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1 Introduction

In this paper we are concerned with stochastic processes with drift of the form

S(t) =
∑

n≥1

F (t− Tn)Zn1(0,t](Tn)− ct, (1)

where {Tn}n≥1, T0 = 0, are the points (epochs) of a renewal process, whose inter-arrival times
Un = Tn−Tn−1 have finite mean, {Zn}n≥1 is a sequence of independent and identically distributed
(iid) positive random variables (rv’s), independent of {Tn}n≥1, c > 0 is a positive constant, and
F (·) is a distribution function (df) such that F (t) = 0 for t < 0.

An important example of the stochastic model considered above arises in insurance risk theory;
see Klüppelberg and Mikosch (1995a, 1995b), Mikosch and Nagaev (1998), Brémaud (2000) and
Klüppelberg, Mikosch and Schärf (2003), where Poisson shot noise processes are considered. In
Brémaud (2000), large deviations theory is used to give Cramér-Lundberg type estimates of the
infinite horizon ruin probability. Other models of delayed claims (not based on shot noise processes)
are considered in Waters and Papatriandafylou (1985), and more recently in Yuen, Guo and Ng
Kai (2005), where a martingale approach is used to estimate the infinite horizon ruin probability
under light-tailed conditions.

The interpretation of the process {S(t)}t≥0 in the insurance context is the following. Suppose
that claims {Zn}n≥1 occur according to a renewal process {Tn}n≥1, and the insurance company
honors the claim Zn, which occurred at time Tn, at the rate f(·−Tn)Zn, with f(·) being a probability
density on (0,∞). Then the total claim paid in the time interval (0, t] is

∑

n≥1

F (t− Tn)Zn1(0,t](Tn),

where F (·) is the df with density f(·). If the insurance company receives premium income at constant
rate c > 0, then S(t) defined above is the excess of claims over premiums. If we assume that the
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insurance company has an initial capital u > 0, then we say that ruin occurs at the first time t
that S(t) ≥ u, if there is such a time. This leads us to define the infinite horizon ruin probability

ψ(u) = P

(
sup
t≥0

S(t) ≥ u

)
(2)

and the finite horizon ruin probability

ψ(u, T ) = P

(
sup

t∈[0,T ]
S(t) ≥ u

)
, (3)

where T > 0 is a positive constant.
In this paper, under heavy-tailed assumptions on the distribution of Z1, we give asymptotic

estimates for ψ(u) and ψ(u, e(u)T ) as u →∞, where e(u) = E[Z1 − u |Z1 > u] is the mean excess
function of Z1. Our results exploit the heavy-tail intuition which predicts exceedances of level
u > 0 to occur as the consequence of one big jump. In particular, we show that the classical ruin
probability estimate (see Teugels and Veraverbeke (1973), Veraverbeke (1977), and Embrechts and
Veraverbeke (1982)) holds unchanged for ψ(u). Likewise, assuming Poisson claim arrivals, we show
that some well-known estimates of the finite horizon ruin probability of the Cramér-Lundberg model
(see Asmussen and Klüppelberg (1996)) hold also for ψ(u, e(u)T ). This is an insensitivity property
of the model considered, in that the asymptotic behavior of ψ(u) and ψ(u, e(u)T ) depends only on
the distribution of Z1, not on the shape or nature of the shot. It is an analogue of an insensitivity
property in the light-tailed case with Poisson claim arrivals (see Brémaud (2000) for the infinite
horizon case, and Macci, Stabile and Torrisi (2005) for the finite horizon case) where the large
deviation rate functions of ψ(u) and ψ(u, uT ) do not depend on the shape of the shot. We also
give a short proof of the insensitivity property in the light-tailed case for completeness.

Our technique is based on a recent work by Asmussen and Albrecher (2006), where risk processes
with shot noise Cox claim arrivals are considered. A closely related work is Asmussen, Schmidli
and Schmidt (1999) where the heavy-tailed behavior of the infinite horizon ruin probability of risk
processes with ergodic or regenerative input is studied.

In the literature on shot noise models, one usually deals with shot shapes of the form h(t, z) (in
place of the multiplicative form F (t)z) where h(·, z) is a non-decreasing function for each z. The
extension of the results in this paper to this more general situation is an open problem.

The paper is structured as follows. We recall some preliminaries and introduce some notation
in Section 2. Our results on ruin probabilities with heavy-tailed claim sizes are given in Section 3.
Finally, we provide ruin probability estimates for light-tailed claim sizes in the Appendix; while
these estimates coincide with those in Brémaud (2000), the derivation is simpler.

2 Preliminaries

Recall that a df G(·) is said subexponential if its support is (0,∞) and G
∗2 ∼ 2G (see, for in-

stance, Rolski et al. (1999)). Here G = 1 − G denotes the tail of the df G, G
∗2(·) denotes

the two-fold convolution of G(·), and we write g1 ∼ g2 if the functions g1(·), g2(·) are such that
limx→∞ g1(x)/g2(x) = 1; we write g1(x) = o(g2(x)) if limx→∞ g1(x)/g2(x) = 0. We say that a posi-
tive function g(·) on (0,∞) is regularly varying at infinity of index α ∈ R, and we write g ∈ R(α), if
g(x) ∼ xαL(x) as x →∞, where L(·) is a slowly varying function, that is limx→∞ L(tx)/L(x) = 1
for each t > 0.

The family of subexponential df’s will be denoted by S. It can be further classified using extreme
value theory. Goldie and Resnick (1988) showed that if G ∈ S and satisfies some smoothness
conditions, then G belongs to the maximum domain of attraction of either the Frechet distribution

2



Φα(x) = e−x−α
or the Gumbel distribution Λ(x) = e−e−x

. Moreover, in the former case, it has
regularly varying tail of index −α.

Throughout this paper we denote by B(·) the df of Z1 and by B0(·) its integrated tail df:

B0(u) =
1
µ

∫ ∞

u
B(x) dx u > 0 where µ = E[Z1].

We assume that B0 ∈ S and that either B ∈ R(−α − 1), or that B belongs to the maximum
domain of attraction of the Gumbel, written B ∈ MDA(Λ). We also assume the classical net profit
condition:

ρ = µ/(cν) < 1, where ν = E[U1].

This condition says that the mean rate c at which premium income is earned exceeds the mean
rate µ/ν at which claims need to be paid out. If this condition doesn’t hold, then ruin is certain.

3 Ruin probabilities

In this section we derive asymptotic estimates for ψ(u) and ψ(u, e(u)T ) as u → ∞, under heavy-
tailed conditions on Z1. To this end, we compare the process {S(t)}t≥0 defined in (1) with the
process {C(t)}t≥0 given by

C(t) =
∑

n≥1

Zn1(0,t](Tn)− ct. (4)

Clearly, the following domination holds:

S(t) ≤ C(t) a.s., for all t ≥ 0. (5)

We shall use this to obtain upper bounds on the ruin probabilities in both the infinite and finite
horizon settings. Lower bounds will be obtained by comparing S(·) with a different classical risk
process.

3.1 The infinite horizon case

Let Ψ(·) denote the infinite horizon ruin probability for the risk process {C(t)}t≥0. By (5), ψ(u) ≤
Ψ(u) for all u > 0. Therefore, by the classical ruin estimate (see Teugels and Veraverbeke (1973),
Veraverbeke (1977) and Embrechts and Veraverbeke (1982); see also Theorem 6.5.11 in Rolski et
al. (1999)), we have for arbitrary B0 ∈ S that

lim sup
u→∞

ψ(u)
B0(u)

≤ lim
u→∞

Ψ(u)
B0(u)

=
ρ

1− ρ
. (6)

We shall obtain matching lower bounds, adapting to our context the techniques in Albrecher
and Asmussen (2006). We begin by bounding the risk process S(·) from below. For all t ≥ 0 and
a > 0, define the risk processes:

Ša(t) =
∑

n≥1

F (a)Zn1(0,t](Tn)− ct (7)

and
Ča(t) =

∑

n≥1

Zn1(0,t](Tn)− (c/F (a))t (8)
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It is clear using the monotonicity of F (·) that

S(t) ≥ Ša(t− a)− ca a.s., for all t > a. (9)

Therefore, letting Ψ̌a(·) denote the infinite horizon ruin probability relative to the risk process
{Ča(t)}t≥0 we get:

ψ(u) ≥ Ψ̌a((u + ca)/F (a)) for all u > 0. (10)

We shall use this to obtain asymptotic lower bounds on the ruin probability matching the upper
bound in (6) under additional conditions on the claim size distribution.
Our first result states that, if the claim sizes have regularly varying tails, then the ruin probability
with delayed claims is insensitive to the shape of the shot, in the sense that it is asymptotically
equivalent to the ruin probability in the classical model. More precisely:

Proposition 3.1 If B ∈ R(−α− 1) for some α > 0, then

lim
u→∞

ψ(u)
B0(u)

=
ρ

1− ρ
. (11)

If the claim size distribution has lighter tails, then we need additional assumptions on the shape
of the shot in order to retain asymptotic equivalence with the classical model. The first part of
our next result shows that if the shot has compact support, then (11) holds so long as the claim
size distribution has an integrated tail which is subexponential. The second part shows that if the
tail of the shot decays sufficiently rapidly relative to the mean excess function of the claim size
distribution, then (11) continues to hold.

Proposition 3.2

(a) If B0 ∈ S and F (·) has compact support, then (11) holds.

(b) Suppose B ∈ MDA(Λ), B0 ∈ S and that e(u) ∼ g(u) as u → ∞, for some eventually non-
decreasing function g(·). Suppose further that there is a γ > 0 such that

uF (u1/γ) = o(e(u)) (12)

and
u1/γ = o(e(u)) (13)

as u →∞. Then (11) holds.

Before proving these propositions, we work out some examples of the conditions imposed on the shot
shape, under part (b) of Proposition 3.2, by some heavy-tailed distributions of practical interest.
These examples show that the assumptions of part (b) are not too restrictive.

Examples

(a) Weibull distribution. Suppose the claim size distribution has tail B(u) = e−uα
for u ≥ 0,

where α ∈ (0, 1) is the shape parameter of the Weibull distribution. It is well-known that
B ∈ MDA(Λ) and B0 ∈ S (see, for instance, Embrechts et al. (1997)). Moreover, by partial
integration we get:

e(u) ∼ u1−α

α
as u →∞,

and therefore e(u) is asymptotically equivalent to a non-decreasing function. Now (12) can
be rewritten as F (u) = o(e(uγ)/uγ) = o(u−γα). Hence (12) and (13) hold provided there
is a γ > 1/(1 − α) such that F (u) = o(u−γα). In particular, this is the case if F is either
light-tailed or has regularly varying tail of index −β with β > α/(1− α).
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(b) Lognormal distribution. Denote by Φ(·) the df of the standard normal distribution and take
B(u) = Φ((lnu− ω)/σ), u > 0, where ω ∈ R and σ > 0 are given constants. It is well-known
that B ∈ MDA(Λ) and B0 ∈ S (see, for instance, Asmussen and Klüppelberg (1996)). Fur-
thermore, using Mill’s ratio and l’Hospital’s rule, we get

e(u) ∼ σ2u

ln u− ω
as u →∞.

Hence e(u) is asymptotic equivalent to an eventually non-decreasing function, and (13) is
satisfied for any γ > 1. Also, (12) is satisfied if F (u1/γ) = o(1/ lnu), i.e., F (u) = o(1/ lnu),
irrespective of γ. In other words, the conditions of Proposition 3.2(b) are satisfied provided
the shot has tail decaying faster than logarithmically.

(c) Benktander distributions. We first consider the so-called Benktander distribution of type I
(see, for instance, Embrechts et al. (1997)):

B(u) = (1 + 2(δ/α) lnu) exp{−(δ(lnu)2 + (α + 1) lnu)} u ≥ 1, α, δ > 0.

We have that B ∈ MDA(Λ), B0 ∈ S and

e(u) =
u

α + 2δ ln u
for all u ≥ 1

(see Embrechts et al. (1997)). In particular, e(u) is eventually non-decreasing and condition
(13) is satisfied for all γ > 1. Hence, the conditions of the proposition are met if (12) holds
for some γ > 1. Again, this doesn’t depend on γ, and is equivalent to F (u) = o(1/ lnu).

Finally, assume that B(·) is a Benktander type II distribution (see, for instance, Embrechts
et al. (1997)) of the form:

B(u) = eα/δu−(1−δ) exp
{
−α

δ
uδ

}
u ≥ 1, 0 < α < 1, 0 < δ < 1.

In this case B ∈ MDA(Λ), B0 ∈ S and e(u) = u1−δ/α, u ≥ 1 (see, for instance, Embrechts et
al. (1997)). Therefore e(u) is non-decreasing and condition (13) is met for all γ > 1/(1− δ).
As (12) can be rewritten as F (u) = o(u−γδ), the conditions of the proposition are satisfied if
this holds for some γ > 1/(1− δ). This is the case if F is either light-tailed or has regularly
varying tail of index −β with β > δ/(1− δ).

Proof of Proposition 3.1 In view of (6), it only remains to prove the corresponding lower bound.
We have by (10) that

lim inf
u→∞

ψ(u)
B0(u)

≥ lim
u→∞

Ψ̌a((u + ca)/F (a))
B0((u + ca)/F (a))

lim
u→∞

B0((u + ca)/F (a))
B0(u)

. (14)

Now, since B ∈ R(−α− 1), it follows from Karamata’s theorem (see, for instance, Embrechts et al.
(1997)) that B0 ∈ R(−α). Hence, by the definition of regularly varying functions,

lim
u→∞

B0((u + ca)/F (a))
B0(u)

= F (a)α. (15)

Since F (a) ≤ 1 for all a, it follows from the net profit condition that ρ(a) := (F (a)µ)/(cν) < 1.
Hence, by the classical ruin estimate,

lim
u→∞

Ψ̌a((u + ca)/F (a))
B0((u + ca)/F (a))

=
ρ(a)

1− ρ(a)
. (16)
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Substituting (15) and (16) in (14), we get

lim inf
u→∞

ψ(u)
B0(u)

≥ ρ(a)F (a)α

1− ρ(a)
for all a > 0.

Letting a tend to infinity, we notice that F (a) tends to 1 and ρ(a) tends to ρ, which yields the
desired lower bound, and the claim of the proposition.
¤
Proof of Proposition 3.2 For part (a), note that if F has compact support, then there is an
a < ∞ such that F (a) = 1. Consequently, we obtain from (14)

lim inf
u→∞

ψ(u)
B0(u)

≥ lim
u→∞

Ψ̌a(u + ca)
B0(u + ca)

lim
u→∞

B0(u + ca)
B0(u)

.

The first limit in the product above equals ρ/(1 − ρ) by the classical ruin estimate, while the
second limit equals 1 by the long-tailed property of subexponential distributions (see, for instance,
Embrechts et al. (1997)). Thus, we obtain a lower bound on ψ(u) matching the asymptotic upper
bound in (6) and equal to the limit in (11), as claimed.

Next, we turn to the proof of part (b). We can generalize (14) to let a depend on u, i.e.,
a = a(u). Also note that for any x > 0 and a ≤ a(u), Ψ̌a(x) ≤ Ψ̌a(u)(x). This is obvious on
recalling that Ψ̌a(x) denotes the ruin probability subject to initial capital x and premium rate
c/F (a), as the ruin probability is non-increasing in the premium rate. In other words, ψ(u) ≥
Ψ̌a(u)((u + ca(u)))/F (a(u))) ≥ Ψ̌a((u + ca(u)))/F (a(u))). Therefore, we can rewrite (14) as

lim inf
u→∞

ψ(u)
B0(u)

≥ lim inf
u→∞

Ψ̌a((u + ca(u)))/F (a(u)))
B0((u + ca(u))/F (a(u)))

lim inf
u→∞

B0((u + ca(u))/F (a(u)))
B0(u)

,

for any a > 0. Hence, using the classical ruin estimate applied to Ψ̌a,

lim inf
u→∞

ψ(u)
B0(u)

≥ ρ(a)
1− ρ(a)

lim inf
u→∞

B0((u + ca(u))/F (a(u)))
B0(u)

for all a > 0. (17)

We now use a representation of B0 for B ∈ MDA(Λ) given in Asmussen and Klüppelberg (1996):

B0(u) = exp
(
−

∫ u

0

1
e(t)

dt
)
, u > 0.

It follows that
B0((u + ca(u))/F (a(u)))

B0(u)
= exp

(
−

∫ u+ca(u)
F (a(u))

u

1
e(t)

dt
)

By the assumption of Proposition 3.2(b), e(t) ∼ g(t) for g(·) which is eventually non-decreasing.
Hence, we have for all ε > 0 that

lim inf
u→∞

B0((u + ca(u))/F (a(u)))
B0(u)

≥ lim inf
u→∞ exp

(
−

(u + ca(u)
F (a(u))

− u
)1 + ε

g(u)

)
. (18)

Since B ∈ MDA(Λ) and B0 ∈ S, the mean excess function e(u) goes to ∞ as u → ∞ (see Goldie
and Resnick (1988)). Let γ > 0 be such that (12) and (13) hold, and take a(u) = u1/γ . Then

(u + ca(u)
F (a(u))

− u
) 1

g(u)
=

uF (u1/γ)
g(u)F (u1/γ)

+
cu1/γ

g(u)F (u1/γ)
→ 0 as u →∞,
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since g(u) ∼ e(u). Therefore, we have by (18) and the fact that B0(·) is non-increasing that

lim
u→∞

B0((u + cu1/γ)/F (u1/γ))
B0(u)

= 1, (19)

whenever γ satisfies (12) and (13). Substituting this in (17) yields

lim inf
u→∞

ψ(u)
B0(u)

≥ ρ(a)
1− ρ(a)

for all a > 0. Now letting a →∞, and noting that ρ(a) → ρ, we obtain that

lim inf
u→∞

ψ(u)
B0(u)

≥ ρ

1− ρ
.

Combined with the upper bound in (6), this yields (11).
¤

3.2 The finite horizon case

Throughout this section we assume that {Tn}n≥1, T0 = 0, is a homogeneous Poisson process with
intensity ν−1. The following proposition holds:

Proposition 3.3

(a) If B ∈ R(−α− 1), α > 0, then

lim
u→∞

ψ(u, uT )
ψ(u)

= 1− (1 + (1− ρ)T )−α. (20)

(b) Suppose that the assumptions of Proposition 3.2(b) are satisfied for some γ > 1, and with the
function g(·) being regularly varying at infinity. Then,

lim
u→∞

ψ(u, e(u)T )
ψ(u)

= 1− e−(1−ρ)T . (21)

Remark1 Note that e(u) ∼ g(u) with g(·) regularly varying at infinity is satisfied for all the
examples considered earlier.

Remark2 The proposition says that, starting with initial capital u and conditional on ruin occur-
ing, the time to ruin scales like u or e(u) under the assumptions of parts (a) and (b) respectively.
More precisely, the time to ruin divided by u converges in distribution to a Pareto under the
assumptions of part (a), while the time to ruin divided by e(u) converges in distribution to an
Exponential under the assumptions of part (b).

Proof We first show the upper bounds for (20) and (21). Denote, respectively, by Ψ(u, T ) and
Ψ(u) the finite horizon and the infinite horizon ruin probability relative to the classical risk process
{C(t)}t≥0 defined in (4). By Corollary 1.6 in Asmussen and Klüppelberg (1996) we have:

lim
u→∞

Ψ(u, uT )
Ψ(u)

= 1− (1 + (1− ρ)T )−α (22)

if B ∈ R(−α− 1), and

lim
u→∞

Ψ(u, e(u)T )
Ψ(u)

= 1− e−(1−ρ)T (23)
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if B ∈ MDA(Λ) and B0 ∈ S. By Propositions 3.1 and 3.2, ψ(u) ∼ Ψ(u) under the assumptions
of this proposition. Since (5) implies that ψ(u, g̃(u)T ) ≤ Ψ(u, g̃(u)T ) for all u and non-negative
functions g̃(·), the upper bounds follow by (22) and (23).

It remains to prove the matching lower bounds. We first show part (a). For each a > 0, denote
by Ψ̌a(u, T ) and Ψ̌a(u) respectively the finite horizon and the infinite horizon ruin probability
relative to the risk process {Ča(t)}t≥0 defined by (8). As in the proof of Proposition 3.1, we get
(9), which yields for each a > 0 that

ψ(u, uT ) ≥ Ψ̌a((u + ca)/F (a), uT − a) for all u > 0, (24)

where Ψ̌a(u, t) is defined as zero if t < 0. Since u − (a/T ) ∼ u + ca as u → ∞, we have by (24)
that for any ε > 0 there exists ū = ū(ε) such that

ψ(u, uT ) ≥ Ψ̌a((u + ca)/F (a), (u + ca)(1− ε)T ) for all u ≥ ū and a > 0. (25)

Since (22) also holds with Ψ̌a in place of Ψ (the former is simply the ruin probability for the risk
process modified to have premium rate c/F (a)), we get

lim
u→∞

Ψ̌a((u + ca)/F (a), (u + ca)(1− ε)T )
Ψ̌a((u + ca)/F (a))

= 1− (1 + (1− ρ(a))(1− ε)TF (a))−α, (26)

where ρ(a) is defined as F (a)µ/(cν) = ρF (a). Arguing as in the proof of Proposition 3.1, we have

lim
u→∞

Ψ̌a((u + ca)/F (a))
ψ(u)

=
(

ρ(a)F (a)α

1− ρ(a)

)(
ρ

1− ρ

)−1

. (27)

The matching lower bound follows combining (25), (26), (27), letting ε tend to 0 and a tend to
infinity.

Finally, we show part (b). We have from (9) that, for arbitrary positive functions a(·), arbitrary
a > 0, and all u > 0 such that a(u) ≥ a,

ψ(u, e(u)T ) ≥ Ψ̌a(u)

(u + ca(u)
F (a(u))

, e(u)T − a(u)
)
≥ Ψ̌a

(u + ca(u)
F (a(u))

, e(u)T − a(u)
)
. (28)

Recall that e(·) was assumed to be asymptotically equivalent to a regularly varying function g(·).
Let β denote the index of variation of g at infinity. Let γ > 1 be such that (12) and (13) hold, and
take a(u) = u1/γ . Then, we have

lim
u→∞

e((u + ca(u))/F (a(u)))
e(u)

= lim
u→∞

(u + cu1/γ

uF (u1/γ)

)β
= 1,

where we have used the fact that γ > 1 to obtain the second equality. Since u1/γ = o(e(u)) by (13),
it follows that

lim
u→∞

e(u)T − a(u)
e((u + ca(u))/F (a(u)))

= T.

Therefore, by (23), we obtain for all ε > 0 that

lim inf
u→∞

Ψ̌a(
u+ca(u)
F (a(u)) , e(u)T − a(u))

Ψ̌a(
u+ca(u)
F (a(u)) )

≥ 1− e−(1−ε)(1−ρ(a))T .

Combining the above with (28) and letting ε decrease to zero, we get

lim inf
u→∞

ψ(u, e(u)T )
Ψ̌a((u + ca(u))/F (a(u)))

≥ 1− e−(1−ρ(a))T . (29)
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It remains only to compare the denominator of the left-hand side with Ψ(u). Using the classical
ruin estimate, we have

lim inf
u→∞

Ψ̌a((u + ca(u))/F (a(u)))
Ψ(u)

=
ρ(a)

1− ρ(a)
1− ρ

ρ
lim inf
u→∞

B0((u + ca(u))/F (a(u))))
B0(u)

.

If we take a(u) = u1/γ where γ > 1 satisfies the assumptions of Proposition 3.2(b), then (19) holds.
Therefore,

lim inf
u→∞

Ψ̌a((u + cu1/γ)/F (u1/γ))
Ψ(u)

=
ρ(a)

1− ρ(a)
1− ρ

ρ
.

Substituting this in (29), and using the asymptotic equivalence of ψ(u) and Ψ(u) established in
Proposition 3.2, we get

lim inf
u→∞

ψ(u, e(u)T )
ψ(u)

≥ ρ(a)
1− ρ(a)

1− ρ

ρ
(1− e−(1−ρ(a))T ),

for all a > 0. Now letting a tend to infinity, and noting that ρ(a) tends to ρ, we obtain the lower
bound

lim inf
u→∞

ψ(u, e(u)T )
ψ(u)

≥ 1− e−(1−ρ)T .

Combining this with the upper bound established earlier, the proof of the proposition is complete.
¤
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Klüppelberg, C. and Mikosch, T. (1995b), Delay in Claim Settlement and Ruin Probability ap-
proximations, Scand. Actuarial J. 2, 154–168.
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4 Appendix

In this section, we obtain logarithmic asymptotics for the infinite horizon ruin probability when the
claim sizes have exponential tails and the claim arrival process is Poisson. As in Brémaud (2000),
we consider the more general form of the risk process with delayed claims, namely

S(t) =
∑

n≥1

H(t− Tn, Zn)1(0,t](Tn)− ct. (30)

Here T0 = 0 and {Tn}n≥1 are the points of a Poisson process of rate λ, independent of the iid
sequence of marks {Zn}n≥1, taking values in a measure space (E, E), and H : R+ × E → [0,∞)
is a measurable function such that H(·, z) is non-decreasing and cadlag (right continuous with left
limits) for all z ∈ E. We define H(∞, z) = limt→∞H(t, z), noting that the limit exists but may be
infinite. The ruin probability ψ(u) for u > 0 is defined as in (2).

We compare the risk process S(·) with the classical risk process C(·) defined by

C(t) =
∑

n≥1

H(∞, Zn)1(0,t](Tn)− ct, (31)

with corresponding ruin probability Ψ(u) = P (supt≥0 C(t) > u). We are interested in the case
where the claim size distribution has exponentially decaying tails, i.e., E[exp(θH(∞, Z1)] is finite
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for θ in a neighbourhood of 0. If Cramér’s condition is satisfied, i.e.,

∃w > 0 : λ
(
E

[
ewH(∞,Z1)

]
− 1

)
− cw = 0, (32)

then we have the classical result

lim
u→∞

1
u

log Ψ(u) = −w. (33)

It was shown in Brémaud (2000) that ψ(u) satisfies the same logarithmic asymptotics, i.e.,

lim
u→∞

1
u

log ψ(u) = −w. (34)

We now give an alternative proof of this result. Since ψ(u) ≤ Ψ(u) for all u > 0, it suffices to prove
the asympotic lower bound. To this end, observe that for all a > 0,

S(t) ≥
∑

n≥1

H(a, Zn)1(0,t−a](Tn)− c(t− a)− ca = Ca(t− a)− ca,

where Ca(·) is defined analogous to C(·), but with H(∞, Z1) replaced with H(a, Z1). Define Ψa to
be the ruin probability associated with the risk process Ca(·). It follows from the above that

ψ(u) ≥ Ψa(u + ca) for all u > 0 and a > 0. (35)

We also have by the Cramér-Lundberg theorem that, for each a > 0,

lim
u→∞

1
u

log Ψa(u) = −wa, (36)

where wa is the unique positive solution of

λ
(
E

[
ewaH(a,Z1)

]
− 1

)
− cwa = 0

if one exists, and wa = ∞ otherwise. Since H(a, Z1) increases to H(∞, Z1) as a → ∞, it readily
follows that wa decreases to w. Therefore, it is immediate from (35) and (36) that

lim inf
u→∞

1
u

log ψ(u) ≥ − lim sup
u→∞

wa = −w.

Combined with the upper bound established earlier, this completes the proof of (34).
Finally, we remark that the extension of the results to the case when {Tn}n≥1 constitute a

renewal process is straightforward. The results can also be extended to allow certain kinds of
dependence between Tn and Zn by following the methods of Albrecher and Teugels (2006). As the
heavy-tailed case is the main focus of this paper, we do not pursue these extensions here.
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