
Efficient and Adaptive Epidemic-style Protocols for

Reliable and Scalable Multicast

Indranil Gupta∗ Anne-Marie Kermarrec† Ayalvadi J. Ganesh‡

indy@cs.uiuc.edu, Anne-marie.Kermarrec@irisa.fr, ajg@microsoft.com

Abstract
Epidemic-style (gossip-based) techniques have recently emerged as a class of scal-

able and reliable protocols for peer-to-peer multicast dissemination in large process
groups. However, popular implementations of epidemic-style dissemination suffer
from two major drawbacks: (a) Network Overhead: When deployed on a WAN-
wide or VPN-wide scale they generate a large number of packets that transit across
the boundaries of multiple network domains (e.g., LANs, subnets, ASs), causing an
overload on core network elements such as bridges, routers, and associated links; (b)
Lack of Adaptivity: They impose the same load on process group members and the
network even under reduced failure rates (viz., packet losses, process failures). In
this paper, we describe two protocols to address these problems: (1) a Hierarchical
Gossiping protocol, and (2) an Adaptive Dissemination framework (for multicasts)
that allows use of any gossiping primitive within it. These protocols work within
a virtual peer-to-peer hierarchy called the Leaf Box Hierarchy. Processes can be
allocated in a topologically aware manner to the leaf boxes of this structure, so that
(1) and (2) produce low traffic across domain boundaries in the network, and induce
minimal overhead when there are no failures.
Keywords (from IEEE taxonomy): Distributed Systems, Reliability, Network
Communication, Simulation.
Other Keywords: Multicast, Reliability, Epidemics, Gossip, Adaptivity, Topology-
awareness.

1 Introduction

Context and Previous Work: The emergence of application scenarios for large-

scale peer-to-peer (p2p) systems on the Internet is driving the need for scalable and

reliable solutions to the multicast problem in distributed process groups. Examples of

∗(corresponding author) Dept. of Computer Science, University of Illinois at Urbana-Champaign, IL
USA 61820. Ph: +1 217 265 5517. Fax: +1 217 265 6494.

†IRISA/INRIA Campus Universitaire de Beualieu, 35042 Rennes Cedex, France. Ph: +33 2 9984
2598.

‡Microsoft Research, 7 J J Thomson Ave., Cambridge, UK CB3 0FB. Ph: +44 1223 479700.

1

such systems include publish-subscribe [9], distributed hash tables (DHTs) for file sharing

and archival [25], replicated databases [7], distributed failure detection [27], distributed

resource location [26] and virtual synchrony [14]. These applications require a group

multicast protocol that is a) reliable, even in the presence of network packet losses and

process crashes, and b) scalable in terms of load imposed on the network and participating

processes, as system size grows into hundreds or even thousands of processes.

Network layer protocols such as SRM [10] or RMTP [22] augment best-effort IP mul-

ticast by using negative or positive acknowledgments to repair packet losses. However,

the number of request and repair messages grows linearly in the group size, which limits

their scalability [3, 19, 28]. In addition, the lack of deployment of IP multicast limits

their applicability. These factors have stimulated interest in application-level multicast.

Several application layer protocols, e.g., [1, 4], have been proposed.

This paper focuses on gossip-based (epidemic-style) protocols for application layer

multicast. Gossip-based protocols spread multicasts in a process group in a randomized

peer-to-peer fashion much like the spread of rumors in society, or of a contagious dis-

ease in a population. They have been used in a variety of information dissemination

applications [3, 7, 8, 14, 15, 26]. The majority of gossip protocols proposed to date (see,

e.g., [3, 7, 8]) can be abstracted into a canonical protocol called “Flat Gossip”, which

disseminates a multicast as follows: each group member that receives the multicast gos-

sips about it for log(N) rounds, where N is the group size and a round is a fixed local

time interval at the member. In each round, the group member selects b other members

uniformly at random (flatly) from the group membership (or from the members it knows

about), and sends each of these targets a copy of the multicast message.

This protocol is reliable in a probabilistic sense: it can be shown, by adapting the

analysis in [16], that the probability of a given member receiving the multicast is:

2

1− 1
Nb · (1 + o(1)). The protocol is fault-tolerant as its randomized nature helps it “route

around” member failures and dropped messages. For example, if the network drops a

fraction f of messages at random, then the probability that any given member receives

the multicast is 1 − 1
N(1−f)b · (1 + o(1)). Deterministic reliability can then be provided

through a low-overhead recovery layer, inserted in the network stack between the epidemic

dissemination and application layers; an example is virtually synchronous multicast [14].

We do not study the deterministic extension here; it is however feasible, since the good

probabilistic properties of our protocols would make the recovery layer very low-overhead.

Large networks, such as wide area networks (WAN) or corporate virtual private net-

works (VPN) spanning several locations, are structured as a hierarchy of domains. For

example, the Internet is structured hierarchically through domains such as ASs, Class

A/B/C networks, subnets, local Ethernets etc. Flat Gossiping is oblivious to network

topology, and hence generates substantial network traffic into and out of these domains.

This translates into significant network overhead on connecting core routers, bridges and

links. Such behavior is undesirable since it limits the deployment of multiple large process

groups, as well as degrades non-gossip-based applications sharing the network.

Network overhead could be reduced by tailoring the choice of gossip targets to the

specific underlying topology as in [7], but a more general strategy applicable to any topol-

ogy is desirable. One such strategy is proposed in [27], where targets are probabilistically

weighted so that, in each gossip round, only a constant number of gossip messages transit

out of any given network domain. Another strategy is Directional Gossip [17], which

calculates target weights dynamically. Hierarchical gossiping algorithms have also been

proposed for managing distributed MIBs and for content filtering in publish-subscribe sys-

tems [9, 26]. However, the protocols in [9, 26], as well as Directional Gossip, are sensitive

to member distributions across the topology and hence require careful tuning.

3

Another reason gossip protocols impose a high network load is their high degree of

redundancy: each node receives of the order of log(N) copies of each multicast message,

on average. Previous work [3, 7, 8, 16, 27] has embodied the view that receiving mul-

tiple copies of a multicast in gossip-based protocols is acceptable overhead in exchange

for reliability. Current gossip protocols continue to incur this overhead even if there are

negligible message losses and process failures in the underlying network during the multi-

cast. In other words, they lack adaptivity, in the sense of imposing lower overhead when

there are fewer failures. Deterministically Constrained Flooding [18] is a technique that

can lower overhead when there are a small number of failures. However, as failure rates

increase, the reliability of this protocol degrades faster than that of gossip, whereas the

reliability of the adaptive scheme that we propose is always bounded from below by that

of the gossiping primitive it uses.

Contributions of this Paper: In this paper, we propose two new protocols for

gossip-based multicast that address the issues of network overhead and adaptivity. These

are a) a Hierarchical Gossiping algorithm, and b) an Adaptive Dissemination (Multicast)

framework. Both these protocols work within a virtual hierarchy for the process group,

called the Leaf Box Hierarchy. This is a generalization of the Grid Box Hierarchy of [13],

and can be constructed in a topology-aware manner in order to achieve low network load.

The Hierarchical Gossiping algorithm [12] uses a weighted target selection similar in

spirit to that of [27]. We derive probabilistic guarantees on reliability, latency and domain

boundary load that hold for any distribution of members across the network topology.

Simulations confirm that this achieves a substantial reduction in network overhead (load

across network domain boundaries and on router links) compared to flat gossip schemes,

while achieving similar probabilistic reliability and only slightly higher latency.

4

The Adaptive Dissemination framework can be combined with any gossiping primitive

to achieve reliability comparable to the basic gossiping approach, with a reduction in

overhead when the failure rates (of members and message deliveries) are low. It works

by initially attempting to disseminate the multicast via a virtual tree spanning the group

members. This virtual tree is constructed dynamically, on the fly (using random seeds)

and locally. Each member uses only local information for this construction - its leaf box

address and local membership list. The tree is constructed in such a way that it mirrors

the location of processes in the Leaf Box Hierarchy (and the network topology if the Leaf

Box Hierarchy uses a topologically aware mapping). The protocol transitions to gossiping

in subtrees of the Leaf Box Hierarchy where the global tree construction fails due to

message losses or process failures. This localizes gossip to only the lossy regions of the

Leaf Box Hierarchy.

The paper is organized as follows. Section 2 presents algorithms for Leaf Box Hierarchy

construction and membership maintenance. The Hierarchical Gossiping protocol and

Adaptive Dissemination framework are presented in Sections 3 and 4. Section 5 presents

an evaluation of the protocols through simulations. Section 6 concludes.

2 The Leaf Box Hierarchy

The Leaf Box Hierarchy is generalized from the Grid Box Hierarchy of [13], and is defined

by three parameters that are assumed to be known consistently at all processes: a small

constant, K, an estimate N of the current group size (rounded up to the next higher

power of K), and a consistent map function H that maps each member into a leaf box.

Estimation of N may be done either by individual members or by periodic dissemination

within the group. The number of leaf boxes in the hierarchy is N/K and the function H

5

M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

Leaf Box - 00 Leaf Box - 01 Leaf Box - 10 Leaf Box - 11

Figure 1: Example of a Leaf Box Hierarchy for a group of 8 members {M1 . . . M8} with K = 2;

there are N/K = 4 leaf boxes. The process M5 in this figure lies in leaf box 01, which lies within

Subtree-0*, which in turn lies within Subtree-**. Leaf Box 01, Subtree-0* and Subtree-** are thus M5’s

height 0,1,2 -subtrees respectively. The internal nodes labeled Subtree-0* and Subtree-** are the first

and second internal node ancestors of M5 respectively.

is used to map each member to one of these leaf boxes.

Each leaf box has a (logK(N)−1)-digit address in base K. Subtrees of height j in the

hierarchy contain the set of leaf boxes whose addresses match in the (logK(N) − 1 − j)

most significant digits; thus, a subtree of height 0 is a leaf box, and a subtree of height

(logK(N) − 1) is the whole group. A member Mi can calculate the leaf box address of

any other group member Ml in its view by applying the consistent map function H . We

define the jth internal node ancestor of a member Mi as the root of the height-j subtree

that Mi lies in.

Figure 1 shows a Leaf Box Hierarchy with parameters K = 2, N = 8 and a map

function that we will describe soon. Note that the hierarchy is designed in a peer-to-peer

fashion: internal nodes are not associated with any particular group member, but with

the entire subset of members lying in the leaf boxes of the subtree rooted at the internal

member. This design decision avoids the overhead of reorganizing and maintaining the

hierarchy on each individual process failure.

6

M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

Leaf Box - 10Leaf Box - 01 Leaf Box - 11Leaf Box - 00

Domain 2 Domain 1

Figure 2: Example of Contiguous Mapping for the process group from Figure 1.

Using cryptographic hashes (e.g., MD-5 or SHA-1, utilized by peer to peer systems

such as Chord [25] and Pastry [24]) for H offers no topological awareness. Instead, for

a hierarchically structured network such as a WAN or a corporate VPN, we propose a

mapping scheme called the Contiguous Mapping. This scheme assigns to each network

domain a set of leaf boxes that are contiguous in the lexicographic space of leaf box

addresses. The assignment is done top-down in the hierarchy of network domains, and

a group member then belongs to a randomly chosen leaf box from among those assigned

to the smallest domain to which it belongs. This scheme is preferable to associating each

subtree with a single domain (e.g., as in Astrolabe [26]), since it can be made to fit any

distribution of group members across domains. Figure 2 shows a possible Contiguous

Mapping for the example process group in Figure 1.

Reorganizing (K, N, H): Our design assumes consistent knowledge of the tuple

(K, N, H) across the group. In a dynamic group where the composition and distribu-

tion of the group changes continuously, the map function and associated consistent value

of N may need to be changed through a group-wide reorganization. Although a detailed

study of reorganization is beyond our scope here, we (1) briefly detail the feasibility of

7

such reorganization, and (2) show in Section 5 that protocols such as hierarchical gossiping

degrade only slightly even if reorganization is infrequent, and (N, H) is outdated.

The reorganization can be carried out in either a centralized manner at the introducer

member (which all new joiners contact), or in a distributed fashion. The group size N can

be kept track of continuously, either at the introducer or through a distributed algorithm

such as in [20]. Note that only when this estimate crosses a threshold compared to the

current N being used in the Leaf Box Hierarchy, does a reorganization need to be initiated.

Although most peer to peer systems are dynamic, the number of nodes does not change

much, even over a long period of time [2]. Thus, we expect that reorganization will be

required only when the leaf boxes become unbalanced. Network locations of hosts can be

found using schemes like Landmark [23], GNP [21], Vivaldi [5], and others, provide an

approximate knowledge of the topology. When too many leaf boxes become overloaded,

underloaded or skewed, a reorganization can be initiated 1.

Finally, we emphasize that the formal description of protocols within the Leaf Box

Hierarchy do not depend on the topological awareness of H . Analytically, in a world where

the latency and message loss probability on all member-to-member routes are assumed

to be the same (this is an ideal assumption) the topological awareness of H has an effect

only on the domain boundary load of the Hierarchical Gossiping protocol, but does not

affect its latency, reliability, or per-member overhead.

Composition of the View: Multicast protocols require each group member to main-

tain a view - a list of other group members that it knows about. Views may be partial

and inconsistent. The view needs to be small in order to minimize memory storage and

target computation time during gossip rounds. Yet it should be large enough to prevent

1More accurate estimation and network location algorithms will lead to a better match between the

predictions of our analysis and the actual load on core network elements.

8

partitioning of the group, and to ensure that the reliability of gossip is not degraded.

We now describe the view composition required for the gossip protocol to be described

in the next section. Each member Mi maintains a view that consists of logK N subviews.

The jth subview, V iewMi
[j], consists of information (such as member identifiers) about at

most subviewsize(N) other distinct members chosen uniformly at random from among

the members lying in the same height-(logK(N)− 1− j) subtree as Mi. If there are fewer

than subviewsize(N) other members that Mi knows about in this subtree, then it includes

all such members in V iewMi
[j]. Note from the definition that subviews are not required

to be disjoint; the same member might be present in V iewMi
[j] for more than one value

of j. Views might also be partially inconsistent, i.e., contain members that have failed.

Such elements time out and are deleted after a while.

Figure 3 shows the composition of the view at member M5 in the Leaf Box Hierarchy

example of Figure 1. It was shown in [16] that, if viewfactor > logK e, then knowledge of

at least viewfactor ∗ logK N uniformly randomly chosen group members at each process

suffices to provide a high probability of non-partitionability of the group. Our view main-

tenance retains this property through the V iew[0] sets in the group. Views in dynamic

groups could be maintained using any of several membership algorithms, e.g., random

probe-based [6], gossip-based heartbeating [27], or graph-based [11].

3 Hierarchical Gossiping Protocol

3.1 Protocol Description

The protocol is similar to Flat Gossip: upon receiving a multicast, a group member Mi

gossips about it for logK(N) rounds, choosing b targets per round, where b is fixed. The

difference is that, while Flat Gossip selects targets uniformly at random, Hierarchical

9

M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

Leaf Box - 00 Leaf Box - 01 Leaf Box - 10 Leaf Box - 11

O(log(N))

O(log(N))

M5’s view

View[0]:
 O(log(N))

View[1]:

View[2]:

Figure 3: Example of View Maintenance: A typical group member (M5 shown above) knows about

(viewfactor ∗ logKN) other members in each of the subtrees it belongs to. Here viewfactor = 1. Group

member M5’s view consists of log
K

(N) = 3 subviews, each containing subviewsize(N) = viewfactor ∗

logKN members chosen uniformly at random from the subgroup of members within the appropriate same

subtree as M5. Here, viewfactor is a constant. An example view at M5 has V iew[2] = {M6}, V iew[1] =

{M3, M6, M7}, V iew[0] = {M1, M2, M7}. Note that multiple subviews at a member might overlap (e.g.,

M7 belongs to V iewM5
[0] and V iewM5

[1]).

Gossip prefers targets that are closer in the Leaf Box Hierarchy. As the contiguous

mapping and the Leaf Box Hierarchy reflect network proximity, it results in a reduced

load on core network elements.

Each gossip target at group member Mi is selected by first choosing a level j between

0 and logK(N) − 1, corresponding to Mi’s height-j subtree, and then picking a member

uniformly at random from V iewMi
[logK(N) − 1− j], which represents Mi’s knowledge of

the members in this subtree. The height-0 subtree is chosen with probability F (N,K)
K

, the

height-1 subtree with probability F (N,K)
K2 , and so on until the height-(logK(N)−1) subtree

is chosen with probability F (N,K)
N

. Here, F (N, K) = (
∑logK(N)−1

j=0
1

Kj+1)
−1 = (K−1)N

N−1
is a

normalizing constant. Figure 4 shows the (relative) target choice probability distribution

for each gossip round at member M5 in the Leaf Box Hierarchy of Figure 1.

10

M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

Leaf Box - 00 Leaf Box - 01 Leaf Box - 10 Leaf Box - 11

1/K

1/K^2

1/K^3

M5’s target choice probabilities

Figure 4: Hierarchical Gossiping at a process: M5’s gossip-target probability distribution in the

example Leaf Box Hierarchy.

3.2 Protocol Analysis

We now analyze the reliability and group member load characteristics of this algorithm.

Assume for simplicity that the number of group members N is a power of K and that the

group members are distributed evenly among the leaf boxes by the map function H , i.e.,

there are exactly K members in each leaf box. These assumptions will be relaxed in the

simulations.

Reliability: We model the spread of a gossip message originating at an arbitrary

source using a random directed graph. The nodes of this graph denote group members.

There are b logK N arcs directed out of each node u. The endpoints of these arcs are

chosen independently at random according to the following probability distribution: pick

a number j between 0 and logK(N)−1 with probability K−j−1F (N, K) (where F (N, K) =

(K−1)N
N−1

), and then pick a node v uniformly at random from among the Kj+1 nodes in the

same height-j subtree as u. The out-neighbors v of u (with arcs (u, v)) denote the nodes

that u will gossip to if it receives the gossip message. The probability that the gossip

reaches all group members is the probability that there is a directed path from the source

to all other nodes in this random digraph.

11

We analyze the reliability of the Hierarchical Gossiping protocol. We first introduce

some notation. Denote the source node by s. Let Aj denote the event that there is a

directed path from s to all nodes in its height-j subtree using only arcs within this subtree.

Let Bj denote the event that there is at least one arc directed from within this subtree

to each of the other K − 1 height-j subtrees sharing the same internal node ancestor at

height j + 1. Denote its complement by Bc
j . Let π(j) = P (Aj), π̃(j) = P (Aj|Bj) and

π̂(j) = P (Aj|B
c
j). The probability that the gossip reaches all nodes is π(logK(N) − 1).

We want to show that this is close to 1 provided the number of gossip messages sent is

sufficiently large.

Note that there is a directed path from s to every node in its height-(j + 1) subtree if

there is such a path to every node in its height-j subtree, there is at least one arc crossing

from this subtree to each of the K−1 subtrees sharing its internal node ancestor at height

j + 1, and that, starting from the endpoints of these arcs, there is a path to every node

within each of these K − 1 subtrees. Hence,

π(j + 1) ≥ π̃(j)P (Bj)π(j)K−1. (1)

But π(j) = P (Bj)π̃(j) + P (Bc
j)π̂(j), and so,

π̃(j) ≥ P (Bj)π̃(j) ≥ π(j) − P (Bc
j). (2)

Theorem 1. In the Hierarchical Gossiping protocol (described in Section 3.1), the con-

stant b can be chosen sufficiently large (depending on K but not on N) that the probability

of the gossip reaching all nodes is at least 1 − (3/2N).

Proof: By the union bound, we have P (Bc
j) ≤ (K−1)P (there is no arc from Tj(0) to Tj(1)),

where Tj(0) is the height-j subtree containing s and Tj(1) is another height-j subtree with

the same height-(j +1) ancestor. Now, there are bKj+1 logK N arcs directed out of nodes

12

in Tj(0), each terminating in a node in Tj(1) with probability K−j−3F (N, K), indepen-

dent of the others. Hence,

P (Bc
j) ≤ (K − 1)(1 − K−j−3F (N, K))bKj+1 logK N ≤ (K − 1) exp

(

−bK−2F (N, K) log N
log K

)

,

where we have used the inequality (1 − 1
x
)x ≤ e−x ∀ x > 0 to obtain the last inequality.

Take b ≥ 3K2 log K
K−1

≥ 3K2 log K
F (N,K)

. Then,

P (Bc
j) ≤ (K − 1) exp(−3 log N) = K−1

N3 ≤ 1
N2 ,

since N ≥ K. Combining this with (1) and (2), we get

π(j + 1) ≥
(

π(j) −
1

N2

)(

1 −
1

N2

)

π(j)K−1 ≥ π(j)K −
2

N2
. (3)

Now π(0) is the probability that the gossip reaches all K − 1 nodes in the same leaf

box as the source. Each of the b logK N gossip messages originating from a node stays

within the same leaf box with probability K−1F (N, K) ≥ (K − 1)/K; conditional on

staying within the leaf box, it is equally likely to be targeted at any of the K − 1 other

nodes. Thus, π(0) is the probability that flat gossip in a group of size K reaches all nodes

when the number of messages sent by each node is binomial with parameters b logK N

and K−1F (N, K). It can be shown (e.g., by adapting the arguments in [16]) that, by

choosing b sufficiently large (b = 6 log K will suffice), we can ensure that π(0) ≥ 1 − 1
N2 .

We now claim that, if b is chosen as above, then the inequality

π(j) ≥ π(0)Kj

−
2

N2
(1 + K + . . . + Kj−1) (4)

holds for all j between 1 and logK(N) − 1. We shall show this by induction. The base

case, j = 1, is immediate from (3). Now, assuming that (4) holds for j, we have by (3)

13

that

π(j + 1) ≥

[

π(0)Kj

−
2

N2
(1 + K + . . . + Kj−1)

]K

−
2

N2

= π(0)Kj+1

[

1 −
2

N2
π(0)−Kj

(1 + K + . . . + Kj−1)

]K

−
2

N2

≥ π(0)Kj+1

−
2

N2
(K + K2 + . . . + Kj) −

2

N2
,

which establishes the induction. To obtain the last inequality, we have used the fact that

(1− x)K ≥ 1−Kx: to see this, note that f(x) = (1− x)K − 1 + Kx is convex for K > 1,

and that it attains its minimum value of 0 at x = 0.

Set j = logK(N)−1. We have 1+K + . . .+Kj−1 = Kj
−1

K−1
= N−K

K(K−1)
≤ N

2
, since K ≥ 2.

Moreover, as b has been chosen so that π(0) ≥ 1 − 1
N2 , we have

π(0)Kj

= π(0)N/K ≥ 1 − 1
NK

≥ 1 − 1
2N

. Thus, by (4),

π(logK(N) − 1) ≥ 1 −
1

2N
−

2

N2

N

2
= 1 −

3

2N
.

This completes the proof of the theorem.

Per member load: The theorem establishes that the number of gossip messages per

member required to reliably transmit a single multicast message is at most b logK(N); i.e.,

it grows only logarithmically in the group size, as with flat gossip. The constant in front

of the logarithm is bigger, but we shall show that hierarchical gossip achieves a substantial

reduction in network overhead in exchange for this small increase in per member load.

View size sufficiency: Choosing the constant viewfactor to be larger than b ensures

that subviewsize(N) = viewfactor · log(N) > b log N . Then, each process knows about

enough members (chosen uniformly at random from prospective targets) at each level of

the hierarchy to implement the Hierarchical Gossiping protocol.

Network Overhead: We calculate the domain boundary load by first measuring the

overhead on internal nodes. Visualize each gossip message as “traveling through” the

14

edges of the Leaf Box Hierarchy from the source to destination member. Consider an

internal node INh at the root of a height-h subtree in the Leaf Box Hierarchy. For each

member Mi within the subtree rooted at this internal node, the probability that any given

gossip message from Mi will pass through INh is = F (N, K)
∑logK(N)−1

j=h
1

Kj+1
K−1

K
, which

is bounded above by K−h. Since the subtree with INh as root contains an average of

Kh+1 members, each of which chooses b logK(N) gossip targets per multicast, the average

number of copies of a given multicast that will pass up through the internal node INh

is at most bK logK(N). A symmetrical number of gossip messages passes down through

INh. Thus, any internal node sees, in expectation, at most 2bK logK(N) copies of a given

multicast.

Now consider a contiguous set of leaf boxes L(D) assigned to a domain D in the

Contiguous Mapping scheme. Say the lowest common ancestor is at height h. Denote the

set of internal node ancestors of this domain, going up to the lowest common ancestor,

by IN(D). The set of ancestors at each height between 1 and h is contiguous (in a

lexicographic ordering) and has a leftmost and rightmost member. Any message into or

out of the domain has to pass through either the common ancestor at height h, or the

leftmost or rightmost member of IN(D) at some smaller height.2 Thus, we can bound the

number of messages crossing the domain boundary by the number of messages passing

through the root or through the leftmost or rightmost node at some height between 1 and

h of IN(D). (Note that this relies crucially on the fact that a domain always consists

2For example, for Domain 1 in Figure 2, L(D) = {01, 10, 11}, while IN(D) =

{Subtree-0*, Subtree-1*, Subtree-**}. The claim is that any message into or out of this domain has

to pass through one of these three internal nodes. In fact, in this instance, any such message has to pass

through Subtree-0*. Alternatively, in the same figure, consider a domain with L(D) = {01, 10}. Then,

IN(D) again consists of Subtree-0*, Subtree-1* and Subtree-**. In this case, any message into or out of

D has to pass through Subtree-0* or Subtree-1*.

15

of contiguous leaf boxes.) The number of such nodes is 2h − 1. But h ≤ logK(N) − 1,

so the average replication factor of a multicast across any domain boundary is at most

2bK logK(N)(2 logK(N) − 3) ≤ 4bK log2
K(N). Thus, the network overhead grows like

log2(N), whereas with flat gossip, it grows like N log N in the worst case.

4 Adaptive Dissemination Framework

The Adaptive Dissemination framework consists of two subprotocols: the Tree Dissemi-

nation and Gossip protocols. The Tree Dissemination sub-protocol uses the Leaf Box Hi-

erarchy to dynamically construct a tree per multicast - this is done using Tree messages.

Tree construction is completely decentralized, with each member using hop numbers in

received Tree messages to decide, using its local partial views, which child members to

forward the message to next (thus constructing the tree dynamically). When a process

failure or message loss hinders further propagation of a multicast in some part of the hier-

archy, a transition to the gossiping sub-protocol is automatically initiated, but is limited

to the subtree(s) of the Leaf Box Hierarchy where the failure(s) occurred.

4.1 Protocol Description

Every Adaptive Dissemination message m bears exactly one multicast (batching of multi-

ple multicasts into the same gossip message leads to a similar analysis), and the following

additional information: (i) Type t of the message (t can be either Tree or Gossip); (ii)

Hop number (hop count) h; and (iii) Ancestor list Anc[1, a], if m is a Tree message. Anc

is a list of identifiers of the members that the received multicast copy has passed through.

We will show that this extra data in the message has size which is constant in expectation

and logarithmic in the group size in the worst case.

For clarity of exposition, the description and analysis of the algorithm assumes that

all process failures occur prior to the start of the dissemination. We explain later how

to relax this assumption for a more general failure model, while retaining the adaptivity

16

property. Message losses are allowed to occur during the execution of the protocol.

Tree Dissemination sub-protocol: The sender of the multicast starts by sending

itself a Tree message with hop number h = 0. A group member Mi, on receiving a

multicast through a Tree message with hop number h < logK(N) − 1, attempts to

forward this message to K randomly chosen child members, one in each of the child

subtrees of the internal node ancestor of Mi at height logK(N) − h − 1 in the Leaf Box

Hierarchy. Member Mi cannot choose as a child any member that is already present in

the ancestor list Anc of the Tree message it received. The hop number in the message is

incremented every time it is forwarded. Every forwarded Tree message’s ancestor (Anc)

list is modified to include only those ancestors (including Mi) that lie in the subtree into

which the message is being forwarded.

When a group member Mi receives a Tree message with hop number h = logK(N)−1,

this message needs to be forwarded within Mi’s leaf box. This is done by using Flat Gossip

within the leaf box.

Figure 5 shows an example run of this protocol. All Tree messages require to be

acknowledged by the recipients. Non-receipt of an acknowledgment from a child member

results in transitioning to a gossip protocol within the requisite subtree.

Transition to Gossip sub-protocol: Suppose a member Mi has received a Tree

message m with hop count h. The tree dissemination protocol cannot make progress at

Mi if: a) there is a child subtree of Mi’s internal node ancestor at height (logK(N)−h−1)

in which Mi does not know of any member that is not already present in Anc, or b) Mi

does not receive an acknowledgment from some member to which it chooses to forward the

Tree message. Case (a) could occur as views are not required to be complete. Case (b)

could occur due to the chosen child member being faulty, or the forwarded Tree message

17

M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

M8

M3 M4

M2 M1M7 M6 M5

Leaf Box - 00 Leaf Box - 01 Leaf Box - 10 Leaf Box - 11

Gossiping if M4->M2
TREE message droppedh=1

h=2 h=2

Figure 5: Adaptive Dissemination of a multicast from member M8 in the example from

Figure 1. The sender member (M8) chooses two children, one from each of the child subtrees of the

internal node ancestor at height 3 − 0 − 1 = 2 in the Leaf Box Hierarchy (essentially the root internal

node). M8 chooses M3 and M4. When M3 (respectively M4) receives the Tree message from M8, it

notices the hop count of 1, and selects two children randomly, one from each of the child subtrees of its

internal node ancestor at height 3−1−1 = 1. These child subtrees happen to be leaf boxes - the members

M7 and M5 (respectively M2 and M1) that receive the Tree message with hop count = 2 = log
K

(N)−1

resort to Flat Gossiping (for a fixed constant number of gossip rounds) to disseminate the multicast

within their leaf boxes. If the acknowledgment from M2 to M4 were to be dropped, then M4 would resort

to spreading the multicast through gossip within Subtree-1* with a hop count h = 1.

being dropped inside the network. If either (a) or (b) occurs at Mi, then Mi transitions to

the gossip sub-protocol, but only within its height-(logK(N)−h−1) subtree. It does so by

spreading a Gossip message with hop count equal to h, using V iewMi
[h]. (If V iewMi

[h]

is empty, Mi will try V iewMi
[h−1] and so on.) A group member might gossip at multiple

hop counts, when it receives Gossip messages with lower hop-count than it has seen yet.

Note that the algorithm is free to use any gossip primitive. We use Hierarchical Gossip

in our simulations of Section 5.1. Also, the algorithm can be generalized to have each

member tolerate up to f process failures or message losses (by trying up to f prospective

child members for the Tree message) before transitioning to gossiping.

Figure 5 shows an example run of this protocol.

18

4.2 Protocol Analysis

(Per-member load): The number of Tree dissemination messages (of a given multi-

cast) sent or received by any member is bounded by a constant, independent of group

size. This is because the use of ancestor lists in Tree messages ensures that, if a member

is responsible for disseminating a Tree message at some internal node, then it will not

be responsible for the same message at any lower level of the tree defined by the Leaf Box

Hierarchy. This implies receipt of at most 1, and transmission of at most K, Tree mes-

sages at any member. The number of acknowledgements received is also upper-bounded

by K.

(Reliability): If the sender stays alive throughout the lifetime of a multicast, then it is

clear that every leaf box either: a) receives at least one Tree message, or b) belongs to a

subtree where gossip is initiated. Thus, the Adaptive Dissemination framework achieves

at least as good reliability as the gossip primitive it uses.

(Message size): A Tree message with hop count h has at most h ancestors, and

h ≤ logK(N)− 1. Therefore, the ancestor list size is (logK(N)− 1) at worst. To compute

the expected list size, note that for each j between 0 and h − 1, the jth ancestor in this

list was chosen uniformly at random from the tree of height logK(N) − 1 − j. Thus,

the probability that it falls in the height-(logK(N) − 1 − h) subtree that m is being

forwarded to is Kj−h. Since the ancestor has to be included in Anc only if it falls within

this subtree, the expected size of Anc is =
∑h−1

j=0 Kj−h ≤
∑

∞

i=1 K−i = 1
K−1

. Thus, the

expected message size is constant, irrespective of the group size.

(Network Overhead): Recall that each domain D is assigned a contiguous set of leaf

boxes, L(D). Say the lowest common internal node ancestor of L(D) is at height h. We

observed in the analysis of the Hierarchical Gossip protocol in Section 3.2 that every mes-

sage crossing the domain boundary of D has to pass through one of 2h−1 ≤ 2 logK(N)−3

19

internal nodes: either the lowest common ancestor, or the leftmost or rightmost internal

node ancestor at some height j between 0 and h − 1. We then used a bound on the load

on each internal node to obtain a bound on the domain boundary load. We now proceed

along similar lines.

A member Mi that receives a Tree message with hop count h places itself at its

internal node ancestor of height logK(N) − 1 − h and forwards a copy of the message to

one randomly chosen node in each of the K subtrees of this internal node. The copies can

be visualized as going up from Mi to the root of the tree at height logK(N) − 1 − h and

then down to the target nodes (there may be shorter paths to some of the target nodes, so

this is a conservative estimate). Thus, each internal node sees at most K +1 messages (K

going up and 1 going down) corresponding to every ancestor above it (including itself),

up to the root of the tree. So, the number of messages passing through an internal

node at height h is at most (K + 1)(logK(N) − h); for any internal node, it is at most

(K + 1)(logK(N) − 1). Since the number of internal nodes associated with a domain

boundary is at most 2 logK(N) − 3, the number of messages per multicast crossing a

domain boundary is bounded by 2(K + 1) log2
K(N) in the worst case.

Next, we compute the expected number of messages passing through an internal node

INj at height j. Consider a Tree message initiated from INh, the internal node ancestor

of INj at height h. The member Mi initiating this message is equally likely to be any of

the Kh+1 descendants of INh, hence it lies in the subtree rooted at INj with probability

Kj−h. One copy of this Tree message is sent to a random member in each of the K

subtrees rooted at INh; the probability that such a member lies in the subtree rooted at

INj is Kj−(h−1). Thus, the expected number of copies of the Tree message initiated at

INh passing through INj is = K · Kj−h + 1 · Kj−(h−1) = 2Kj−h+1. Summing this over

h ≥ j, we find that the expected number of Tree messages passing through INj (for a

20

single multicast message) is = 2
∑logK(N)−1

h=j Kj−h+1 ≤ 2K
∑

∞

i=0 K−i = 2K2

K−1
≤ 4K. Since

a domain boundary is associated with at most 2 logK(N)−3 internal nodes, the expected

number of copies of each multicast message crossing a domain boundary is ≤ 8K logK(N).

In summary, the domain boundary load per multicast during the Tree Dissemination

phase is O(log2 N) in the worst case, and O(log N) in expectation, for any domain. Note

that this result relies on using the Contiguous Mapping for assigning leaf boxes to domains.

4.3 On the Failure Model, and arbitrary values of N

We have assumed that all process failures occur prior to the start of the multicast dissem-

ination. Relaxing this assumption to allow process failures during the protocol requires

a group member Mi participating in the tree dissemination protocol to buffer a Tree

message until receipt of a second acknowledgment from all the child members chosen for

this multicast. Each member generates a second acknowledgment to its parent on either:

a) receiving second acknowledgments from all its K children in the Tree Dissemination

protocol, or b) initiating gossip within the requisite subtree. Non-receipt of the second

acknowledgment from one of its children causes Mi to treat this as a failure of the child,

and to initiate a gossip within the requisite subtree.

This modification to the protocol results in one extra message per multicast per group

member and a worst case logK(N) rounds increase in multicast dissemination latency.

If the sender of the multicast stays non-faulty throughout the execution of the protocol,

then the reliability analysis still holds true.

Finally, the analysis does not rely heavily on N being a factor of K, and the algorithms

do not use this at all. Hence, the analysis results extend to arbitrary values of N too.

5 Experimental Results
This section first compares Hierarchical Gossip (“HierGssp”) with Flat Gossip (“Flat-

Gssp”) in Section 5.1, then compares HierGssp with Adaptive Dissemination in Sec-

21

tion 5.2. Section 5.3 studies a HierGssp variant running on transit-stub topologies.

5.1 HierGssp vs. FlatGssp: Topology-Independent Simulations

The Leaf Box Hierarchy is constructed using a branching factor of K = 2. We use N to

denote the actual group size, which is the same as the group size estimate except in (3)

below. In a dynamic group where H is reorganized rarely, the distribution of members

across leaf boxes could become skewed, overloaded, or underloaded over a period of time.

To study its effect, we investigate protocol behavior under the following map functions:

(1) The default uniform mapping: K = 2 members/leaf box. No suffix in plots.

(2) Skewed mappings: modeled with a parameter called mask. Every 2mask-th leaf box

contains 2mask +1 members. Other leaf boxes contain one member each. mask = 0 is the

default mapping; higher values of mask are more skewed. Suffix in plots: mask =.

(3) Overloading (resp. underloading) mapping: uses the default distribution, but

on a Leaf Box Hierarchy with N/4 (resp. N) leaf boxes, i.e. with 4 (resp. 1) members

per leaf box. Suffix in plots: OL (resp. UL).

(4) Random mapping: obtained by using the C library function rand() to determine

members’ leaf box addresses. Suffix in plots: rand.

The mapping (1) models performance with perfect knowledge of N and the network

topology, e.g., soon after a Leaf Box Hierarchy reorganization. Mappings (2)-(4) model

staleness of H and the group size estimate N in the tuple (K, N, H) (which might occur

due to process joins and failures since the last hierarchy reorganization).

Both gossiping protocols (Flat and Hierarchical) are configured as follows. Protocol

rounds are synchronous at group members3. Each member, on receiving a multicast,

3This is a conservative assumption since a gossip is disseminated faster with asynchronous gossip

rounds rather than with synchronous gossip rounds [27].

22

FlatGssp HierGssp HierGssp [mask=3] HierGssp [mask=6]

HierGssp [rand] HierGssp [OL] HierGssp [UL]

0

10

20

30

40

50

128 256 512 1024 2048 4096 8192 16384

M
u

lt
ic

a
s
t

C
o

p
ie

s
 S

e
n

t
/

m
e

m
b

e
r

Group Size N

(a)

0

0.2

0.4

0.6

0.8

1

0 0.15 0.3 0.45 0.6 0.75 0.9
R

e
li
a

b
il
it
y

System-Wide Message Loss Rate

(b)

0

50000

100000

150000

200000

250000

300000

0 4000 8000 12000 16000

A
v
g

.
D

o
m

a
in

 B
o

u
n

d
a

ry
 R

e
p

li
c
a

ti
o

n
 F

a
c
to

r
-

U
.B

.

Group Size N

(c)

0

10

20

0 4000 8000 12000 16000

A
v
g

.
D

o
m

a
in

 B
o

u
n

d
a

ry
 L

o
a

d
/G

o
s
s
ip

 R
o

u
n

d
 -

 U
.B

.

Group Size N

(d)

0

20

40

60

80

100

120

140

0 4000 8000 12000 16000

L
a

te
n

c
y
 (

#
 G

o
s
s
ip

 R
o

u
n

d
s
)

Group Size N

(e)

0

1

2

3

4

128 256 512 1024 2048 4096 8192 16384

H
ie

rG
s
s
p

/F
la

tG
s
s
p

 L
a

te
n

c
y
 R

a
ti
o

Group Size N

(f)

Figure 6: Topology-Independent Simulations: Flat Gossip versus (New) Hierarchical Gos-

sip. In (b), N = 2047. In the other plots, the system-wide message loss rate=0%. Overlapping data-

points in (b) and (e) horizontally perturbed slightly for clarity. The plots are explained in Section 5.1.

gossips about it for logK(N)+ 4 rounds - the extra 4 rounds are added for robust dissem-

ination of gossip at small group sizes. During each round, a member selects b = 2 gossip

targets using the (Flat or Hierarchical) distribution.

The membership view at each member Mi is constructed with viewfactor = 4 in the

algorithm of Section 2. The view size is thus bounded by 4(log2(N))2 and increases slowly

with group size. At N = 16384, the average measured view size is about 600, or less than

5% of group size. Each point in the plots is an average measured over 50 random runs of

23

the protocol, with error bars showing one standard deviation.

General Scaling and Comparative Trends: The parameters are configured so that

all but two variants have the same message overhead per group member per multicast.

Figure 6(a) shows the measured values; all grow logarithmically. In HierGssp, the default,

random and skewed mappings have the same overhead. The OL overhead is different due

to fewer gossip rounds at smaller hierarchy height. UL is different due to lower reliability.

Figure 6(b) shows the reliability (fraction of members receiving a gossip message) as

the system-wide message loss rate is increased. FlatGssp tolerates up to 75 % loss rate,

while HierGssp (default) starts to degrade at message loss rates of 30 % due to the higher

locality of gossip target selection in the latter. However, since loss rates beyond 30%

indicate extreme congestion in the network, HierGssp and FlatGssp are comparable in

practical operating ranges. Skewed mappings in HierGssp lead to similar behavior as the

default, and are not shown. OL (resp. UL) gives a higher (resp. lower) reliability than

the default as the Leaf Box Hierarchy has one level less (resp. more), and is thus flatter

(resp. more hierarchical). The rand mapping exhibits degraded reliability beyond a 20%

loss rate. Member failures gave similar results, and are omitted.

Figure 6(c) compares the upper bound on the average replication factor of a multicast

through any domain boundary. For (default) HierGssp, this is derived from a summation

of replication factors at internal nodes (Section 3.2). The upper bound grows linearly with

group size for FlatGssp (300000 at 16384 members), whereas it increases as the square of

the logarithm of the group size for HierGssp (2410 at 16384 members). The upper bound

on average domain boundary load (copies of a multicast/time unit) passing through any

domain boundary is the replication factor divided by dissemination latency. As group size

rises, domain boundary load in FlatGssp increases linearly, while in HierGssp (Figure 6(d))

it quickly converges to a limit independent of group size. In this experiment, the limit

24

appears to be around 20 gossips/round.

Figure 6 (e) shows that average latency until a HierGssp epidemic dies out is indepen-

dent of mapping skewedness, and increases very slowly with group size. The latency is

higher than in FlatGssp, but Figure 6(f) shows that the ratio of latencies is small; it stays

below 4 up to 16384 members. Both protocols have low latencies - with a 1-second gossip

round, HierGssp’s (resp. FlatGssp’s) latency at 16384 members is a little over 2 min

(resp. 34 s). The OL mapping gives a lower latency than the default as target selection

is “flatter” than default HierGssp. As expected, UL results in a higher latency.

Level 9 Level 8 Level 7 Level 6 Level 5

Level 4 Level 3 Level 2 Level 1 Level 0

0

50

100

150

200

250

300

0 250 500 7501000

In
te

rn
a

l
N

o
d

e
 R

e
p

lic
a

ti
o

n
 F

a
c
to

r

(a) Default

0 250 500 750 1000

(b) mask = 3

0 250 500 750 1000

(c) mask = 6

0 250 500 750 1000

(d) OL(N=4096)

0 250 500 750 1000

(e) UL(N=1024)

Figure 7: Topology-Independent Simulations: Internal node load due to Hierarchical Gossip

with different mapping schemes in a height-10 Leaf Box Hierarchy. The X-axis shows internal node

addresses (obtained by zeroing out “*” ’s). Level 0 is the root. N = 2047 in (a)-(c). The plots are

explained in Section 5.1.

The effect of staleness of the Leaf Box Hierarchy on domain boundary load is plotted

in Figure 7. For a height-10 Leaf Box Hierarchy, a uniform mapping imposes similar

load distributions on all internal nodes at all levels (Figure 7(a); level 0 is the root).

Increased skewedness results in more messages (Figures 7(b,c)) at the internal nodes

that are ancestors of large leaf boxes. Yet, the overhead is still low - even at a skew of

25

mask = 6, where the largest leaf boxes contain 65 members, the highest replication factor

at an internal node is 257; this compares with a maximum replication factor of 139 in

the uniform case. Figures 7(d,e) show that the OL (resp. UL) mapping, as expected,

causes a doubling (resp. halving) of domain boundary load with respect to the default

mapping. We conclude from these experimental results that skewedness, overloading or

underloading cause only a small increase in message overhead.

We conclude that compared to FlatGssp, HierGssp (default) achieves an order of

magnitude lower network overhead at the cost of a small decrease in fault-tolerance and

a small increase in multicast dissemination latency. Staleness of the Leaf Box Hierarchy

does not affect reliability or latency. Hence, even in dynamic groups, the hierarchy can

be reorganized rather infrequently, e.g., when group size crosses a power of K or when

the skew is high.

5.2 Hierarchical Gossip vs. Adaptive Dissemination

Figures 8 and 9 compare the new Hierarchical Gossip protocol (“HierGssp”) with the

Adaptive Dissemination framework that uses Hierarchical Gossiping (“Adaptive”). We

use an optimized HierGssp that eliminates duplicate messages that stay within leaf boxes

(in the original protocol, 1
K

of gossip messages stay within the sender’s leaf box).

Scalability: Figure 8 gives plots when the reliability of both Adaptive and HierGssp

is 100% (i.e., all members receive all messages). Figure 8(a) shows that to achieve 100%

reliability, the number of copies of each multicast seen at a member grows logarithmically

with group size for HierGssp, but is an invariant with group size in Adaptive. Figure 8(b)

shows that average domain boundary load per time unit (gossip round) in HierGssp

converges to a constant (18 messages/gossip round) as the group size is scaled up - similar

26

behavior is observed in Adaptive as well; however, the convergence limit is much lower (2

messages/gossip round) than in HierGssp. Figure 8(c) shows that the average latency of

Adaptive is smaller than the latency in HierGssp.

0

10

20

30

40

50

60

70

80

90

100

64 256 1024 4096 16384

M
e
ss

a
g

e
s

/
m

e
m

b
e
r

Group Size N

HierGssp
Adaptive

(a)

0

10

20

30

40

50

0 4000 8000 12000 16000

A
v

g
.

D
o

m
a
in

 B
o

u
n

d
a
ry

 L
o

a
d

/G
o

ss
ip

 R
o

u
n

d
 -

 U
.B

.

Group Size N

HierGssp
Adaptive

(b)

4

34

64

94

124

10 40 70 100 130 160 190

L
a
te

n
c
y

 (
#

 G
o

ss
ip

 R
o

u
n

d
s)

log2(N) ^ 2

HierGssp
Adaptive

(c)

Figure 8: Hierarchical Gossip versus Adaptive Dissemination: Group Size scaling. Processes

and network are non-faulty. See Section 5.2 for explanation of plots.

Adaptivity: Figure 9 shows the effect of increasing the messages loss rate throughout

the system. Figure 9(a) shows that the Adaptive has as good reliability as HierGssp -

both can tolerate up to 50 % system-wide message losses. Figures 9(b,c) show that the

behavior of Adaptive is better than that of HierGssp until a message loss rate of about

15%. At higher message loss rates, Adaptive might be more expensive because a member

may be chosen to participate in the adaptive gossiping at multiple levels. However, the

added extra cost at message loss rates > 15% is very small. Finally, we found that the

latency of Adaptive is always smaller than that of HierGssp, and that both increase by

only a factor of 2 up to a message loss rate of 50%.

We conclude that the Adaptive Dissemination outperforms Hierarchical Gossiping.

27

0

0.2

0.4

0.6

0.8

1

0 0.15 0.3 0.45 0.6 0.75 0.9

R
e
li

a
b

il
it

y

Message Loss Rate

N=2047,HierGssp
Adaptive

(a)

0

10

20

30

40

50

60

70

80

90

100

0 0.15 0.3 0.45 0.6 0.75 0.9

M
e
ss

a
g

e
s

/
m

e
m

b
e
r

Message Loss Rate

N=2047,HierGssp
Adaptive

(b)

0

4

8

12

16

20

0 0.15 0.3 0.45 0.6 0.75 0.9

A
v

g
.

D
o

m
a
in

 B
o

u
n

d
a
ry

 L
o

a
d

 p
e
r

G
o

ss
ip

 R
o

u
n

d

Message Loss Rate

N=2047,HierGssp
Adaptive

(c)

Figure 9: Hierarchical Gossip versus Adaptive Dissemination: Scaling and Adaptivity. See

Section 5.2 for explanation of plots.

5.3 HierGssp vs. FlatGssp: Transit-Stub Topology Networks

Although protocol deployment issues are beyond our scope here, we implemented and

study here our C# implementations (proprietary within MS Research) of HierGssp (“Hi-

Cast”) and Flat Gossiping, for GT-ITM transit-stub network topologies [29]. The param-

eter values used were K = 2, b = 2. Each member gossiped each message for 10 rounds in

Flat Gossiping (20 rounds in HiCast) for the size 16,000 group, and for 12 rounds in Flat

Gossiping (25 rounds in HiCast) in the size 64,000 group. Figure 10 shows the “stress”

(replication factor for a gossip message) across the links of a 16,000 sized group on a net-

work with 600 core routers, 60,000 LANs, 1 ms LAN links, and 40.5 ms core links. Notice

that more routers have a higher load when Flat Gossiping is used, while HiCast has a

lower load distributions (number and load). Figure 11 shows the variation of reliability

with process failure rate and corroborates the data of Figure 6(b). Figure 11(b) is for a

64,000 group on a 5050 core node, 505,000 LAN node network.

6 Summary

This paper has presented techniques that (1) augment flat gossip-based application mul-

ticast protocols with topological awareness, and (2) augment arbitrary gossip protocols

28

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 10 100 1000 10000 100000

Link stress

N
um

be
r

of
 li

nk
s

Hicast Flat Gossiping

(a)

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5

Proportion of faulty nodes

M
ax

im
um

 li
nk

 s
tr

es
s

HiCast Flat Gossiping

(b)

Figure 10: Transit-stub Topologies: Comparison of network link stress in a transit-stub

topology in Hierarchical Gossiping and Flat Gossiping: (a) Distribution of link stress in a size 16,000

group; (b) Maximum link stress in the presence of failures in a size 16,000 group.

with adaptivity. We designed two new multicast protocols - Hierarchical Gossiping and

Adaptive Dissemination - over a topologically-aware membership scheme called the Leaf

Box Hierarchy. Analysis and experiments show that both protocols preserve reliability and

scalability of gossip-based approaches. Compared to Flat Gossiping, Hierarchical Gossip-

ing lowers network overhead by an order of magnitude, suffering only a small decrease in

reliability and small increase in latency. Adaptive Dissemination has low overhead when

failures are absent or few, and it automatically adjusts overhead to guarantee high relia-

bility even as failure rates increase. The protocols are also well-suited for dynamic groups,

as skewed, underloaded and overloaded hierarchies degrade performance only slightly.

References
[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In Proc. ACM SIGCOMM,

pages 205–217, 2002.
[2] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proc. IPTPS, pages 135–140, Feb. 2003.
[3] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal Multicast. ACM Tr. Computer

Systems, 17(2):41–88, 1999.
[4] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on the internet using an overlay

muilticast architecture. In Proc. ACM SIGCOMM, pages 55–67, 2001.
[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordinate system. In Proc. ACM

SIGCOMM, Aug. 2004.
[6] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable Weakly-consistent Infection-style process group Membership

protocol. In Proc. 2002 Intnl. Conf. Dependable Systems and Networks (DSN ’02), pages 303–312, 2002.
[7] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic algorithms for replicated database maintenance.

In Proc. 6th Annual ACM Symp. Principles of Distributed Computing (PODC ’87), pages 1–12, 1987.
[8] P. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and P. Kouznetsov. Lightweight Probabilistic Broadcast.

In Proc. 2001 Intnl. Conf. Dependable Systems and Networks (DSN ’01), pages 443–452, 2001.

29

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Proportion of faulty nodes

R
el

ia
bi

lit
y

HiCast FlatGossiping

(a)

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Proportion of faulty nodes

R
el

ia
bi

lit
y

HiCast Flat Gossiping

(b)

Figure 11: Transit-stub Topologies: Comparison of resilience to process failures in a transit-

stub topology between Hierarchical Gossiping and Flat Gossiping in (a) a size 16,000 group and (b) a

size 64,000 group.

[9] P. T. Eugster and R. Guerraoui. Probabilistic Multicast. In Proc. 2002 Intnl. Conf. Dependable Systems and Networks
(DSN ’02), pages 313–322, 2002.

[10] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast framework for light-weight sessions
and application level framing. IEEE/ACM Tr. Networking, 5(6):784–803, Dec. 1997.

[11] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. Peer-to-peer membership management for gossip-based protocols.
IEEE Tr. on Computers, 52(2):139–149, Feb. 2003.

[12] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient epidemic-style protocols for reliable and scalable multicast.
In Proc. Symp. Reliable Distributed Systems (SRDS ’02), pages 180–189, Oct. 2002.

[13] I. Gupta, R. van Renesse, and K. Birman. Scalable fault-tolerant aggregation in large process groups. In Proc. 2001
Intnl. Conf. Dependable Systems and Networks (DSN ’01), pages 433–442, 2001.

[14] I. Gupta, R. van Renesse, and K. Birman. Fighting fire with fire: using randomized gossip to combat stochastic
scalability limits. Journ. Quality and Reliability Engg. Intnl., 18:165–184, May/Jun., 2002.

[15] A. Iamnitchi, M. Ripeanu, and I. Foster. Locating data in (small-world?) p2p scientific collaborations. In Proc. 1st
Intnl. Wshop Peer-to-Peer Systems (IPTPS ’02), pages 85–93, Mar. 2002.

[16] A.-M. Kermarrec, L. Massoulié, and A. Ganesh. Probabilistic reliable dissemination in large-scale systems. IEEE Tr.
Parallel and Distributed Systems, 14(3):248–258, Mar. 2003.

[17] M.-J. Lin and K. Marzullo. Directional Gossip: Gossip in a Wide Area Network. In Proc. European Dependable
Computing Conference, pages 364–379. LNCS 1667, Springer, 1999.

[18] M.-J. Lin, K. Marzullo, and S. Masini. Gossip versus Deterministically Constrained Flooding on small networks. In
Proc. 14th Intnl Conf. Distributed Computing (DISC 2000), pages 253–267. LNCS 1914, Springer, 2000.

[19] M. Lucas. Efficient Data Distribution in Large-Scale Multicast Networks. PhD thesis, U. of Virginia, May 1998.
[20] D. Malkhi and K. Horowitz. Estimating network size from local information. ACM Information Processing Letters,

88(5):237–243, Dec. 2003.
[21] T. Ng and H. Zhang. Towards global network positioning. In Proc. ACM SIGCOMM Conf. on Internet Measurement,

pages 25–29, Nov. 2001.
[22] S. Paul, K. Sabnani, and S. Bhattacharya. Reliable Multicast Transport Protocol (RMTP). IEEE Journ. Selected

Areas in Communications, 15(3):405–421, 1997.
[23] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware overlay construction and server selection.

In Proc. 21st IEEE INFOCOM, New York, Jun. 2002.
[24] A. Rowstron and P. Druschel. Pastry: scalable, distributed object location and routing for large-scale peer-to-peer

systems. In Proc. IFIP/ACM Middleware, pages 329–350, 2001.
[25] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In Proc. ACM SIGCOMM Conf., pages 149–160, 2001.
[26] R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable technology for distributed systems

monitoring, management, and data mining. ACM Tr. on Computer Systems, 21(3):164–206, 2003.
[27] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Proc. Middleware ’98, pages

55–70. Springer, 1998.
[28] Z. Xiao and K. Birman. A randomized error recovery algorithm for reliable multicast. In Proc. 20th IEEE INFOCOM,

volume 1, pages 239–248, 2001.
[29] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In Proc. 15th IEEE INFOCOM, volume 2,

pages 594–602, 1996.

30

Dr. Indranil Gupta is assistant professor of Computer Science at the University of Illinois at Urbana-Champaign.
Indranil received his PhD from Cornell University in 2004, and his Bachelors from Indian Institute of Technology, Madras,
in 1998. He is recipient of the NSF CAREER award in 2005. Indranil and his students in the Distributed Protocols
Research Group (DPRG) work on design methodologies, peer-to-peer systems, the Grid, disaster recovery networks, and
sensor networks. For more information, visit http://kepler.cs.uiuc.edu.

A. J. Ganesh graduated from the Indian Institute of Technology, Madras, in 1988. He received his MS and PhD
in Electrical Engineering from Cornell University in 1991 and 1995 respectively. He is currently with the Networks and
Systems group at Microsoft Research, Cambridge. His research interests include Internet resource allocation, distributed
systems and mathematical modeling.

Anne-Marie Kermarrec obtained her Ph.D. from the University of Rennes in October 1996. She spent a year (Oct.96-
Oct97) in the Computer Systems group of Vrije Universiteit, Amsterdam. In 1997, she became an assistant professor at
the University of Rennes. In 2000, she joined Microsoft Research in Cambridge and worked in the area of peer-to-peer
computing. Since February 2004, she is a senior researcher at INRIA, Rennes, France. Her research interests include
large-scale distributed systems, peer to peer overlay networks and applications.

31

