HiScamp: self-organizing hierarchical member ship protocol

Ayalvadi J. Ganesh, Anne-Marie Kermarrec and Laurent Massoulié
Microsoft Research
7 JJ Thomson Avenue
Cambridge CB3 OFB, UK

{ajg,annemk, lmassoul }emicrosoft.com

Abstract

Gossip-based or epidemic algorithmsrely on a peer-to-
peer model for dissemination of multicast messages, and
are simple, scalable and reliable. However, traditional
gossip-based protocols suffer from two major drawbacks:
(i) they rely on each peer having knowledge of the global
membership and (ii) they are oblivious to the underlying
network and impose a high load on core router links. In
this paper we present a self-organizing hierarchical mem-
bership protocol which attemps to solve these two issues.
Nodes organize themsel vesinto clusters reflecting the topol -
ogy, and obtain partial views of the membership both within
and outside the cluster. The size of the partial viewsistuned
automatically to achieve high reliability. Gossip messages
are targeted mainly within clusters, thereby reducing net-
work load.

1 Introduction

The lack of deployment of IP multicast has led to interest
in application-level multicast [11]. Centralized or partially-
centralized approaches, proven efficient in local-area net-
works [12], do not scale to large size groups. Recently some
application-layer multicast protocols [3, 16] have been de-
ployed on top of large-scale peer-to-peer routing infrastruc-
tures. These approaches have proven to be efficient and
scalable but require the existence of such a peer-to-peer in-
frastructure.

In this context, gossip-based protocols [1, 4, 6] have been
shown to be both scalable and reliable. This class of pro-
tocols was first introduced to manage consistency in repli-
cated databases [4, 8] but also serves other purposes such
as failure detection [18], garbage collection [5] or more re-
cently system management [17].

These protocols rely on epidemic style dissemination,
and have several attractive features: (i) they are scalable,
(ii) they are highly resilient to failures and (iii) they do not

require the maintenance of global state information. Their
scalability relies on a peer-to-peer interaction model and re-
liability on the use of redundant messages: they use ran-
domization and redundancy to fight random unreliability (of
nodes and network links) in a distributed system. In gossip-
based protocols, messages are propagated as follows. When
anode generates a message, it sends it to a randomly chosen
subset of other nodes. When any node receives a message
for the first time, it does the same. The number of gos-
sip targets is called the fan-out. Many variants of gossip-
based protocols exist, which differ in the number and choice
of gossip targets. Consider first the case when gossip tar-
gets are chosen uniformly at random from among all group
members. It has been shown [13] that, if there are N mem-
bers in the group, then the fanout required to ensure that the
message reaches every group member (with high probabil-
ity) is of the order of log(N). Moreover, with such a choice
of fanout, the number of hops a message traverses to reach
an arbitrary group member is of the order of log(N) [15].
Therefore, the load on each group member and the latency
of multicast delivery increase only logarithmically with the
group size. In addition, performance degrades gracefully in
the presence of node failures and message losses.

Two main factors limit the applicability of gossip in
large-scale, wide-area settings. First, traditional gossip pro-
tocols rely on each node employing full knowledge of the
group membership in choosing gossip targets. This has mo-
tivated work on distributed algorithms [6, 14] to provide
each node with a partial view of the membership that is ad-
equate to achieve high reliability. However, even if each
node has a partial view, some coordination is required to
set and update the fanout value as the size of the system
changes. Second, existing gossip protocols are oblivious to
the underlying network topology and hence impose a high
load on core routers in wide-area systems.

Recently hierarchical epidemic protocols have been pro-
posed to limit the load on core routers in the networks
[9, 17]. In this paper, we present HiScamp, a hierarchical
self-organizing membership protocol for gossip-based dis-

semination which addresses these issues. HiScamp uses a
distance measure to dynamically cluster the nodes in a hi-
erarchy. At each level of the hierarchy, it implements an
instance of Scamp [7], a peer-to-peer membership proto-
col which automatically tunes the size of partial views to
the logarithm of the system size. By targeting most gossip
messages within clusters, the load on core routers is reduced
without compromising reliability. We evaluate HiScamp on
a simulator using the Georgia Tech [19] transit-stub model.
We compare HiScamp (hierarchical gossip) to Scamp (flat
gossip) in terms of link stress and reliability. Preliminary
results show a great reduction in network load at the cost of
a small decrease in reliability and small increase in latency.

2 Fanout and réeiability in gossip-based pro-
tocols

We begin by briefly reviewing the relation between
fanout and reliability for gossip-based protocols. These re-
sults are used to parametrize the membership schemes so
that they provide partial views that are large enough to en-
sure high reliability.

2.1 Flat gossip

Let N denote the number of nodes in the system and sup-
pose each node receiving a message gossips it to K other
nodes, chosen uniformly at random among all the nodes.
It was shown in [13] that, if the fanout K is log(N) + b,
for an arbitrary constant b, then the probability that a gos-
sip message reaches all nodes goes to exp(—exp(—b)) as
N grows large.! Note that this refers, not to the probability
that a given node receives the message, but to the probabil-
ity that every node receives it. Traditionally, atomic multi-
cast verifies the “all or nothing” property, whereas the no-
tion of atomicity in this paper refers to the “all” property.
This result implies that there is a sharp threshold at log(N);
the probability that a gossip message reaches all nodes is
close to 1 if each node gossips to slightly more than log(N)
other nodes, and close to 0 if it gossips to slightly fewer than
log(N) other nodes. Table 1 below shows the relationship
between b and the quantity 1 — e~®2, which is the prob-
ability of failing to reach at least one node. By choosing
the design parameter b appropriately, we can provide a suit-
able probabilistic reliability guarantee. The result can be
extended to account for node and link failures [13].

1The same result applies if the fanout is itself a random number, with
mean E[K] = log(N) + b, under some mild additional conditions on the
distribution of K.

2.2 Hierarchical gossip

In this model, nodes are grouped into clusters, and each
node can gossip to other nodes either within its cluster or in
other clusters. The question is how to choose the number of
gossip targets within the cluster for each node (intra-cluster
fanout, denoted k), and the total number of gossip targets
outside the cluster aggregated over all nodes in the cluster
(inter-cluster fanout, denoted f). In order for gossip to suc-
ceed in this model, i.e., for a gossip message to reach all
nodes, it is sufficient that the message goes from its orig-
inating cluster to every other cluster and that gossip also
succeeds within each cluster. Let there be M distinct clus-
ters with n nodes in each cluster and let N = Mn denote the
total number of nodes. We want to choose the intra-cluster
fanout k and the inter-cluster fanout f in order to guarantee
bounds on the probability of success. It was shown in [13]
that, if f =log(M) —log(B/2) and k = log(N) —log(B/2)
for some parameter B > 0, then the probability that a gos-
sip message reaches all nodes is at least e . Thus, it is
sufficient to take the inter-cluster fanout to be logarithmic
in the number of clusters, and the intra-cluster fanout to be
logarithmic in the total number of nodes (not just the nodes
within that cluster). These estimates can be modified to ac-
count for node and link failures as in the case of flat gossip,
and can also be extended to a multi-level hierarchy of clus-
ters.

3 Hierarchical membership protocol

The objective is to develop a fully decentralized and self-
organising membership protocol which ensures that each
group member has a partial view of the membership of a
size adequate to support gossip reliably (i.e., with reliability
comparable to traditional schemes employing full knowl-
edge of group membership). These partial views should be
created in a peer-to-peer fashion without the use of servers,
and their size should adapt automatically to changes in the
size of the group as members join and leave. We described
in earlier work [7] how these objectives can be met in or-
der to support flat gossip. We proposed a self-organizing
membership protocol called Scamp, which provides each
node with a partial view of the membership. The size of this
view scales automatically as clog(N), the multiple ¢ being
a design parameter. The partial view is used to propagate
gossip messages, and is of the right size to ensure high reli-
ability. The choice of c depends on the degree of resilience
to failures required; atomic multicast can be achieved with
high probability if the proportion of failed nodes or links
is strictly smaller than (c— 1)/c. The partial views gener-
ated by Scamp do not take locality into account. We wish to
augment the basic protocol to support cluster-based gossip,
as described above. When nodes are organized into clus-

b -2 0 2

4 6 8 10

0.999 | 0.632

0.127

0.018 | 0.002 | 3E-4 | 5E-5

Table 1. Dependence on b of probability of non-atomic multicast

ters using topological information, we need to provide each
node with two partial views, one of nodes within the same
cluster, and another of nodes in other clusters. For clarity of
exposition, we describe a protocol with just two levels in the
hierarchy. The scheme can be extended in an obvious way
to handle hierarchies with more than two levels. We begin
by describing the basic Scamp protocol and then show how
it can be modified to maintain a hierarchy of views.

3.1 Protocol overview of Scamp

Scamp is a scalable membership protocol which operates
in a fully decentralized manner and provides each group
member with a partial view of the group membership. The
size of the partial views naturally converges to the value re-
quired to support a gossip algorithm reliably. The protocol
consists of mechanisms for nodes to subscribe (join) and
unsubscribe (leave) from the group, and for nodes to de-
tect and recover from isolation. The partial views at nodes
evolve in response to changing group membership in a fully
decentralised way.

The subscription algorithm proceeds as follows:

1. Contact New nodes join the group by sending a sub-
scription request to an arbitrary pre-existing member,
called a contact. They initialize their partial view with
the nodeld of the contact.

2. New subscription When a node receives a new sub-
scription request, it forwards the new nodeld to all
members of its own partial view. It also forwards c— 1
additional copies of the new nodeld (c is a design pa-
rameter that determines the proportion of failures tol-
erated) to randomly chosen nodes in its partial view.

3. Forwarded subscription When a node receives a for-
warded subscription, it integrates the new subscriber
in its partial view with a probability p which depends
on the size of its view. If it doesn’t keep the new sub-
scriber, it forwards the subscription to a node randomly
chosen from its local view. These forwarded subscrip-
tions may be kept by the neighbours or forwarded, but
are not destroyed until some node keeps them.

4. Keeping a subscription Each node maintains two
lists, a Partial View of nodes it sends gossip messages
to, and an InView of nodes that it receives gossip mes-
sages from, namely nodes that contain its nodeld in

their partial views. If a node i decides to keep the sub-
scription of node j, it places the id of node j in its
partial view. It also sends a message to node j telling
it to keep the nodeld of i in its InView.

Observe that this subscription protocol only requires lo-
cal information available at the node treating the subscrip-
tion request. It is shown in [7] that the system configures
itself towards views of size clogN on average, where N is
the total number of nodes in the system. Performance eval-
uation has shown that multicasting done on top of Scamp
exhibits a similar degree of reliability as traditional gossip-
based schemes which requires each member to maintain the
list of all group members.

The unsubscription mechanism works as follows. As-
sume the unsubscribing node, say node ng, has ordered
the id’s in its partial view as i(1),...,i(£), and the id’s in
its InView as j(1),...,j(¢'). The unsubscribing node will
then inform nodes j(1),j(2),...,j(¢' —c—1) to replace
its id with i(1),i(2),...i1(¢' — c— 1) respectively (wrapping
around if ¢/ —c—1 > £). It will simply inform nodes
j(¢ —c),...,j(¢) to remove it from their list but without
replacing it by any node id. This protocol remains local
and only the unsubscribing node and its direct neighbours
in the graph are involved in the unsubscription process. It is
shown in [7] that this unsubscription mechanism preserves
the scaling relation between view and system sizes.

3.2 HiScamp protocol description

We now describe how to organise nodes into clusters to
reflect the network topology, and how to modify the mem-
bership protocol above to maintain hierarchically structured
partial views of the membership. These partial views can be
used to support the hierarchical version of gossip described
above.

Let D(a,b) denote some agreed measure of distance be-
tween nodes a and b, which each of them can assess. For
instance, it could be the round-trip time between them on
the Internet, measured using ping, or the number of hops on
the path between them. Alternatively, it could be some mea-
sure of the cost of this path, such as the available bandwidth,
which could be measured using pathchar [10] or packet-
pair [2]. HiScamp dynamically builds a hierarchy of clus-
ters of nodes based on D(-,-), using Scamp at each level
in the hierarchy. We illustrate the protocol using a 2-level
hierarchy for simplicity.

Each node maintains two partial views, organized hier-
archically. The first, called hview, has 2 levels (or as many
levels as there are in the hierarchy): level 1 specifies the
nodes to gossip to within the cluster, and level 2 specifies
gossip targets in other clusters. The second partial view,
called iview, has 1 level (or one fewer than the number of
levels in the hierarchy) and specifies the inter-cluster view
of the cluster to which this node belongs. In other words,
the iview of a node is the union of the level 2 hviews of
all the nodes in its cluster. Thus, the hview is specific to a
node, while the iview is common to all nodes in the same
cluster. The iview is not used directly for gossiping but only
for handling subscriptions. We now describe how the nodes
are grouped into clusters, and how these views are created
and maintained.

The subscription algorithm works as follows.

1. A node j joins the system by sending a subscription
request to the node s which is closest to it? under the
distance D(}],-). To the extent that the actual topology
of the group permits efficient clustering, it may be ad-
equate to choose any nearby node rather than the clos-
est, as this would still ensure that the new node joins
the right cluster.

2. If the distance D(],s) is smaller than a preset thresh-
old t, then node s includes j in the cluster to which
it belongs. In this case, the subscription is processed
using Scamp within this cluster. Thus, as in Scamp,
the subscription of j is forwarded to all nodes that s
would gossip to at the lowest level, namely the nodes in
level 1 of the hview of s. In addition, |iview(s)|+c—1
copies of the subscription are also forwarded to ran-
domly chosen nodes in this view, where |iview(s)| de-
notes the cardinality of the iview of s. Each node re-
ceiving a forwarded subscription either keeps it, or for-
wards it to a node in its level 1 hview. The decision
whether to keep or forward a subscription is made just
as in Scamp, but based on the size of the level 1 hview
of the node. Finally, the views of j are initialized as
follows. Its level 1 hview consists just of s, its level
2 hview is empty, and its iview is initialized to be the
same as the iview of s. The last is achieved by having
ssend a message to j with its iview.

3. If D(j,s) exceeds the thresholdt, then node j initiates a
new cluster, and its subscription is handled at level 2 in
the hierarchy. To do this, node s uses its iview to initi-
ate Scamp. Thus, it forwards the subscription to nodes
in other clusters as specified by its iview, as well as
forwarding ¢ — 1 additional copies of the subscription
to random elements of its iview. The hview plays no

2We assume that a mechanism for providing the Id of the closest node
is available; in fact, this is currently an open problem.

role. Forwarded inter-cluster subscriptions are treated
just like in Scamp, and are either kept or forwarded to
other clusters using only the iview’s at each step. The
decision of whether to keep or forward a subscription
is based on the size of the iview only. When a node
keeps such a subscription, it includes the node-id of
the new subscriber in its level 2 hview as well as its
iview. This change is gossiped to all members of its
own cluster, so that they can update their iview’s ac-
cordingly.® Finally, the level 1 hview of j is initialized
to be empty, while its level 2 hview and its iview are
both initialized to {s}.

4. In addition to the partial views, each node maintains a
hierarchically organised Inview consisting of all nodes
that target it for gossip. The level 1 Inview of node j
consists of all nodes i in the same cluster that contain
node j in their level 1 hview, and its level 2 Inview con-
sists of all nodes i in other clusters that contain node |
in their level 2 hview.

| Level 2

Figure 1. HiScamp overview: each level-2
rectangle represents a cluster in which an in-
stance of the Scamp protocol is implemented;
in addition, an instance of the Scamp protocol
is implemented at level 2 to connect clusters.

We show in the next section that the sizes of iview’s con-
verge automatically to clogM, where M is the number of
clusters. Likewise, the sizes of level 1 hview’s converge to
clogN, where N = Mn is the total number of nodes, and n
is the average number of nodes per cluster.

Figure 1 illustrates a two-levels HiScamp protocol. At
the lower level, level 1, each cluster implements an instance
of the Scamp protocol to connect nodes within a cluster.
Each of this cluster is seen as an abstract individual node at
the upper level. An instance of the Scamp protocol is used
to connect clusters between them at level 2.

In the protocol as described, inter-cluster links only con-
nect the nodes that have initiated each cluster. Such nodes
thus represent a single point of failure per cluster, both for

3This is done so that all nodes in the same cluster always have the same
iview. Since iview updates are rare, the amortized cost of synchronizing
iview’s is not large.

messages to reach the cluster, or to be sent outside the clus-
ter. In order to avoid this, we use an algorithm in the back-
ground which balances the level 2 hview’s so as to ensure
that inbound or outbound messages are not handled by a
unique node. Therefore, the inter-cluster links are handled
by different nodes within a cluster.

This is achieved as follows. Any node whose level 2
hview contains more than one element periodically attempts
to hand over one of its external links to another member of
its cluster. To do this, it removes a node from its level 2
hview and forwards the nodeld to a random element of its
level 1 hview (this action is taken only if the level 1 hview
is non-empty). The node receiving this message treats it as
a forwarded subscription; it keeps it with a probability de-
pending on the size of its level 2 hview and forwards it if it
is not kept. Since the number of inter-cluster links is usually
small (logM aggregated over all nodes within a cluster), the
level 2 hview of a node will typically be empty or consist
of just one node, except in very small clusters. A simi-
lar hand-off mechanism is used periodicially by any node
whose level 2 Inview consists of more than one element.

The unsubscription mechanism is exactly analogous to
Scamp. Unsubscribing nodes ensure that nodelds at each
level of their partial views are transferred to nodes in the
corresponding level of their Inview.

It is possible that nodes leave a group without im-
plementing the unsubscription mechanism described. A
lease mechanism to time out subscriptions and force re-
subscription was proposed in [7] to deal with this problem.
The same mechanism can be implemented in HiScamp.

4 Performance evaluation

This section presents preliminary results of simulation
experiments to evaluate the performance and properties of
HiScamp as compare to Scamp. We evaluate and compare
the hierarchical and flat protocols according to the follow-
ing metrics: (i) the impact on the network in terms of link
stress; (ii) resilience to node failures; and (iv) the latency of
message delivery.

4.1 Experimental setting

We evaluated HiScamp through simulations using net-
work topologies generated randomly according to the Geor-
gia Tech [19] transit-stub model. The topology used in this
paper is composed of a 600 node core, with a LAN attached
to each core node. Each LAN has a star topology and is
composed of 100 nodes on average. Thus, there are 60000
LAN nodes; we selected 50000 of these at random to com-
pose our group. Link delays are modeled simply by assign-
ing a propagation delay (1ms to each LAN link and 40.5ms
to each core link). We evaluate the impact of HiScamp by

measuring the stress on each link of the simulated network,
i.e. the number of messages travelling along that link. This
metric provides a good approximation of the load imposed
on the network.

4.2 Impact on the network

9000

8000 -
7000 4 .t Mean = 42
Median = 8
P 6000 -
=
5 5000 -
E 4000
€
=1
Z 3000
.
2000 -
.
.
1000 § .
K
0 — N ‘
1 10 100 1000 10000 100000

Link stress

Figure 2. Distribution of link stress in a 50000
node group using Scamp

The main impact expected from HiScamp is to decrease
the load on core router links.

In order to evaluate this, we compare the load on each
physical link, called the link stress, in Scamp and HiScamp.
In our experiments, we broadcast one message, and the link
stress is defined as the number of copies of this message that
traverse the link. We evaluate the link stress in a non-faulty
environment.

Figures 2, 3 and 4 display the distribution of link stress
on core router links for the dissemination of one multicast
message in an overlay network constructed using HiScamp
with 1, 2 and 3 levels respectively. The 1-level configuration
is equivalent to a flat Scamp which doesn’t take network
topology into account. As expected, the average link stress
is approximatively log(N) and the maximum link stress is
very high since nodes choose gossip targets uniformly, re-
gardless of their physical location. In the 2-level configura-
tion, we set the distance threshold t to 3, which means that
nodes within the same LAN (delay 2) belong to the same
cluster. In the 3-level configuration, we set distance thresh-
olds at t; = 3 and t, = 150. These thresholds were fixed by
observing the distribution of delays in typical 10000 node
configurations. Detection and dynamic setting of thresh-
olds is an interesting issue that we defer at this point of our
study.

The maximum link stress decreases from 46738 4 in the

4This means that almost every node gossips remotly, using a core router
link.

12000

f
10000 +*
b

Mean link stress = 8

. Median link stress = 7

8000 1 Median link stress not including LAN links = 1
P Mean latency = 1674

£

S

% o

5 6000

e}

£

=]

£ 40004,
.

2000 Max=1145
.
; |
3
0 - ; ; ;

0 200 400 600 800 1000 1200 1400

Link stress

Figure 3. Distribution of link stress in a 50000
node group using a two-levels HiScamp

flat setting to 1145 with 2 levels and to 521 with 3 levels. In
both configurations, the medians (with and without includ-
ing the LAN links) indicate that the network traffic mostly
occurs within LANSs. In the 2-level configuration, 952 clus-
ters were built dynamically whith 18 nodes per cluster on
average. In the 3-level configuration, 488 clusters were built
at the lowest level and 107 at the top level. In other words,
there were about 4 level-2 clusters on average in each level-
3 cluster. The results show that clustering significantly re-
duces the stress on core router links. The main impact of
increasing the number of levels in the hierarchy is to signif-
icantly reduce the maximum load on a few core router links.
In both HiScamp configurations, if we consider 99% of the
links, the maximum link stress is 18 (instead of 1145 and
521 if we consider all links).

12000

H
. '
. Mean link stress = 8
10000 . Median link stress = 7
Median link stress not including LAN links = 1
M Mean latency = 1662
8000 —m— _—
< »
k]
5 6000
2 I
£
z
4000
Lo
.
2000 Max=521
.
; |
.
0+ - . - v
0 100 200 300 400 500 600

Link stress

Figure 4. Distribution of link stress in a 50000
node group using a three-levels HiScamp

4.3 Réliability

As mentioned earlier, the performance of gossip-based
protocols degrades gracefully in the presence of failures.
Another important metric to evaluate HiScamp against is
the reliability it provides in comparison to a flat implemen-
tation of Scamp. We evaluate the impact of failures, rang-
ing from 10 to 30% of group members, on the proportion
of nodes reached by a broadcast message. We consider here
a fail-stop model where faulty nodes do not gossip mes-
sages they receive. The table below shows reliability fig-
ures, expressed as the fraction of non-faulty nodes reached
by a multicast message, against the number of node failures.
Results show that Hi-Scamp has a lower resilience to fail-
ure than a flat implementation. We are currently working on
this issue.

% of faulty nodes | 0 10 20 30
% of nodes | 100 | 99.76 | 99.4 | 98.77
reached in Scamp
% of nodes | 100 | 97.39 | 93.64 | 88.99
reached in HiS-
camp (2-levels)

Table 2. Comparison of reliability in HiScamp
and Scamp in a 50000 node system

44 Latency

We also measured the average latency of delivery of one
multicast message from the source to every group member:
group members experience an average delay of 914 with
Scamp, of 1674 with HiScamp with 2 levels and 1662 with
HiScamp with 3 levels. So, increasing the number of levels
in the hierarchy has an impact on latency but achieves a
substantial reduction in the maximum link stress.

5 Conclusion

In this paper, we presented HiScamp, a peer-to-peer
hierarchical membership protocol for gossip-based group
communication. HiScamp is fully decentralized and lever-
ages the self-organizing properties of Scamp, a scalable
membership protocol. Experiments using the Georgia Tech
topology model show that, by exploiting locality, HiScamp
achieves a much smaller link stress than Scamp, but at the
expense of slightly increased latency and degraded reliabil-
ity. This effect is amplified as the number of hierarchical
levels in HiScamp is increased.

The network stress/reliability trade-off needs further in-
vestigation, as does the automated selection of thresholds
and number of hierarchical levels for cluster creation.

Acknowledgments

We would like to thank Miguel Castro and Antony Row-
stron for their substantial role in the development of the sim-
ulator.

References

[1]

[2]

[31

(41

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

K.P. Birman, M. Hayden, O.Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM TOCS 17(2):41-88, May 1999.

J.-C. Bolot. End-to-end packet delay and loss behavior in the internet.
In Proceedings of SGCOMM, 1993.

M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron. SCRIBE:
A large-scale and decentralized application-level multicast infras-
tructure, To appear. IEEE Journal on Selected Areas in communi-
cations (JSAC).

A.J. Demers, D.H. Greene, C. Hauser, W. Irish, and J. Larson. Epi-
demic algorithms for replicated database maintenance. In PODC,
pages 1-12, Vancouver, Canada, August 1987.

K. Guo et al. Gsgc: an efficient gossip-based garbage collection
scheme for scalable reliable multicast. Technical Report TR-97-
1656, Cornell University, Department of Computer Science, 1997.

P.T. Eugster, R. Guerraoui, S.B. Handurukande, A.-M. Kermarrec,
and P. Kouznetsov. Lightweight probabilistic broadcast. In IEEE
Intl. Conf. Dependable Systems and Networks (DSN), 2001.

A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. Scamp: Peer-
to-peer lightweight membership service for large-scale group com-
munication. In Networked Group Communication Workshop (NGC),
volume 2233 of Lecture Notes in Computer Science (LNCS), pages
44-56, London, UK, Nov 2001.

R. Golding and K. Taylor. Group membership in the epidemic style.
Technical Report UCSC-CRL-92-13, UC Santa Cruz, Dept. of Com-
puter Science, 1992.

. Gupta, A.-M. Kermarrec, and A.J. Ganesh. Adap-
tive and efficient epidemic-style protocols for reliable
and scalable multicast. In Submitted to publication,

http: //research.microsoft.com/camdis/gossi p.htm, 2002.

V. Jacobson. Pathchar — a tool to infer characteristics of internet
paths. April 1997.

J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek, and
JW.O’Toole. Overcast: Reliable multicasting with an overlay net-
work. In Fourth Symposium on Operating Systems Design and Im-
plementation (OSDI 2000), Paradise Point Resort, San Diego, Cali-
fornia, USA, October 23-25 2000.

F Kaashoek, a. Tanenbaum, A.S. Hummel, and H.E. Bal. An efficient
reliable broadcast protocol. Operating System Review, 23, 1989.

Probabilis-
available at

A.-M Kermarrec, L. Massoulié, and A.J. Ganesh.
tic reliable dissemination in large-scale systems.
http://research.microsoft.com/camdis/gossip.htm.

M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide-area
network. Technical Report CS1999-0622, University of California,
San Diego, Computer Science and Engineering, June 1999.

B. Pittel. On spreading a rumor. SSAM Journal on Applied Mathe-
matics, 47:213-223, 1987.

Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Application-level multicast using content-addressable networks. In
Proceedings of the Third International Workshop on Networked
Group Communication, November 2001.

[17]

[18]

[19]

R. van Renesse and K.P. Birman. Scalable management and data
mining using astrolabe. In |EEE International workshop on Peer-to-
peer systems (IPTPS), 2002.

R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. In International conference on Distributed Plat-
forms and Open Distributed Processing ((IFIP), 1998.

E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an inter-
network. In INFOCOM96, 1996.

