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Abstract

Let (Xg)rew be a sequence of i.i.d. random variables taking values
in a set (), and consider the problem of estimating the law of X;
in a Bayesian framework. We prove, under mild conditions on the
prior, that the sequence of posterior distributions satisfies a moderate
deviation principle.
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1 Introduction

Bayesian methods have become increasingly popular in statistics in recent
years and there has been renewed interest in nonparametric Bayesian infer-
ence. In turn, this has stimulated much recent work on the consistency of
these inference procedures. Freedman (1963) and Diaconis and Freedman
(1986) showed that even if the prior puts positive mass in every weak neigh-
bourhood of the true distribution, it does not follow that the posterior mass
of each weak neighbourhood tends to 1 (in fact, it can tend to zero!). Under
the stronger condition that the prior puts positive mass in each Kullback-
Leibler neighbourhood of the true distribution, Schwartz (1965) showed that
asymptotically the posterior does concentrate on weak neighbourhoods of
this distribution. If, in addition, the relevant space of probability distri-
butions satisfies a ‘metric entropy’ condition, then Barron, Schervish, and
Wasserman (1999) show that the posterior concentrates on neighbourhoods
defined by the Hellinger metric; these are finer than weak neighbourhoods.
(The Hellinger distance between two densities f and g with respect to a
reference measure p is defined by [(v/f — /g)*du. As a distance between
probability distribution, it does not depend on the choice of the reference
measure.) Recent research on the consistency of Bayes methods is reviewed
by Ghosal, Ghosh, and Ramamoorthi (1998) and Wasserman (1999).
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There has been comparatively little work on more refined asymptotics for
Bayes posteriors. For smooth parametric families Johnson (1967), (1970)
obtains asymptotic expansions of the posterior distributions while Fu and
Kass (1988) show that the posterior concentrates at an exponential rate.
Rates of convergence in the nonparametric case have been investigated by
Ghosal, Ghosh, and van der Vaart (2000) and Shen and Wasserman (1998).
Results on asymptotic normality of the posterior are few and mixed. Le Cam
(1973) and Ibragimov and Has’minskii (1981) prove central limit theorems
for parametric models under certain smoothness conditions; the covariance
of the limiting normal distribution is the inverse of the Fisher information.
Nonparametric problems are studied by Cox (1993) and Freedman (1999).
Large deviation asymptotics have been studied in Ganesh and O’Connell
(1999) and Ganesh and O’Connell (2000); also see Lynch and Sethuraman
(1987), who establish a large deviation principle for a sequence of Dirichlet
distributions.

In this paper, we obtain a moderate deviation principle for a sequence of
Bayes posteriors. We give the general statement of large and moderate
deviation principles in the next section and compare our results for Bayes
posteriors with Sanov’s theorem for empirical measures. We derive the mod-
erate deviation principle on a finite sample space in Section 3, and extend
it to more general spaces in Section 4. The extension uses the concept of
expounentially good approximations for completely regular topological spaces
introduced by Eichelsbacher and Schmock (1998). We present some exam-
ples in Section 5 and conclude in Section 6.

2 Background

Let (X, 7) be a Hausdorff topological space with Borel o-algebra B, and let
(tn)new be a sequence of probability measures on (X, B). A rate function
is a non-negative lower semicontinuous function on X. Let (A,)new be a
positive sequence decreasing to zero. We say that the sequence (p)nenN
satisfies a large deviation principle (LDP) on X with rate function I and
speed \,, if for all B € B,

— inf I(x) <liminf\,1 B) <1li Al B) < — inf I(x).
L0, 1(z) < liminf Ay log i, (B) < lim sup Ay log in(B) < — inf I(z)
Here B° and B denote the interior and closure of B, respectively. A rate

function I is good, when the level sets {z : I(x) < L}, L > 0, are compact
in (X,71).
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First we consider the case that  is a finite set and denote by M;(Q2) (re-
spectively, M;,(€2)) the space of probability measures (respectively, finite
signed measures) on 2. Consider a sequence of independent random vari-
ables (Xj)rew taking values in €, with common law . For simplicity
we assume that they are defined on the product space QIN. Denote by
Ly : QN — M;(Q) the empirical measure corresponding to the first n ob-
servations:

1 n
Ly(w) = - > ox,(w), nm>1,
k=1

where dx, denotes unit mass at Xj. Sanov’s theorem (Sanov 1961) tells us
that (IP(Ly,, € -)),cn satisfies the LDP on M;(Q), with speed 1/n and with
rate function given by the relative entropy H(-|u). Here,

v(z)
H(v|p) = Y zeqv(z)log (@) ifr< -
+00, otherwise.

If (by)nen is a positive sequence such that

by, b2
— =0 and = =00 as n— oo, (1)
n n

(P20 =) )

satisfies the LDP on M,;(£2) with speed n/b% and rate function

then

s

nelN

I(v) = { %Zmeﬂ %7 if Y peqr(z) =0, (2)

00, otherwise,

where v € My(Q2). I is sometimes called the Fisher-information. This is
the so-called moderate deviation principle (MDP). For a sequence of IR%-
valued i.i.d. random variables X; with a finite moment generating func-
tion Mogulskii (1976) investigated the moderate deviation behaviour for
S, = % iz1 Xi. A moderate deviation principle for (S;,),cn was proved in
de Acosta (1992). The moderate deviation behaviour for (3-(Ln — p)),en
was first considered in Borovkov and Mogulskii (1978), the “full” moderate
deviation principle in de Acosta (1994b).

Suppose next that the Xj’s are i.i.d., but with an unknown distribution
which is to be inferred by a Bayesian procedure. Let the unknown proba-
bility distribution of X be assigned a prior 7 € M;(M1(2)), with support
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denoted by supp w. The posterior distribution, given the first n observa-
tions, is a function of the empirical measure L, and will be denoted by
7w (Ly). Given a sequence (X,)new (equivalently, (Ly)nen), let (,)nen be
a sequence of M7 (€2)-valued random variables (i.e., random probability mea-
sures on {2) such that v, has distribution 7"(L,,) for each n > 1. (Ganesh
and O’Connell 1999) showed that, on the set {L,, — p}, for any p in the sup-
port of the prior, the sequence (IP(vy, € -))newN (= (7™ (Ln)("))new) satisfies
the LDP on M;(f2) with speed 1/n and rate function J(-) given by

J(v) = {H(MIV), if v € supp ,
+00, otherwise.

Let (by)nen be a sequence satisfying (1). We prove that, on the set §-(Ly —
p) — 0, for any “regular” point p in the support of the prior (regularity is
defined below), the sequence (IP(3-(vn — ) € -)), ey satisfies the LDP on
M,($2) with speed n/b? and the same rate function I as in (2) above. In
other words, the moderate deviations behaviour of the empirical process is
identical to that of the corresponding Bayes posteriors. This is in marked
contrast to their large deviations behaviour, where the rate function is H (-|u)
for the empirical process and H (p|-) for the Bayesian posterior distributions.
We extend the result to sequences taking values in a more general space
(S,S) under additional conditions on the prior. Note that we cannot expect
the MDP to hold on general spaces for arbitrary priors because a corollary
of the MDP and the fact that the rate function has a unique zero at p is that
the posterior concentrates in weak neighbourhoods of the true distribution,
w; but Freedman (1963) exhibited a prior on the natural numbers for which
the posterior failed to concentrate in a weak neighbourhood of the true
distribution.

3 The finite case

Let Q be a finite set, and let M;(€2) denote the space of probability mea-
sures on ). Suppose X1, Xo,... are i.i.d. Q-valued random variables with
unknown distribution. Let © € M;(M;(€2)) denote the prior distribution of
the law of X, with support denoted by supp w. For each n, set

1 n
MP(Q) = {525“’” c T € Q”}
=1
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Define a mapping n" : M*(Q2) — M;(M;(€2)) by its Radon-Nikodym deriva-
tive on the support of :

dr” (pn)
dm

(I/) — Ha:EQ y(w)nun(m)
Sy () Tz M) @ (dX)’

if the denominator is non-zero (which happens m-almost surely); 7" is un-
defined at iy, if the denominator is zero. When defined, 7" (y,,) denotes the
posterior distribution, conditional on the observations Xi,..., X, having
empirical distribution p,, € M7 (£2) (this is immediate from Bayes’ formula).
Definition: Let A denote Lebesgue measure on the |Q|-simplex,

(3)

S?P={xeR":2; >0Vi€N, Y z=1} (4)
1€Q

We identify the elements of S with probability distributions on . We say
that u € supp 7 is a regular point of the support of « if there is a neigh-
bourhood of y (in total variation distance) in S on which 7 is absolutely
continuous with respect to A and dn/d)\, the density of m with respect to
Lebesgue measure, is bounded away from zero and infinity on this neigh-
bourhood.

Let v be a signed measure and f a real-valued function on Q. We define

ol = (@), (£l = max f(z).
€ re
If p, v are probability measures on 2, then the total variation distance be-
tween p and v is dry (p,v) = $[lu — v/

Theorem 1 Let (by)ne be a positive sequence satisfying (1) and let i be a
regular point of the support of ™ with u(z) > 0 for all z € 2. Suppose x € QN
is such that the sequence pin, = Y i~ 0z, /1 satisfies || pn, — p||1 = o(bn/n). Let
(Un)new be My (S2)-valued random wvariables such that IP(vy, € -) = 7™ (uy)(*)
for each n > 1. Then the sequence (]P(%(un — ) € ‘))nE]N satisfies the

LDP on My(Q) with speed n/b? and with convex good rate function I given
by
1 v(z)® =0
I(]j) = 2 ZCEEQ u(x) ) Zf ZCEEQ V(x) -

00, otherwise.

Proof: Let (un)nen be a sequence satisfying the conditions of the theorem,
and let (7" (tn))nen denote the corresponding sequence of Bayesian poste-
rior distributions. Let v, be a random element of M (2), with distribution
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" (). We want to establish a moderate deviations principle for the se-
quence of signed measures, 7, = (n/by,) (v, —p). We shall do this by evaluat-
ing the “moment-generating functions”, Ex [exp(b? /n)(f,n,)] for arbitrary
f Q2 — IR and using the Gartner-Ellis theorem (Dembo and Zeitouni (1998,
Chapter 4.5)). Here, (f,n) denotes Y .q f(z)n(z). Observe from (3) and
the definition of 7, that

2

En |f3Xp %(fa 7]n>] = Lign [exp b (fsvn — N)]

Juts ) €XP Loy [t () log 1) + by f () () — pa(a))] ()
Tots () €XP >y [ (@) Log v(2)] (dv)

. fMl(Q) exp [—TLH(:U*n|V) + b (f,v — /L)] 7 (dv) 5
B Tuts ey XD H (i )] (d0) '

We first find the value of v that maximizes the exponent in the numerator
above. Consider the constrained optimization problem:

min  nH (pn|v) — bu(f,v — p)
subject to Z viz) —1=0, v(z)>0Vzel
HASY)

The Kuhn-Tucker conditions (see, for example, Luenberger (1965), Section
10.6) for the optimality of a feasible solution A, are that there exist a;, € IR
and B, (x) > 0 for each x € Q, such that

_nﬂn($) . )+ o — r) —
1n8) b f6) + 0= uls) = .

and Ay (z)Bn(z) = 0,

forall z € Q. Now, p(z) > 0 for all z € Q and ||n, — pt||1 — 0 by assumption,
so, for sufficiently large n, p,(x) > 0 for all z € Q. Hence, it follows from
the above that A\,(z) > 0 and f,(z) = 0 for all z € Q. Thus, we have
ap—byp f(x) > 0 for all z € Q and the solution of the Kuhn-Tucker conditions
is given by

nfin ()

An(2) = — T 6
where the constant «,, is chosen so that ), cq Ap(z) = 1. Now f is fixed,
by,/n — 0 by assumption and ) ,cq pin(z) = 1, so it follows that o, =
n+ O(by,). Note that nH (u,|v) — b, (f,v — p) is a convex function of v (see,
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for example, Dupuis and Ellis (1997), Lemma 1.4.3) and the constraints are
linear in v, so the Kuhn-Tucker conditions are sufficient for the optimality
of \j.

Now, using the fact o, = O(n) and b, /n — 0, we can rewrite the constraint,

Z:ceQ A(z) =1, as

n  nb nb? | o b3

(079 n

To obtain the above, we have used the fact that u, is a probability distribu-
tion, so that Y cq pn(z) = 1. Now, (7) implies the asymptotic expansion,

br, b2 754
Op =1 1+a1 + a9 2+O< )],
n3

where a; and as are unknown polynomials in (f,u,) and (f?,u,), which
are O(1) quantities. Substituting this in (7) and simplifying, we obtain the
solution,

ap = <f7:U'TL>a az = Va'rnf = <f27:U‘Tl> - <fa /1’71>27

and so,
b? b;
ap =n+ by (f, pn) + =Var, f + O <—7§> , (8)
n n

as can be verified by subst1tut1ng back in (7).

In order to evaluate F;n [exp ( fymn)], we rewrite (5) as

where

b2 Z
Ern [eXp g(fa 7]n>] = €Xp [_nH(:Unp‘n) + bn(fa An ,un>] 7?

Zi= [ exp[-nH(unl) + nH(ualAn) + ba(fv = An)] w(dv),
M ()

Z={  expl-nH(ua|v)lr(dv). (9)
M:(Q2)

We have from (6) and (8) that

TEQN

= =2 (a0 = b (@) () = M)

zeN
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25 ) (2t 1) 40 (Z—)

TS
2 3
e

Here, we have used the Taylor expansion, log(1 + z) = z — (22/2) + O(2?),
and the fact that || A, —pn|l1 = O(by/n) to obtain the second equality above,
and the fact that > A, (z) = X pn(x) = 1 to obtain the last equality. On
simplifying the above, we get

by by
—nH (pn|An) + bu(fs Ay — pin) = %Varnf +0 <ﬁ> .

Define Varf = (f2, u)—(f, u)?. By the assumption that ||p, —p|l1 = o(b,/n),
we have
Varf = Var, f + o(b, /n),
and it follows that
b2 b
_nH(:unp‘n) +bn<f7 An _Nn> = “Varf +O | 5 | . (10)

2 n?

We now proceed to derive upper and lower bounds on Z;, Z defined in (9).
Let a,d > 0 be arbitrary, and define

A = {veM((Q): |v(z)— M(z)] < an™/? for all z € Q},
As = {v e Mi(Q): |v(z) — Au(x)| <0 for all z € Q}.
For any «,0 > 0,
ACAs C{ve Mi(Q): [lp—vll <2/Ql0}

for all n sufficiently large, because b,/n — 0, || — pnlli = o(by/n) by
assumption, and it is clear from (6) and (8) that ||un, — An|l1 = O(bn/n).
Hence, it follows from the assumption that u is a regular point of the support
of m and the definition of regularity that, if ¢ is sufficiently small, then

d
E!k>0,K<oo:k§£§KonAand.A5, (11)

where A denotes Lebesgue measure on the |Q|-simplex, S.
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For v € A, we have

gw) = bu(f,v = An) — nH(pn|v) + nH (pin|An)
_ v(z) — An(2)
= by(f, —{—nmzes%lun z) log {1 + (@) ]
= b M)+ D (an = b f () (v () = An(2))
TEQ
_n v(z) — An() 2 n—1/2
3 3 s (P55 +om
> —c, (12)

for some constant ¢ > 0 and all n sufficiently large. We have used the fact
that Y v(x) = Y Ap(z) = 1 to obtain the inequality above. Thus, we have
from (9), (11) and the definition of g, that

Z = / I r(dy) > /A W) ()
> /kefcd)\ ke ¢ vol (A)

\Q\ L
> : (13)
for a generic constant ¢ that does not depend on n. Here, vol (A) denotes
the volume of A as a subset of IRI?I=!.
Observe that g is a concave function of v, g(A,) = 0 and A,, was defined so
that ¢g attains its maximum over M;(Q2) at A,. Thus,

g(r) <0 forallveA (14)

Next, if v € M1(2)\A, let

a,nfl/Z

= @) =@ T (15)

Clearly, v, € 0A, the boundary of A, and we have by the concavity of g that

. q(v.
o) = eglv) + (L= o) = o), e g0) <2 qap)
Moreover, arguing along the lines in (12) yields the reverse inequality

sup g(v) < —c < 0, (17)
vedA
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for some constant ¢ and all n sufficiently large. It follows from (15), (16)
and (17) that for all v € M (Q)\A (2 Ml(Q)\.A(;), we have

1/2
Z v (x z).  (18)

e

—Cn

max [v(z) — Ap(z)] <

<
9(v) < a  zeQ a|Q|

Thus, using (14) and (18), we get the upper bound,

Z = dv)
M1(Q
= /eg m(dv) + eI (dv) + eI (dv)
A As\A My ()\As
< / ™ exp[—cnl/2 Z lv(z) — )\n(w)|]7r(du)
A s\A e
—i—/ exp|—cn'/? lv(z) — \p(2)|| 7 (dv)
Mi()\As [ g;z ]
Q-1
< Kvol (A)+ H / Ke™ Cf'“:J'dx + e~ VM (dv)
Mi(2)\As

[2]-1 Q-1

< cn” 2z 4egnT 2 —{—6_03‘/5,

for some non-zero constants ci, ¢z, ¢3. Thus, for some constant ¢ and large
enough n, we have
Q-1

Zy<en Tz (19)
The derivation of upper and lower bounds on Z proceeds along virtually the
same lines, except that the sets A, A; are centered at u, rather than A,
and the Taylor expansion of H(u,|v) is also done around pu, (for deriving
the upper bound on Z, we can use the well-known inequality, H (uy|v) >
Hlpn — v||?). We omit the details and simply state the result: there are
non-zero constants ¢; and ¢ such that

[©2]-1 [2-1

cn” 2 < Z <cecon” 2 (20)

for all n sufficiently large. Now, we have from (9), (10), (13), (19) and (20)
that, for arbitrary f: Q — R,

n—0o0

2
1
lim b—logEﬂn [exp bn <f777">] = 5VaJrf, (21)
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where 1, = (n/b,) (v, —p). Hence, it follows from the Gértner-Ellis theorem
(Dembo and Zeitouni (1998, Theorem 2.3.6)) that the sequence IP(3- (v, —
1) € *),en satisies the LDP on M,(Q2) with speed n/b? and with convex
good rate function I which is the convex dual of Varf /2. In other words,

I(v) =sup (f,v) — %Varf. (22)
f

Suppose v € My(2) is such that > .o v(z) # 0. Take f to be a constant,
so that Varf = 0. By choosing the constant appropriately, we can make
the right hand side of (22) arbitrarily large; so I(v) is infinite. Otherwise,
if Y ,cav(z) =0, then we find that the supremum in (22) is achieved at f
given by f(z) = v(z)/p(z) for all x € Q. Substituting this in (22), we find

that ( )2
100 =2 5,07

This completes the proof the theorem.

4 The general case

Now let M;(S) and M (S), respectively, denote the set of probability mea-
sures and of finite signed measures on a Polish space S with Borel o-algebra
S. The 7-topology on M;(S) (M (S) respectively) is defined to be the coars-
est topology which makes the maps M7 (S) 5 p — u(A) continuous for every
A€ S. Let B(M(S)) (B(M(S)) respectively) be the o-algebra generated
by the maps Mi(S) > p — u(A) with A € S. Let {Xi}renw denote the
projection maps on the product space (Q,A4) = (ST, S®N) and define the
empirical measure Ly (w) = Y7, Ox,(w) € M1(S) for every w € Q and
n € IN. Note that L, : @ — M;(S) is A-B(M;(S))-measurable. Given
€ My(S), define

I(v) = { L () dp, if v < pand 1(S) =0,

00, otherwise.

By Lemma 2.1 in de Acosta (1994a), the level sets of I are 7T-compact,
therefore I is a good rate function. In this general setting de Acosta proved
the MDP for {n/b, (L, —u)}new with rate I. He applied the projective limit
approach (see, for example, Theorem 4.6.1 in Dembo and Zeitouni (1998)).
Here, we are interested in an MDP for a sequence of Bayes posteriors cor-
responding to the empirical distributions, L,,. For large deviations Ganesh
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and O’Connell (2000) pointed out that an extension of a result for finite
state spaces S to a general space § would require additional assumptions
about the prior distribution. They proved a large deviation principle for
compact spaces S and for Dirichlet priors.
On the moderate scale, defined by (1), we obtain a result in a topology
which is weaker than the 7-topology on M(S).
We assume that the prior 7 is exchangeable with respect to a sequence of
nested partitions and we impose a regularity assumption on the support of
the prior. We will discuss examples of priors satisfying the exchangeability
assumption thereafter.
By a partition P of S we mean a finite collection {A;,...,A,} C S of
disjoint sets whose union is S. Let P be the set of all partitions of S. For
P € P let o(P) denote the o-algebra generated by P.
In what follows, we shall restrict ourselves to a specific sequence of nested
measurable partitions, (Pp,)men, (sometimes called a tree of measurable
partitions) of S; Py, P, ... is a sequence of measurable partitions such that
P41 is a refinement of P, (means P, C 0(Py41)) for each m = 1,2,...,
and such that U,,>1 P, generates the o-algebra S. We note that (F,)men
is a directed set with respect to <, where P < P’ for P,P' € P means
P C o(P'), that is, P' is a refinement of P. (We say P is a directed set
if it is partially ordered and right filtering, i.e., given P, P’ € P, there is a
P" € P such that P < P"” and P’ < P". Since (P,,;,)me is totally ordered,
it is clearly directed).
The restriction of a measure p € M;(S) to the o-algebra o(F,,) is denoted
by up, , ie., up, = E[u|o(Pp)]. For a prior # € M;(M;(S)) we denote by
7p,, the corresponding element in M;(M;(S,0(Py,))), thus the restriction
of m to the Borel o-algebra B(M1(S,0(P,,))). More precisely, we define 7p,
by setting

7p,, (B) =n({v € Mi(S) : vp, € B}),

for all B € B(M;(S,0(Py))). For u, € M;(S) and 7" (u,) € M;(M;(S))
the elements p, p,, and (7"(un))p,, are defined analogously. Here 7™ ()
is (a version of) the posterior distribution conditional on the observations
X1,...,X, having empirical distribution u, € M;(S).

We denote by 5 (pin,p,,) the posterior distribution on M1(S,0(Pp)) corre-
sponding to the prior 7p, and the empirical distribution restricted to o(FPy,),
Un, Py, -

Now we can define
Definition: A prior measure m € M;(M;(S)) is exchangeable with respect
to a sequence of nested partitions if, for every partition P, of the sequence
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(Pp)men, we have the identity

(7" (1n)) P = 7P, (pin, Py )-

The interpretation of the definition is the following: let P,, = {P/", PJ", ...,
P} and af(n),ay'(n),...,a;’ (n) be the number of observations from
X1, Xo,..., X, in the cells P, 1 € {1,...,k,}. Then 7 is called exchange-
able with respect to (P,)m, if for all n, m € IN, the posterior distribution of
(v(P"),v(Pg"),...,v(F)) given X1, Xa,..., X, is the same as that given
ai*(n),ay'(n),...,a! (n). Recall that the posterior distribution may not be
unique. We only require the above to hold for some version of the posterior;
the conclusions of Theorem 2 below will then apply to that version. We will
discuss examples of exchangeable priors at the end of this section.

A probability measure p € M;(S) is called a regular point of the support
of m with respect to the sequence of partitions (P, )men if pp,, is a regular
point of the support of 7p, (as defined preceding the statement of Theorem
1) for every m € IN.

The projective limit topology on M;(S) (M (S) respectively) is defined to be
the coarsest topology which makes the maps M;(S) 3 u +— p(A) continuous
for every A € P, and m € IN. In other words u, — p in the projective
limit topology if up p,, — pp, for all m € IN.

Theorem 2 Let (by)new be a positive sequence satisfying (1). Let m be an
exchangeable prior and p a reqular point of the support of m with respect
to a sequence of nested partitions, (Pp)mew, such that p(A) > 0 for all
A € Upew Py, Suppose x € SN is such that the sequence i, = " 1 6z, /n
satisfies ||pn,p,, — P, |I1 = 0(by/n) for allm € IN. Let (vp)new be a sequence
of M1(S)-valued random wvariables such that IP(vy, € ) = 7" (un)(:) for all
n > 1. Then the sequence (3-(vn — p)) e Satisfies the LDP on M(S) with
respect to the projective limit topology, with speed n/b2 and with convez good
rate function I given by

I(v) = { L fo(&)? dp, if v < i and v(S) = 0.
00, otherwise.

In proving the Theorem, we will use the concept of exponential approxima-
tions in completely regular topological spaces introduced in Eichelsbacher
and Schmock (1998). A completely regular topological space (Y,7T) is a
space where the topology 7T is generated by a family D of pseudo-metrics
which is separating, that is, for each pair of points z # y in Y there exists a
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pseudo-metric d € D such that d(z,y) # 0. Let D’ be the smallest family of
pseudo-metrics on Y which contains D and is closed with respect to finite
maxima.

We observe that the projective limit topology turns M;(S) as well as M (S)
into a completely regular space with the separating family {da}acu,, -, P, of
pseudo-metrics, where d 4 (i, v) := |u(A)—v(A)| for all u,v € M;(S)(M(S)).
Define the balls B(y,d,d) := {z € Y|d(z,y) < §} with y € Y,d € D and
0 >0.

A collection {fin i}tnewicz C M1(Y) with (Z, <) a nonempty directed set
is called a D-exponentially good approximation of a sequence {fi, }nen C
My (Y), if for every d € D', n € IN and i € Z there exists a probability mea-
sure 14, ; on a o-algebra ), ; containing V®? such that the two marginals
are fip,; and fi,, respectively, and

lim suplim sup — log vans({(y,7) € Y2d(y,5) > 6}) = —00  (23)
i€z n—oo T

for every 0 > 0. If the measures v4,; and the o-algebras Vg, ; do not
depend on d € D, then condition (23) for all d € D implies condition (23)
for all d € D'.

We define as usual limsup;c7a; = infjer SUp;e7 j<; @i and lim infiera; =
supjer infiez j<iai. We will apply the following Theorem (Theorem 1.6 in
Eichelsbacher and Schmock (1998)):

Theorem 3 If {1 i}nenier C M1(Y) is a D-exponentially good approzi-
mation of {fin}tnew and if, for every i € Z, the family {pni}neN satisfies a
LDP with a not necessarily good rate function J;, then the following state-
ments hold:

1. {fin}ne satisfies a weak LDP with rate function

J(y)= sup liminf inf J;(2), ey. 24
2 deD’,I(5)>0 1€ zeB(y,d,)) 2,y (24)

2. If J is a good rate function and if for every measurable closed subset
C ofY

inf J(y) < limsup inf J;(y), 25

inf J(y) < nsup inf, i(v) (25)

then the LDP holds for {fin}nen with the good rate function J.
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Proof of Theorem 2: For m € IN, let v/ be a random element of
My (S,0(Py)) with distribution 7% (pn,p,, ). It follows from Theorem 1 for
finite state spaces that, for each fixed m, the sequence

n

M= o = ppy)

n
satisfies an LDP on M (S, o(P,,)) with speed n/b? and with the good rate
function

Ty () = { 5T acr, A i Sacp, v(4) =0, 26)

00, otherwise.

This is well defined since p(A4) > 0 for all A € P, by assumption. We define

M(S.0(Pa) 30 Up () = 3 w4yl 1A

2z (A) € M(S).

Note that Up_(v)(S) =0 for all v € M(S,0(P,,)) having Ip, (v) < co. The
maps Up are measurable and continuous with respect to the projective
limit topology. By the contraction principle, we obtain, for each P, that
the sequence of random elements 7j/» = Wp (nlm) satisfies an LDP in
the projective limit topology on M (S) with the good rate function Jp, :
M(S) — [0, 00], given by

Tp, (v) = {IPm(ﬂﬁ if v=TUp (¥) with 7 € M(S,0(Py)),

00, otherwise.

(27)

We will show for the tree (P,)men that {IPo(70™) "1} en men isa {da, A €
UmeN Py }-exponentially good approximation of {IPon, 1}, in M (M (S)).
Here 1, := (n/b,) (v, — ), where vy, is a random element of M;(S) with
distribution 7™ (p,, ). It follows from the assumed exchangeability of the prior
7 that, for each m € IN and A € o(Py,), n,(A) has the same distribution as
flm(A) = nlm(A). Thus we may construct 7, and (7£™),,cv on the same
probability space simply by taking

P
nnm - nn,Pma

where 7, p,, denotes the restriction of 7, to o(Py). It is immediate from
this construction that IP(d 4 (n,,7.™) > 0) = 0 for alln € IN and A € o(Fy),
k < m. Thus (23) is satisfied.

To apply Theorem 3, it remains to show that (24) and (25) are satisfied
when we make the following identifications: Y = M(S), T is the projective
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limit topology, which is generated by the family of pseudometrics D = {d4 :
A € Up>1Py}, J = 1, for I defined in the statement of Theorem 2, 7 =
(Pm)men, and J; = Jp, -

We first note that the definitions of Ip, (v) and ¥p, (v) extend from v €
M(S,0(Py)) to v € M(S) for every finite partition, P, of the nested se-
quence. Moreover, we may replace the collection of balls, { B(y, d, 6) }4ep’ 50
in (24) by any filterbase of neighbourhoods of y converging to y without
changing the rate function. In particular, the sets

B (v,0) :={r € M(S)|£?DX da(p,v) <d}, melN, §>0,

form a neighbourhood filterbase of v € M (S). We can now rewrite (24) as

I(v)= s liminf inf Jp (V). 28

)7 LN R el 7 )

To prove “>” in (28) observe that WUp, (v) € By(v,0) for all 6 > 0 since
da(v,¥p, (v)) =0 for all A€ Pj. Thus, it is enough to show that

I(v) > Sl]ip lin}ninf Jp,,(¥p, (v)). (29)

But d¥p, (v)/dp is constant on each A € P, by definition of ¥p,, so in
tact Jp,, (¥p,(v)) = Jp,(¥p,(v)) for all m > k. The inequality (29) is now
immediate from (27) and Lemma 1 below.

To prove “<” in (28) for a v € M(S), we consider two cases:

If v & p, then there exists a B € S satisfying u(B) = 0 and |v(B)| =b > 0.
Hence, given § > 0, we can find & large enough and A € o(P;) such that
|v(A)] > b— 0 and u(A) < . Now, for any A € Bi(v,0), we have |A(A)| >
b — 26, and so

b — 26)?
By Lemma 1, we get for all m > k that
b — 26)?

Since § > 0 can be taken arbitrarily small, the right hand side of (28) is
infinity (note that either A = Wp_(X) and Jp, (A) = Ip, (A) or A # ¥p (A)
for any A € M(S,0(P,,)) and Jp, (\) = oo).

If v < p, then, given 7 < I(v), there exists P, such that r < Ip (v), see
Lemma 1 below. Since p(A) > 0 for all A € P, by the assumption of
Theorem 2, z +— z2/(u(A)) is continuous for every A € Py, and there exists
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d > 0 such that r < Ip (7) for all o € M(S) with maxacp, da(v,7) < 0. We
apply Lemma 1 again to obtain Ip, (#) < Ip,, (7) for all refinements P, of Pj.
Hence, r < Ip,,(7) for all m > k and all 7 € M(S) with maxacp, da(v,7) <
d, which implies “<” in (24).

Now it only remains to verify (25). Consider any P, and v € M (S) satisfy-
ing Jp,, (v) < oo. Then v =¥p, (v)and S > s+ 3 4cp (V(A)/1n(A))1a(s)
is a density of v with respect to u. Hence I(v) = Jp, (v) and (25) holds.
This completes the proof of Theorem 2.

The proof of the following Lemma is an adaptation of the proofs of Propo-
sition 15.5 and Corollary 15.7 in Georgii (1988).

Lemma 1 Let v € M(S) and (Py)men a nested sequence of partitions of
S such that o(Up>1Pn) = S. Then Ip, (v) is an increasing function of
o(Py,), and
I(v) = lim Ip,(v) = sup Ip, (v).

Proof: Counsider P < P’, thus o(P) C o(P'). Without loss of generality
we can assume that v < p on o(P'). Let fypry > 0 denote the o(P')-
measurable density of v with respect to p. Then fopy = Eu(foplo(P))
is the density of v with respect to x on o(P). Using Jensen’s inequality for
conditional expectations, we obtain

Ip( 2/E (fopylo(P dM< /E (P") |o(P)) du = Ipi(v).
This proves the first claim of the lemma. By the same argument, we obtain

I(v) > 2161% Ip, (v) = Jim Ip, (v) =h. (30)
Thus it remains to prove I(r) < b for all v such that b < co. In this case,
the restriction of v to each o(P,,) is absolutely continuous with respect to
the corresponding restriction of p, and so the densities f,,, = dvp, /dup,,
exist. It is easy to see that f,, is a martingale relative to p and the filtration
(0(Pm))menw. Moreover,

1 b+1
By, <fm1{fm2k}) < 2 Eu (fswl{fmzk}> S

for every k > 0, and so we obtain that (f,,)men is uniformly p-integrable. It
is also Cauchy; the contrary is impossible because (fp,)men is a uniformly in-
tegrable martingale. Thus f,,, converges in Li(u)-norm to the S-measurable
function, f = du/dv.
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Now for N € IN consider the functions g = N A $(f?) and gm = N A 3(f2).
Since f,, converges to f, g, converges to g. But since 0 < gp,,9 < N, this
implies that E,(|gm — g|) — 0 and therefore

Bylg) = lim_By(gm) < lim In, (v) = b

Letting N go to oo yields I(v) < b which, together with the reverse inequality
in (30), yields the claim of the lemma.

5 Examples

Pélya trees: We now exhibit a class of priors, namely Pdlya tree priors,
which satisfy the exchangeability assumption. A detailed discussion of the
properties of Pélya trees together with some applications can be found in
Mauldina, Sudderth, and Williams (1992) and Lavine (1992); we summarize
the facts that our relevant to us below.

Let S be a Polish space equipped with Borel o-algebra & and consider a se-
quence of nested partitions, Py = S, P = (By, B1), P, = (Boo, Bo1, B1o, B11)
and so on, such that U,,>oP, generates S. Here, for each m and € =
€1+ €y € {0,1}", (B, Be1) is a measurable partition of B, (and By = S).
Degenerate splits are allowed, so we could have By = B and B¢, = (). We
denote by P the set of nested partitions {Fy, Py, P, ...}.

A random probability distribution v € M;(S) is said to have a Pdlya tree
distribution with parameter (P,.A) if there exists a sequence of nested par-
titions P as above, non-negative real numbers A = («g, a1, agp,...) and
random variables C = (Cy, Cyo, Cho, - . .) such that the following hold:

(i) the random variables in C are independent;

(ii) for every €, C¢ has the beta distribution, B(a.p, ®1);

(iii) for every m € IN and € = €1 - - - €y,

m
V(Be) = [T [Cerejoleg=o + (1 = Copoio) =1
J=1

By identifying each B, with a node in a binary tree, we can interpret v(B)
as the (random) probability that a random walk visits the node when, from
each node B, the walker chooses to move to B¢y with probability C¢g and
to Be¢1 with probability 1 — Cy.

The Polya tree distribution is defined above for an infinite sequence of nested
partitions but can be defined analogously for a finite sequence by terminating
the process at some finite level m. If 7 € M;(M;(S)) is a Pélya tree prior



Moderate deviations for Bayes posteriors 19

with parameter (P,.A), then its restriction mp, € M;(Mi(S,0(Py))) to
the partition P, is a Pdlya tree prior with parameter (P™,A™), where
P" = (Py,...,Py) and A™ = (a,e € {0,1}* .k = 1,...,m). Moreover, if
7 is a Pdlya tree prior, then the posterior conditional on X; is also a Pdlya
tree distribution, but with parameters (P, A) where

Ge =ac+1x,e5, e€{0,1}f E=1,2,...

The posterior corresponding to 7p,, is described analogously. It is clear from
this description that the Pdlya tree prior, 7, is exchangeable with respect to
the nested partitions P involved in its definition.

Dirichlet processes: The Dirichlet process is obtained as a special case of
the Pélya tree distribution by restricting A to be such that oo+ a1 = a, for
all e € {0,1}*, k =0,1,.... In this case, we can find identify o, with a(B,),
for some finite non-negative measure v on (S, S). Thus, the Dirichlet process
is also exchangeable. In fact, the Dirichlet process is exchangeable with
respect to any sequence of nested partitions and it was shown in Corollary
2.1 of Doksum (1974) that it is essentially the only distribution with this
property.

If the assumptions of Theorem 2 hold simultaneously for all partitions of S
and the prior is Dirichlet then the sequence of Dirichlet posteriors satisfies
the MDP in the projective limit topology corresponding to any sequence of
nested partitions. But the topology generated by all partitions is simply
the 7-topology on M (S). Note however that it is not possible for u, p to
converge to pp for all partitions P unless S is countable. This is the price
we need to pay to have the MDP in the 7-topology.

6 Concluding remarks

We established a moderate deviation principle for Bayes posteriors on finite
sample spaces. We extended the result to Polish spaces for priors which are
exchangeable with respect to a nested sequence of partitions. It remains an
open problem to identify distributions other than Pdélya trees which satisfy
the exchangeability requirement and also to explore the connections be-
tween exchangeability and seemingly related properties like neutrality and
tailfreeness which have been studied extensively in the literature on Bayes’
methods.
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