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Abstract

Gossip-based protocols for group communication have attractive scalability and reli-

ability properties. The probabilistic gossip schemes studied so far typically assume that

each group member has full knowledge of the global membership and chooses gossip tar-

gets uniformly at random. The requirement of global knowledge impairs their applicability

to very large-scale groups.

In this paper, we present SCAMP (Scalable Membership protocol), a novel peer-to-peer

membership protocol which operates in a fully decentralised manner and provides each

member with a partial view of the group membership. Our protocol is self-organizing in

the sense that the size of partial views naturally converges to the value required to support a

gossip algorithm reliably. This value is a function of the group size but is achieved without

any node knowing the group size. We propose additional mechanisms to achieve balanced

view sizes even with highly unbalanced subscription patterns.
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We present the design, theoretical analysis and a detailed evaluation of the basic proto-

col and its refinements. Simulation results show that the reliability guarantees provided by

SCAMP are comparable to previous schemes based on global knowledge. The scale of the

experiments attests to the scalability of the protocol.

keywords Scalability, reliability, peer-to-peer, gossip-based probabilistic multicast, member-

ship, group communication, random graphs.

1 Introduction

The expansion of Internet-wide distributed applications is driving the need for scalable mech-

anisms for reliable group communication [3, 22]. Network-level reliable multicast protocols

such as SRM [13] or RMTP [18] rely on IP multicast [8, 9] which is not currently widely de-

ployed. This motivates the need for application-level multicast protocols, which are at present

an active research topic [5, 27, 6].

Probabilistic gossip-based dissemination protocols have recently emerged as an attractive

alternative, and provide good scalability and reliability properties [4, 19, 24]. In these proto-

cols, each member is in charge of forwarding each message to a set of other, randomly chosen,

group members. This pro-active use of redundant messages provides a mechanism for ensuring

reliability in the face of node crashes and high packet loss rates in the network. It can also be

shown that the load on each node increases only logarithmically with the size of the group, so

these algorithms are scalable. Gossip-based protocols are particularly well adapted to scenarios

in which the group membership is fairly static but the availability of group members is intermit-

tent. Since these protocols tolerate high failure rates, no reconfiguration mechanism is required
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in such scenarios.

Though these approaches have proven scalable for message dissemination, they rely on a

non-scalable membership protocol1: They assume that the subset of nodes that a node gossips

to is chosen uniformly among all participating nodes, requiring that each node should know

every other node. This imposes high requirements on memory and synchronisation, which

adversely affects their scalability. This has motivated work on distributing membership man-

agement [19, 12] in order to provide each node with a partial random view of the system without

any node having global knowledge of the membership. However, the size of the partial member-

ship required at each node in order for gossip-based message propagation to succeed is related

to the size of the system. Therefore, when the group grows, the size of the partial membership

at each node needs to increase accordingly. In earlier work [17], we derived the fanout (num-

ber of gossip targets) required to achieve high reliability as a function of system size. When

the membership management is centralized or distributed among a few servers, the number of

participants is easily determined, and the fanout can be adjusted to match reliability require-

ments. However, in a fully decentralized model, where each node operates with an incomplete

view of the system, this is no longer straightforward. None of the previously proposed partial

membership schemes, to our knowledge, was able to avoid the need to know the system size.

We propose a scalable probabilistic membership protocol aimed at addressing this problem.

The protocol is simple, fully decentralized and self-configuring. As the number of participating

nodes changes, we show both analytically and through simulation that the size of partial views

1Our understanding of scalable membership protocol should not be confused with that of [1], [16] where the
aim is to provide each member of the group with an accurate and timely global view of the membership. The
problem we consider is instead to achieve reliable multicast without requiring global knowledge of membership at
each node.
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automatically adapts to the desired value. These results are achieved for arbitrary subscrip-

tion patterns including the worst-case scenario of all subscriptions targeting the same member.

Evaluation results show that gossip based on the partial views provided by our protocol is as

resilient to failures as gossip based on random choice from a global membership known at each

node. The proposed protocol can potentially be incorporated in existing gossip-based schemes

to reduce memory and synchronization overhead due to membership management.

The remainder of the paper is organized as follows. We describe the membership protocol

in Section 2, including a sketch of the theory behind it. Section 3 presents two complementary

refinements to achieve balanced view sizes even with highly unbalanced subscription patterns.

Detailed evaluations are presented in Section 4. Related work is described in 5, and we conclude

in Section 6.

2 Decentralised membership protocol

2.1 Requirements for supporting gossip-based multicast

Gossip-based protocols use randomization to reliably broadcast messages in a group. They have

been used in various contexts such as publish-subscribe systems [12], distributed databases [10],

distributed failure detection [26], distributed resource location [25], and virtual synchrony [15].

They provide probabilistic guarantees of delivery which degrade gracefully in the presence of

lossy links or failed nodes. When complemented with suitable higher level recovery mecha-

nisms they can provide the basis for offering deterministic guarantees.

There are several implementations of these protocols that differ in the length of gossip

rounds and the number and selection of gossip targets. For the sake of clarity, we test SCAMP
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on a simple gossip-based approach where each node gossips each multicast message once to a

random subset of other nodes. However the mechanisms and results presented in this paper are

applicable to other implementations of a gossip-based multicast protocol.

In gossip-based protocols, messages are propagated as follows. When a node generates a

message, it sends it to a random subset of other nodes. When any node receives a message

for the first time, it does the same. The random choice of gossip targets provides resilience

to random failures and enables decentralised operation. Reliability is achieved by introducing

sufficient redundancy by making the number of gossip targets chosen by each member large

enough, as a function of the group size.

The question is how large these random subsets should be in order for the message to be

reliably propagated to all group members with high probability. Results from the mathematical

theory of epidemics were used in [10] to relate the number of gossip targets to the fraction

of group members who eventually receive the gossip message (this is equal to the probability

that an arbitrary group member will receive the message). In earlier work [17], we showed the

following, sharper result: if there are n nodes, and each node gossips to log�n�� k other nodes

on average, then the probability that everyone gets the message converges to e�e�k
. Note that

this refers, not to the probability that a given node receives the message, but to the probability

that every node receives it. We call this property strong atomicity to distinguish it from the

traditional atomicity property2 which requires that either no node receives the message or every

node does. In [17], we also derived expressions for how the success probability depends on the

failure rate of nodes and links.

2Traditionally atomic multicast verifies the “all or nothing” property, our notion of atomicity in this paper refers
to the “all” property.
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Traditional gossip-based protocols rely on gossip targets being chosen uniformly at random

from among all group members. In the rest of the paper, we will refer to this approach as the

full membership protocol. This requires each node to maintain membership information about

the whole group, and is undesirable in large groups or those where the membership changes

frequently. In [17], we proposed a scheme whereby a set of servers maintains the global mem-

bership list and provides individual nodes with a randomized partial view, which is updated

periodically. Our goal in the present work is to eliminate the need for servers and develop a

fully decentralised protocol which provides each node with a partial view of the membership.

The design requirements for this protocol include:

� Scalability: The size of the partial view maintained at each node should grow slowly

with the group size.

� Reliability: The partial views at each node should be large enough to support gossip with

reliability comparable to that of traditional schemes relying on full knowledge of group

membership.

� Decentralised operation: The partial views should be updated as members subscribe or

unsubscribe while maintaining the above properties. The updates should take place using

only local information. The partial view sizes should scale automatically to the correct

value as a function of the system size, even though no node knows the system size.

� Isolation Recovery: An important property of traditional gossip schemes is that, each

time a node gossips a multicast message, it selects new gossip targets at random. Hence,

while a node may occasionally miss a message, it is very unlikely that it will be left out
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repeatedly. In contrast, if nodes select their gossip targets from a partial view that remains

unchanged for long periods, then a mechanism for recovering from isolation is needed.

In the next sub-section we present the basic membership algorithm, then point out some of

its drawbacks, and propose refinements to address these drawbacks.

2.2 Basic membership management protocol

The protocol consists of mechanisms for nodes to subscribe (join) and unsubscribe (leave) from

the group, and for nodes to detect and recover from isolation. The partial views at nodes evolve

in response to changing group membership in a fully decentralised way.

2.2.1 Subscription

The subscription algorithm proceeds as follows:

1. Contact New nodes join the group by sending a subscription request to an arbitrary mem-

ber, called a contact. They start with a partial view consisting of just their contact.

2. New subscription When a node receives a new subscription request, it forwards the new

node-id to all members of its own local view. It also creates c additional copies of the new

subscription (c is a design parameter that determines the proportion of failures tolerated)

and forwards them to randomly chosen nodes in its local view.

3. Forwarded subscription When a node receives a forwarded subscription, provided the

subscription is not already present in its list, it integrates the new subscriber in its partial

view with a probability p which depends on the size of its view. If it doesn’t keep the new

subscriber, it forwards the subscription to a node randomly chosen from its local view.
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These forwarded subscriptions may be kept by the neighbours or forwarded, but are not

destroyed until some node keeps them.

4. Keeping a subscription Each node maintains two lists, a PartialView of nodes it sends

gossip messages to, and an InView of nodes that it receives gossip messages from, namely

nodes that contain its node-id in their partial views. If a node i decides to keep the sub-

scription of node j, it places the id of node j in its partial view. It also sends a message to

node j telling it to keep the node-id of i in its InView.

Algorithm 1 depicts the pseudo-code for a node receiving a new subscription. Algorithm 2

depicts the pseudo-code for a node receiving a forwarded subscription.

1 Subscription management
Upon subscription of a new subscriber s on a contact node contact

�The subscription of s is forwarded to all the nodes of view�
for all nodes n � PartialViewcontact do

Send(n,s,forwardedSubscription);
end for
�c additional copies of the subscription s are forwarded to random nodes of view�
for (j=0; j� c; j++) do

Choose randomly n � PartialViewcontact

Send(n,s,forwardedSubscription);
end for

2 Handling a forwarded subscription

�n receiving s adds it with the probability p � 1��1�size of PartialViewn��
with probability p � 1��1�size of PartialViewn�
if s �� PartialViewn then

PartialViewn = PartialViewn + �s�;
else

Choose randomly n � PartialViewn

send(ni,s,forwardedSusbcription);
end if
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Observe that this protocol only requires local information available at the node treating the

subscription request. We show below that it has the following desirable properties. If new

nodes join by sending a subscription request to a member chosen uniformly at random from

existing members, then the system configures itself towards partial views of size �c�1� log�n�

on average. Here, n is the number of nodes in the system and c is a design parameter. We

noted above that the probability that a notification reaches everyone exhibits a sharp threshold

at log�n�: it is close to zero for partial views smaller than log�n� on average, and close to 1

for partial views larger than log�n�. This result applies to a system without failures, and can

easily be extended to account for link and node failures [17]. For example, if links fail with

probability ε independently of each other, then the threshold is at �log�n����1� ε�. Another

reason for maintaining partial views of size �c� 1� log�n� for some c � 0 is that it enables us

to choose different subsets of size log�n�� k as gossip targets for different notifications. This

ensures that link and node failures are unlikely to cause a persistent partitioning of the network

and enables us to use recovery mechanisms designed for traditional gossip protocols. We can

thus get many of the benefits of these protocols while maintaining fairly small partial views.

It is possible in the basic algorithm that a subscription is forwarded an infinite number of

times. This happens when the number of copies of a subscription request forwarded by a node

(c plus the outdegree of the contact node) is larger than the group size. This can happen when

the group is small (typically less than 10 for c=0). To avoid this, we limit the number of times a

node forwards the same subscription request. When a node has received the same request more

than ten times, it simply discards the thread.

Our choice of p � 1��1�size of PartialViewn� for the probability of keeping a forwarded

subscription has two motivations. First, by making this probability a decreasing function of
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the current partial view size, we aim to achieve more balanced view sizes at different nodes

and, consequently, a distribution of view sizes that is concentrated around the mean view size.

Second, assuming that the partial view sizes are all roughly of size �c� 1� log�n�, the number

of forwarding steps before a subscription is kept is roughly �c� 1� log�n� on average, with the

above choice of p. It is known from the results in [21] that the random graph under consideration

has a diameter proportional to log�n�. We thus expect this value of p to be sufficient for a

forwarded subscription to traverse a sizable part of the graph before it is kept by some node.

We now give a mean value analysis of the subscription protocol. A sharper analysis taking

the impact of fluctuations around mean values into account can be found in [14].

We model the system as a random directed graph: nodes correspond to group members and

there is a directed arc �x�y� whenever y is in the partial view of x. When a new node subscribes,

the action of our algorithm is to create a random number of additional arcs, as follows. Suppose

there are n members already in the group. If the new node subscribes to a node with out-degree

d, then d � c�1 arcs are added. The new node has out-degree 1, with list consisting of just the

node it subscribed to. The node receiving the subscription forwards one copy of the node-id of

the subscribing node to each of its neighbours, and an additional c copies to randomly chosen

neighbours. All forwarded subscriptions are eventually kept by some node.

Let E�Mn� denote the expected number of arcs when the number of nodes has grown to n,

so that the average out-degree of each node is E�Mn��n. Assuming that new nodes subscribe to

randomly chosen members, we have

E�Mn� � E�Mn�1��
E�Mn�1�

n�1
� c�1�
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from which we find that E�Mn�� �c�1�n logn.

2.2.2 Unsubscriptions

We want an unsubscription mechanism that preserves the above scaling of list sizes with sys-

tem size. Recall that in addition to its partial view, which is used to send out gossip messages,

each node maintains an InView list consisting of nodes which contain its node-id in their partial

views. Assume the unsubscribing node, say node n0, has ordered the id’s in its partial view

as i�1�� � � � � i���, and the id’s in its InView as j�1�� � � � � j����. The unsubscribing node will then

inform nodes j�1�� j�2�� � � �� j���� c�1� to replace its id with i�1�� i�2�� � � �i���� c�1� respec-

tively (wrapping around if ��� c� 1 � �). It will simply inform nodes j���� c�� � � � � j���� to

remove it from their list but without replacing it by any node id. In the unlikely event that this

mechanism requires a node to maintain multiple copies of a node-id, or to maintain its own

id in its partial view, we simply delete the corresponding id. Note that this protocol remains

local and only the unsubscribing node and its direct neighbours in the graph are involved in the

unsubscription process.

This mechanism is motivated by the following heuristic reasoning. When a node unsub-

scribes from a system with n nodes and Mn arcs, the number of arcs decreases by the size of its

partial view, which is Mn�n on average. In addition, all but c� 1 of the nodes that contained

the unsubscribing node in their partial view replace it with an element of its partial view. Thus,

the number of arcs decreases by a further c� 1. Thus, assuming that E�Mn� � �c� 1�n log�n�,
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unsubscriptions yield the recursion

E�Mn�1� � E�Mn��
E�Mn�

n � �c�1�

� �c�1��n�1�
�
log�n�� 1

n�1

�

� �c�1��n�1� log�n�1��

In other words, unsubscriptions preserve the desired mean degree.

2.2.3 Recovery from isolation

The subscription mechanism described above creates a connected graph. However, either node

failures or unsubscriptions can cause the network to become disconnected. The analysis in

[17] shows that the primary mechanism by which the network may become disconnected is

the isolation of individual nodes.3 A node becomes isolated from the graph when all nodes

containing its identifier in their partial views have failed. In order to reconnect such nodes, we

propose a heartbeat mechanism. Each node periodically sends heartbeat messages to the nodes

in its partial view (these are not notifications and are not propagated any further). A node that

hasn’t received a heartbeat message in a long time knows that it is isolated and resubscribes

through an arbitrary node in its partial view. In addition, the lease mechanism presented in the

Section 3 for graph rebalancing also helps reduce the likelihood of prolonged isolation.

3Conditional on disconnection, the disconnection of larger subsets has vanishingly small probability as the
system size, n, grows large.
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3 Mechanisms for rebalancing the graph

We remarked above that the basic protocol creates partial views of the required size provided

new subscriptions are targeted uniformly at existing members and unsubscriptions are indepen-

dent of the current view size. The latter is a reasonable assumption but the former is not; one

would instead expect newcomers to contact one node among a few whose identities are pub-

licly advertised. We would like to ensure that the protocol continues to perform well in such a

scenario. We describe two mechanisms below to achieve this. These operate on different time

scales and are complementary.

3.1 Indirection

The correct scaling of list lengths with system size depends critically on the fact that the node

treating the subscription of new members is chosen at random uniformly among existing mem-

bers. If we let a few specially designated contact nodes treat all new subscriptions, the desired

scaling no longer holds; instead the average list lengths grow faster than expected, and the lists

of the contact nodes grow particularly quickly. We therefore propose indirection mechanisms

whereby the initial contact forwards the newcomer’s subscription request to a node which is

chosen approximately at random among all existing nodes.

The indirection mechanism consists of two parts, a forwarding rule and a stopping rule. The

stopping rule determines whether a node receiving a forwarded subscription request is going to

treat it (and act as the contact). If the node decides not to treat it, the forwarding rule specifies

to which of its neighbours it should forward the subscription request.

The forwarding step requires node i to forward the request to a node j in its partial view
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with probability wi j, specified as follows. Let pred�i� denote the set of nodes in i’s InView and

succ�i� the set of nodes in i’s partial view. The first requirement we want to impose is that all

weights are non-negative and that, for all i,

∑
j�succ�i�

wi j � 1� (1)

so that the probabilistic forwarding rule is indeed well defined. A second requirement is that the

steady state distribution corresponding to the random walk associated with the forwarding rule

is the uniform distribution on all nodes. This is the case if the weights wi j satisfy the additional

constraint that, for all j,

∑
i�pred� j�

wi j � 1� (2)

A matrix of non-negative weights wi j satisfying (1) is called stochastic; if it satisfies (2) as well,

it is called doubly stochastic. If a matrix is irreducible (the associated graph is connected) and

doubly stochastic, then a Markov chain with this transition matrix has the uniform distribution

as its unique steady state distribution.

The weights of links incident at a node i are periodically updated by node i as follows:

wout�i�� ∑
j�succ�i�

wi j� � j � succ�i� : wi j �
wi j

wout�i�
�

win�i�� ∑
j�pred�i�

wji� � j � pred�i� : wji �
wji

win�i�
�

After an update of the first (respectively, second) type, node i communicates the new weights
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wi j (respectively, wji� to the nodes j in succ�i� (respectively, pred�i�). Weight updates are

carried out asynchronously by different nodes, relying only on local information.

This update algorithm is a special case of iterative scaling [7]. Convergence results for

iterative scaling can be stated in terms of the Kullback-Leibler divergence, D�P		Q�; for non-

negative matrices P and Q, this is defined as

D�P		Q� :� ∑
i� j

pi j log

�
pi j

qi j

�
�

Suppose the initial matrix of weights W 0 � �W 0
i j� is such that there is a matrix W which meets

the desired constraints (1), (2) and for which D�W 		W 0� is finite. Then, the sequence of weight

matrices generated by the above update rule will converge to the matrix W � which minimises

the Kullback-Leibler divergence D�W 		W 0� subject to the constraints (1) and (2); see [7] for

details.

The stopping rule is as follows. When a new subscription is received by a node i, it asso-

ciates a counter with the subscription, initialised to a value ni proportional to the size of node

i’s partial view. We took the proportionality constant equal to two in the experiments. It then

forwards the subscription along with the counter to a member j of its partial view with prob-

ability pi j � wi j�∑k�succ�i� wik. Each node receiving a forwarded subscription decrements the

counter and continues forwarding it with probabilities computed as above. When the counter

is zero, the node receiving the subscription is treated as its contact in the manner described by

the subscription protocol above. Our choice of initial value for the counter is motivated by [21],

where it is shown that a similar random graph has a diameter proportional to log�n�. The choice

of the constant of proportionality is ad-hoc.
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The implementation of the algorithm is as follows: Periodically, each node updates its arc

weights according to the algorithm 3 and communicates the new weights to the appropriate

members of its partial view or InView. Upon receipt of a WeightUpdate message, each node

updates the weight of the corresponding arc only. The weights are used afterwards to forward

a new subscription request according to the pseudocode of algorithm 4. Finally, when a new

node is integrated either in the partial view or in the InView of a node, its weight is initialized

to the mean weight of the nodes already present in the view.

Even if all nodes send their subscription requests to the same node, the indirection mecha-

nism described above ensures that the contact node is effectively randomized.

3 Updating arc weights
Wi j on node ni contains the weight associated with the arc(i� j)
Wji on node ni contains the weight associated with the arc( j� i)
Win �∑ j�InViewni

Wi j ;
Wout �∑ j�PartialViewni

Wji ;
�Update weight associated with incoming arcs�
for all nj � InView do

Wji �
Wji

Win

Send(nj , Wji, WeightUpdate);
end for
�Update weight associated with outgoing arcs�
for all nj � PartialView do

Wi j �
Wi j

Wout

Send(nj , Wi j, WeightUpdate);
end for

3.2 Lease mechanism

Each subscription has a finite lifetime called its lease. This could be set either by individual

nodes at the time they subscribe, or could be a property of the group which is imposed on all

members. When a subscription expires, every node holding it in its partial view simply removes
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4 Indirection mechanism for finding a contact node

Upon subscription( s, Counters, newSubscription) of a new subscriber s on a node ni

if ni is the initial contact then
Counters = 2 * Card�PartialViewni�
�Initialise the length of the walk to reach a random node�

else
if Counters �� 0 then
�Normalize weight Wi j of n j �PartialView�
for all n j � PartialView do

Wi j �
Wi j

Wout �ni�

end for
Choose n j � PartialView with probability Wi j

Decrement Counters;
Send(n j, s, Counters, newSubscription);

else
ni acts as the contact node and applies the basic SCAMP algorithm described in algorithm
1

end if
end if

it from the partial view. It is the responsibility of each node to re-subscribe at the time that its

subscription expires. Nodes re-subscribe to a member chosen randomly from their partial view.

Re-subscriptions differ from ordinary subscriptions in that the partial view of a re-subscribing

node is not modified.

The lease mechanism serves two functions. Even if initial subscriptions are concentrated at

a few nodes, re-subscriptions will be less concentrated because they are sent to random mem-

bers of the partial view of the re-subscribing node. This helps to rebalance the size of partial

views across group members. Second, it provides a mechanism for coping with nodes which ei-

ther suffer crash failures or leave the group without unsubscribing using the protocol described

above. Since nodes are removed from partial views after some time unless they re-subscribe,

such nodes will not be present in any views after some time.

Denoting again by Mn the sum of the lengths of all partial views in a system with n nodes, the
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impact of the lease mechanism on Mn is as follows, assuming that Mn is initially of order �c�

1� log�n�. When a subscription expires, the corresponding node’s id is removed from all lists,

which amounts to reducing Mn by �c� 1� log�n� on average. The resubscription mechanism

compensates this decrease in Mn by an increase of �c� 1� log�n�� c on average. We thus see

that this does not preserve the scaling relationship between Mn and n, but leads to an inflation

in the list lengths. Although we evaluated the above lease mechanism, this problem can easily

be circumvented by modifying the re-subscription process to not add the c extra copies of the

re-subscribing node’s id.

4 Simulation results

4.1 Experimental setting

In this section we present detailed simulation results for SCAMP using a discrete event simulator.

Our simulator implements the pseudo code presented in this paper. For each experiment, we

report the mean values of results obtained through 10 runs. To evaluate the consistency of the

SCAMP protocol over groups of different sizes, we ran experiments for groups with size varying

from 100 to 100,000.

The goal of the simulations is to confirm the theoretical analysis regarding the size of partial

membership provided to each node, and to evaluate the reliability properties of gossip based on

SCAMP. For the latter, we compare a gossip protocol relying on SCAMP with one relying on

random choice using full membership knowledge at each node. The comparisons are made after

a subscription phase, and again after an unsubscription phase involving the unsubscription of

half of all group members. Finally, we study the impact of the lease and indirection mechanims
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Figure 1: SCAMP: Distribution of the partial view size in 5 runs of a 50,000 node group.

on the size and distribution of partial views as well as on the reliability properties.

4.2 Partial views

In this first set of experiments, c is set to 0. Therefore, the objective of SCAMP is to achieve an

average view size of log�n�, where n is the size of the group. Recall that a fanout of this order

is required to ensure that gossip is successful with high probability. The results show that the

mean value for the partial view size is very close to log�n�.

Figure 1 depicts the distribution of the partial view size in five runs of SCAMP in a 50,000

node group. Each of the ten runs (for clarity, only five are displayed) exhibits the same shape for

the distribution, with a maximum list size of 39 and a mean value close to log(50000). Figure 2

displays the distribution of the partial view size in a 100,000 node group.

The figures show that the mean size of partial views achieved by SCAMP matches the target

value very closely, supporting our claim that SCAMP is self-organizing. While analytical results

on the success probability of gossip were derived in [17] for two specific list size distributions,

namely the deterministic and binomial distributions, the success probability is in fact largely

insensitive to the actual degree distribution and depends primarily on the mean degree [2]. This

is corroborated by simulations.
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Figure 2: SCAMP: Distribution of the partial view size in a 100,000 node group.

In order to confirm that the results are also applicable to small groups, we conducted 100

simulations on a 100 node group. The mean value of partial view size obtained was 3.9

(log(100)=4.6), which is consistent with the analysis. We don’t show the distribution of view

size for lack of space, but it was concentrated around the mean as in the results shown for larger

groups.

4.3 Resilience to node failures

One of the most attractive features of gossip-based multicast is its robustness to node and link

failures. It can meet stringent probabilistic reliability guarantees in the presence of failures,

without any explicit recovery mechanism. This makes it particularly attractive in highly dy-

namic environments where members can disconnect for non-negligible periods and then recon-

nect.

The goal of this set of experiments is to attest to the quality of the partial view generated

by SCAMP. A key issue is that the partial views be close enough to random in an operational

sense, namely, that they provide reliability comparable to using random choice based on full

membership information at each node. We estimate the resilience to failure achieved by a

gossip-based protocol relying on SCAMP as compared to one relying on global knowledge of
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membership.

The results in this subsection are based on ten runs, setting c to 0. The group is created by

nodes subscribing successively, choosing a contact node uniformly at random from pre-existing

group members. Following the subscription phase, a message is multicast in the group. In the

gossip-based protocol relying on SCAMP, each node gossips the multicast message once (when

it receives it for the first time) to all nodes present in its partial view. In the protocol relying on

full membership knowledge, each node gossips the multicast message, the first time it hears it,

to logn other members chosen uniformly at random among all members. We use the proportion

of nodes reached by a multicast in the presence of node failures as a measure of the reliability

of the protocol.

Figure 3 depicts the simulation results for a 100,000 node system as 0-70% of nodes fail. We

plot the fraction of surviving nodes reached by a gossip message as a function of the number

of failed nodes. Two observations are notable. First, the fraction of nodes reached remains

very high even when close to half the nodes have failed, which confirms the remarkable fault-

tolerance of gossip-based schemes. Second, this fraction is almost as high using SCAMP as

using a scheme requiring global knowledge of membership. This attests to the quality of the

partial views provided by SCAMP and demonstrates its viability as a membership scheme for

supporting gossip.

In the experiments depicted in Figure 3, the source node of the multicast was taken to be the

first node that joined the group. This node is likely to have a larger than average partial view.

Figure 4 displays the results obtained in ten successive runs in a 100,000 node group where the

source of the multicast message was randomized. For each simulation, we show the proportion

of surviving nodes reached by the multicast in the presence of 10% and 50% node failures.
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Figure 3: Reliability of a gossip-based protocol relying on SCAMP versus one relying on a full
membership knowledge in a 100,000 node group
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Figure 4: Reliability in 10 successive simulations

The key result here is that we observe a bimodal behavior: either the reliability is as good

as in a gossip-based protocol using full membership knowledge, or the multicast reaches no

node at all. The latter situation arises when the multicast source is disconnected from the rest

of the group because the nodes present in its partial view have all failed (as in simulation 1

and 6 for 50% node failures, simulation 3 for all configurations or simulation 4 for 10% node

failures). This situation can be easily detected by the source of the multicast and used to trigger

a re-subscription.

Impact of the parameter c As stated before, there are two different measures of reliability

for a gossip-based protocol: the probability that a node receives a multicast message, which we

measured in the previous set of experiments, and the probability of a strongly atomic multicast.
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Figure 5: Impact of c on the partial view size distribution in a 50,000 node group

As shown in [17], a fanout of log�n� is not sufficient to ensure strong atomicity. To increase

the mean fanout, we increase the value of the parameter c in SCAMP. Figure 5 depicts the

distribution of the partial view sizes in a 50,000 node group for different values of c.

In Figure 6, the black bars depict the proportion of strongly atomic multicasts (in ten runs)

for different rates of node failure in a 10,000 node group. The grey bars show the proportion

of nodes reached by a multicast in non-atomic runs. Results are shown for both c=0 and c=1.

While the proportion of atomic multicasts is very low when c=0 and more than 10% of the

nodes have failed, it remains high for c=1 with up to 30% node failures.4 Finally, even when

the multicast is not atomic, the proportion of nodes reached by the multicast message is very

close to 1.

4.4 Impact of unsubscriptions

SCAMP is targeted at dynamic environments where nodes subscribe and unsubscribe from the

group. To evaluate the impact of massive unsubscriptions, we run a set of experiments where

a subscription phase involving n nodes is followed by a phase where a random n�2 of these

4The observation of a 0.9 probability of atomic multicast with 10% node failures as opposed to a probability of
1 with 20% node failures is an artefact caused by our running only 10 simulations.
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n 1,000 5,000 10,000 50,000 100,000
before n/2
unsubscrip-
tions

5.97 7.76 8.14 9.76 10.3

after unsub-
scriptions

5.26 7.07 7.43 9.13 9.6

Proportion
of nodes
reached

0.978 0.99 0.996 0.997 0.998

Table 1: Mean size of partial views with c=0 before and after the unsubscriptions of n/2 nodes
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Figure 7: Impact on reliability of n/2 unsubscriptions in a 50,000 node group

nodes unsubscribe. We set c=0. Table 1 reports the impact on mean list size list as well as

on the reliability guarantees. The mean list size decreases by log�2�, as expected, when the

group size halves. Figure 7 confirms that unsubscriptions don’t significantly degrade reliability.

The reason for the slight decrease in reliability is that some nodes become disconnected as

a result of massive unsubscriptions. This can be detected and repaired using the proposed

heartbeat mechanism. The lease mechanism also repairs disconnections as nodes re-subscribe.

The reliability estimates shown here thus correspond to a “worst-case” scenario immediately

after massive unsubscriptions.

4.5 Impact of the lease mechanism

The nodes subscribing first to the group are likely to have larger partial views than the nodes

subscribing last. In particular, the last node to subscribe will have only its contact node in its

partial view. To balance the graph and avoid this artefact, we proposed a lease mechanism. In

the experiments reported here, we use a group of 50,000 nodes, c is set to 0 and the results

are averaged over ten runs. The experiment is as follows: during the first phase, all the nodes

subscribe. During the second phase, all node subscriptions are expired in random order and

nodes subscribe again to a random node in their partial view. Figure 8 shows the impact of the
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Figure 8: Distribution of the partial views by size in a 50,000 node group with and without the
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lease mechanism on the distribution of partial view sizes. Observe that the distribution becomes

more sharply concentrated around its mean value.

Figure 9 shows the impact of the lease mechanism on reliability. The figure displays the

proportion of nodes reached by a multicast as the percentage of node failures varies from 0 to

70: (i) the black bars report the results when using a gossip-based protocol relying on SCAMP

without the lease mechanism, and the source of the multicast is the first member of the group

(Node 0); (ii) the grey bars correspond to gossip using SCAMP with the lease mechanism,

when the source of the multicast is the first member of the group ; (iii) the light grey bars

refer to gossip using SCAMP with the lease mechanism, when the source of the multicast is a

random member of the group. The results show, first, that the lease mechanim increases the

probability of delivery (0.998 for 50% node failures) over SCAMP without lease. Second, the

lease mechanism overcomes the performance penalty in multicasting from a random source

illustrated in Figure 4. The reason is that, by rebalancing views, the lease mechanism ensures

that even the last nodes to join the group don’t end up with very small partial views. The risk of

disconnection due to failures is thus reduced.
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Figure 9: Impact of the lease mechanism on the reliability guarantee in a 50,000 node group

4.6 Impact of indirection

SCAMP relies on the assumption that a new member chooses its contact at random. In practice,

new subscriptions are likely to contact one of a few well-advertised nodes. We proposed a

mechanism to redirect new subscriptions to a node chosen approximately at random from the

group. To test its efficacy, our experiments were carried out in an extreme scenario where

all subscriptions choose the same contact, namely the first member of the group. Without a

redirection mechanism, this subscription pattern has a huge impact on list sizes. For example,

in a 50,000 node group, the mean size of partial views is 789.83 whereas the target value is 10.8.

Moreover, nodes located close to the contact node in the graph have very large partial views.

This is reflected in a large standard deviation (208.23) for the list size.

The results described below are for a 50,000 node group. Figure 10 shows the efficiency of

the indirection mechanism we propose. The black curve presents the distribution of list sizes

when all nodes choose the same node as their contact and the indirection mechanism is used to

forward the subscription. The mean value of size list is 8.68. To implement this mechanism,

each node periodically refreshes its weights (every 10 subscriptions in these experiments). The

figure shows that the distribution of list sizes is comparable to what is obtained when nodes
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Figure 11: Impact on reliability of the indirection mechanism in a 50,000 node group

choose a contact uniformly at random, though the mean is slightly smaller.

Figure 11 displays the impact of the indirection mechanism on reliability. We believe that

the discrepancy between SCAMP using a random contact and SCAMP using a single contact

and indirection is mainly due to the difference in the mean partial view size rather than to the

contents (potential non-randomness) of the partial views.

5 Related work

In this section we review different approaches to decentralized membership protocols for application-

level multicast. Recently, a class of decentralized application-level protocols relying on peer-

to-peer generic object location and routing substrates have emerged ([6], [27], [23]). They use
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the routing functionality of the peer-to-peer overlay either to build a multicast tree in a decen-

tralized fashion (Scribe [6] and Bayeux [27]), or to build a mini-overlay [23] in which multicast

messages are flooded. These approaches are more complex than the method we presented. They

require the existence of a peer-to-peer overlay and they achieve reliability reactively: when fail-

ures are detected, the tree or the mini-overlay is repaired and lost messages are retransmitted.

In contrast, gossip-based algorithms are easy to deploy due to their simplicity and implement

a pro-active reliability mechanism [15]. However, this simplicity is achieved at the expense of

more traffic on the network.

While gossip protocols are scalable in terms of the communication load imposed on each

process, they usually rely on a non-scalable membership algorithm. This has motivated work

on distributing membership management [19, 12] in order to provide each node with a random

partial view of the system, without any node having global knowledge of the membership.

Another approach to this issue is presented in [20], where a connection graph called a Harary

graph is constructed and messages are flooded over that graph. Optimality properties of Harary

graphs ensure a good trade-off between the number of messages propagated and the reliability

guarantees. However, building such a graph requires global knowledge of membership, and

maintaining such a graph structure in the presence of subscriptions and unsubscriptions might

prove difficult.

Directional Gossip [19] is primarily aimed at reducing the communication overhead of tra-

ditional gossip protocols. To each LAN is associated a gossip server, which knows only its

immediate neighbours in the wide-area network. As the gossip server gains information on the

routes taken by multicast messages, it prunes links from the connection graph defined by the

neighbour relation. The pruning reduces communication overhead without significantly degrad-
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ing the connectivity of the graph. In our work, the emphasis is primarily on reliability under

failures rather than on efficiency.

Finally, Lpbcast [12] is a fully decentralized membership protocol. Nodes periodically gos-

sip a set of subscriptions they heard about during the last period to a random subset of other

nodes, chosen from their partial view. A node receiving such a gossip message updates its par-

tial view by replacing a randomly chosen node-id with a newly received one, and gossips the

nodeId removed from its partial view. While this mechanism achieves a good randomization of

the partial views, the size of the partial view and the number of gossip targets are fixed a priori,

which precludes decentralized adaptation to changes in system size.

In contrast to these approaches, Scamp is self-organizing. It provides fully decentralized

membership management with the properties to achieve gossip-based multicast with high relia-

bility.

6 Conclusion

In this paper, we have presented the design, theoretical analysis and evaluation of SCAMP, a

membership protocol for gossip-based event dissemination. SCAMP provides each member of

the group with a partial view, that is a list of identities of other group members. This forms

the basis for broadcasting messages across the group, by enabling each member to propagate

messages to all or to a subset of those members whose identities are in its own list.

The mechanisms implemented in SCAMP require no centralised operation, and no global

knowledge needs to be maintained anywhere in the system. As nodes join and leave the group,

the partial view sizes scale automatically in proportion to the logarithm of the number of mem-
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bers in the group, even though no group member knows the size of the group. This scaling

relationship has been verified both by analysis and simulation, the latter for systems compris-

ing up to 100,000 members. As former analyses of standard epidemic-style gossip-based event

dissemination [17, 11, 2] suggest, taking list sizes of the order of the logarithm of the system

size is necessary in order for members to receive disseminated events with a high probability.

We have also verified that message multicasting done on top of SCAMP exhibits the same

degree of reliability as traditional gossip-based schemes which require each member to maintain

the list of all group members.

The above properties of the basic subscription and unsubscription algorithms of SCAMP de-

pend critically on a symmetry assumption, namely that new members joining the group initially

contact a member chosen uniformly at random among all existing members. This led us to

complement the basic algorithm with additional mechanisms that allow us to relax this symme-

try assumption. The first is an indirection mechanism for forwarding new subscription requests

from an arbitrary member to one that is chosen approximately uniformly at random among all

group members. The second is a lease mechanism, which helps rebalance the partial views of

nodes in the system. These mechanisms enable us to maintain the good properties of SCAMP

even in the extreme situation where new members always contact the same member in order to

join the group.

We believe that SCAMP is a potentially useful alternative to other membership management

schemes implemented in conjunction with gossip-style event dissemination, as it offers the

same reliability properties while relying only on decentralised operations, and putting very low

memory requirements on group members. Future work on SCAMP will focus on incorporating

criteria such as locality, network load and message propagation delay into the construction of
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the partial views maintained by users.
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