(2(s),s < t—1).
The noise term n(t) models quantization error in encoding the price in a finite number
of bits. We shall assume that 7(¢) is an iid sequence of Gaussian random variables with
mean zero and variance o;.

We are thus in the standard Kalman filtering setting. Let P, &ef Var(v(t)—E(v(t)|F))
denote the error variance of the state predictor at time ¢. This evolves according to a
Riccati difference equation:

52025 2 p=
P*I—w 0}}4‘% (13)
pon® + PP,
and converges to the unique limit P~ given by
p- o2 —(1—-p) o+ \/472]52030727 + ((1—p?) o2 —72]5203)2
- —Ze 14
w2 * 22 p? ’ (14)
where f =7Zp'/[p +Tp'] and v = /(1 — ). We also have from (11) that
B> P
V(x*(t) = V(x(t) = ———. 15
() = V(x(t) = 57— = (15)

We now combine this with an expression for 072] suggested by the discussion of Section
2. We rely on the asymptotic quantization error formula for high rates and Gaussian
quantized variables. In the present case, this reads

o2 = W\/_ 2728 Var(p,). (16)

Applying linearisation, one has p; ~ p + ]5’ y;. Also, standard arguments yield that
2

o
€ P—
1—p2jL

Var(y) = pi (1 5y

This equation combines with (14) and (16) to form a fixed point equation. This can be
solved exactly as it is quadratic in the unknown 05. The curves in Figure 1 illustrate the
dependency of the resulting quantity P~ as a function of p and R, for z =w =p = 1.
Special cases: If 0’;2] = 0 or, equivalently, R = oo, then the aggregate sending rate x(t)
is observed without error and the optimal predictive variance is

P~ =w’o?.
At the other extreme, if 07 = oo there is no feedback information (R = 0), and the error
1s
wo
1—p?

2 2
e
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Figure 1: Normalized error as a function of number of bits R and p

The ratio of the two quantities is 1 — p? and is a measure of the value of feedback. This
shows feedback has value only when p is close to 1, as expected in view of the discussion
in Section 2.

Next, we describe the Kalman updating equation. The Kalman gain K is given by

5o P
— 52 Pé)p 2 p—" (17)
p?oy +pPP-

Writing 0(¢) as shorthand for E[v(t)|F;], we now have the update equation

/ =~

Bt +1) = pi(t) + K (zoe) ,-Ea —B)W)) = pilt) + KZ10(6) = o(0)] + Kn(),

SRS

Combining this with the description of x; from equation (9) gives the recursion

s+ 1) = pn(e) = EDZP - By gy o)
_owit+1) —pwi(t) BT [P olt)
- y K22 )~ 500) 4100

The term w;(t + 1)/p is the sending rate if the price is fixed at its mean value, so the
recursion adds an adjustment that is a weighted sum of the previous difference between
the rate sent and this quantity (at time ¢) and the difference between the observed price
and its mean. The weights depend upon the rate at which information decays (p) and
also on the gain parameters K and 3, which each lie between 0 and 1.

4 The willingness-to-pay strategy

A simple scheme has been proposed by Gibbens and Kelly [2] and Kelly et al. [4] for rate
adaptation by users that maximizes social welfare in equilibrium. This scheme is based
on users comparing their willingness to pay with the charge incurred in each time slot,
and adjusting their rates accordingly. The rate evolution is described by the equation

zi(t +1) = zi(t) + K(wi(t +1) = zi(6)(p(t) + (1)), (18)
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Figure 2: Welfare loss as a function of number of feedback bits R and correlation coeffi-
cient p, for k = 0.3, with w;/w =0.01,p=w =p = 1.

where x; denotes the transmission rate of user ¢, w; their willingness-to-pay, and p the
price, which is a function of aggregate load. x determines the speed of adjustment, and
n is the noise with which the price information is fed back to users.

To compare the performance of the willingness to pay scheme with that of the frame-
work described above, we now linearize around the stable point 7;p = w;. Defining the
deviations from the stable point to be y;(t) = x;(t) — Z; and y(t) = z(t) — &, gives the
relation

yilt +1) = gi(t) + £(vi(t + 1) — yi(t)p — Tp'y(t) — Tan (1)),
where 7’ is the derivative of the price function at the equilibrium rate . The variable
E(t) == (vi(t),y(t),v;(t +1),v(t +1))" forms a vector AR(1) process,

E(t+1) = MER) +((t+ 1), (19)
where
1—kp —KT;p K 0
B 0 1-k(@+wp) O K
M= 0 0 1-p 0 |’
0 0 0 1-p

and ((t+ 1) = (—kmin(t), —xTn(t), Wie;(t + 1), we(t + 1))T. Let ¥ denote the covariance
matrix of ((t). We have

I€2E%U% I£2Eﬁag 0 0

v I€2Eif(7% I€2E205 0 0
= 2.2 59 2
0 0 wi2 03 wi2 03
0 0 wjo; woo;

Straightforward but lengthy calculations enable us to find variances and covariances for
£(t). As in the case of Kalman filtering, we set the variance o7 as in (16), which again
provides us with fixed point equations for 05. The dependence of the resulting loss in
welfare on the number of feedback bits R and the correlation coefficient p are illustrated

in Figure 2, with the parameter choices w =7 = p=p =1, and w; = .01 for all 7.



5 Concluding remarks

We considered the problem of achieving weighted proportionally fair bandwidth alloca-
tions in a decentralized system with feedback. We derived information-theoretic lower
bounds on the achievable mean square error of bandwidth allocations from their target
values in terms of the feedback rate. For a model with time-varying weights and noisy
feedback, we derived explicit expressions for the mean square error obtained by an opti-
mal filtering scheme, and by a simpler scheme proposed in [2]. These results relate the
mean square error to the rate at which the weights change and the variance of the noise
in feedback. This variance can be related to the number of bits used to encode feedback
information. The results show that the more slowly the weights (and hence the target
bandwidth allocations) change over time, the greater the value of using multiple bits to
provide more precise feedback.
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