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methods seem to be less well studied. The most important property of any

statistical procedure is its consistency and there is, indeed, a rich literature

on the consistency of Bayes’ posterior distributions. A good review of this

work can be found in Ghosal et al. [5]. There does not appear to be much

work on more refined asymptotics. Large and moderate deviations have been

studied by Ganesh and O’Connell [4], and Eichelsbacher and Ganesh [2] re-

spectively, for priors satisfying certain exchangeability properties. Central

limit theorems have been obtained in specific cases by Le Cam [7] and Ibrag-

imov and Has’minskii [6].

The results described above pertain to Bayesian inference for iid sequences

of observations. Markov chains are among the simplest models for depen-

dent sequences; nevertheless, they find an extremely rich and diverse set of

applications in stochastic modeling. It is therefore natural to seek to extend

the above results to the Markovian setting. Here, we have a sequence of

observations of the states of a Markov chain whose transition probability

matrix is unknown, and is to be inferred by a Bayesian procedure. In this

paper, we consider an irreducible, discrete time Markov chain with a finite

state space.

This model has been studied previously by Papangelou [8], who establishes a

large deviation principle (LDP) for the sequence of Bayes’ posteriors. This is

much stronger than consistency, or even the assertion of exponential conver-

gence of the posterior. The rate function for the LDP is the relative entropy

function H(P |·), where P is the transition matrix of the Markov chain. Rel-

ative entropy also appears as the rate function in Sanov’s theorem for the

pair empirical measure of a Markov chain, but in the form H(·|P ). This

interchange of arguments has been noted for iid sequences as well. It has a
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simple intuitive explanation, as noted by Papangelou: in Sanov’s theorem,

we ask how likely it is that the empirical transition matrix is close to Q,

given that the transition matrix is P , whereas in the Bayesian context we

ask how likely it is that the transition matrix is close to Q given that we

observe an empirical transition matrix close to P .

Papangelou obtains the LDP for Markov chains whose order is unknown; the

result when the order is known follows easily. The LDP for Markov chains

of known order is derived independently by Paschalidis and Vassilaras [9],

who give a nice application of their result to modeling telecommunication

systems.

Our contributions in this paper are the following. We give independent

proofs of both large and moderate deviation principles for Markov chains

of known order, which we obtain as consequences of LDPs and moderate

deviations principles (MDPs) for iid sequences. The study of moderate

deviations for Bayesian inference of Markov transition functions is new, to

the best of our knowledge. The rate function for the MDP is the Fisher

information. This is the same rate function as arises in Sanov’s theorem

for the empirical measure of a Markov chain. This is analogous to the

corresponding result for iid sequences and is in contrast to the large deviation

setting, where the rate function is different from that in Sanov’s theorem.

2 Statement of the main results

Let Ω be a finite set, and let M1(Ω) denote the space of probability measures

on Ω. Let X1, X2, . . . be a Markov chain on Ω with irreducible transition
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probability matrix R = {r(i, j) : i, j ∈ Ω}, which is unknown. We consider

the problem of inferring R by a Bayesian procedure based on the observations

X1, . . . , Xn+1. Note that R ∈ M1(Ω)Ω and let P ∈ M1(M1(Ω)Ω) denote the

prior distribution on R. Let P̂n denote the empirical transition probability

matrix with entries

p̂n(i, j) =
∑n

k=1 1(Xk = i,Xk+1 = j)∑n
k=1 1(Xk = i)

, i, j ∈ Ω.

We shall assume without loss of generality that, for large enough n, the

denominator above is positive for all i ∈ Ω; we simply work with a set Ω

consisting only of those states for which the assumption holds. We also

define the empirical marginal distribution

π̂n(i) =
1
n

n∑
k=1

1(Xk = i).

Let Pn denote the posterior distribution corresponding to the prior P and

the empirical distribution P̂n (we do not make the dependence of Pn on P̂n

explicit in the notation). Pn is absolutely continuous with respect to P with

Radon-Nikodym derivative on the support of P given by

dPn

dP
(Q) =

∏
i,j∈Ω q(i, j)nπ̂n(i)p̂n(i,j)∫

M1(Ω)Ω
∏

i,j∈Ω r(i, j)nπ̂n(i)p̂n(i,j)dP(R)
(1)

with Q = {q(i, j) : i, j ∈ Ω}.

Assumption A: Consider a given realization of the process X1, X2, . . ..

Suppose that, for this realization, p̂n(i, j) → p(i, j) and π̂n(i) → π(i) for all

i, j ∈ Ω, as n →∞. Suppose too that p(i, j) is irreducible and that π(i) > 0

for all i ∈ Ω.

It is not hard to verify that π is the unique stationary distribution for the

Markov chain with transition probability matrix P = {p(i, j) : i, j ∈ Ω}.
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Under the above assumption, the sequence of posterior distributions Pn

obey large and moderate deviations principles as described below. In the

remainder of this paper, M1(Ω)Ω is equipped with its natural topology as a

subset of a finite-dimensional Euclidean space.

Theorem 1 If assumption A holds for the observed realization of X1, X2, . . .,

then the sequence of posterior distributions Pn obeys an LDP in M1(M1(Ω)Ω)

with the good rate function

I(Q) =


∑

i,j∈Ω π(i)p(i, j) log p(i,j)
q(i,j) , if Q ∈ supp P,

+∞, otherwise.

We note that the rate function is convex provided the support of the prior

is convex. The above is a pointwise result on the set of all limit points of

sequences of empirical distributions. Since the empirical distributions con-

verge almost surely to the probability law of the Markov chain, the theorem

implies an almost sure LDP, stated below.

Corollary 1 The sequence of posterior distributions Pn almost surely sat-

isfies an LDP in M1(M1(Ω)Ω) with the rate function

I(Q) =


∑

i,j∈Ω ρ(i)r(i, j) log r(i,j)
q(i,j) , if Q ∈ supp P,

+∞, otherwise,

where R is the transition matrix and ρ the stationary distribution of the

Markov chain {Xi, i ∈ IN}.

By the ergodic theorem for Markov chains, π̂n and P̂n converge almost surely

to ρ and R respectively. Hence, the corollary is immediate from Theorem 1.
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Definitions : Let SΩ denote the Ω-simplex,

SΩ = {x ∈ IRΩ : xi ≥ 0 ∀ i ∈ Ω,
∑
i∈Ω

xi = 1}.

We identify (SΩ)Ω with M1(Ω)Ω. We denote Lebesgue measure on SΩ by

λ and we let m = λΩ denote Lebesgue measure on (SΩ)Ω. We say that

P ∈ M1(Ω)Ω is a regular point of the support of P if p(i, j) > 0 for all

i, j ∈ Ω and if there is a neighbourhood of P in (SΩ)Ω on which P is

absolutely continuous with respect to Lebesgue measure, m, on (SΩ)Ω, and

if the density of P with respect to m is bounded away from zero and infinity

on this neighbourhood.

We say that a positive sequence {bn, n ∈ IN} is regularly varying if c(t) =

limn→∞ b(bntc)/b(n) exists for all t > 0. It is not hard to see that if the

limit exists, then c(t1t2) = c(t1)c(t2) for all t1, t2 > 0, and so c(t) = tα for

some α ∈ IR.

Theorem 2 Suppose Assumption A holds with P a regular point of the

support of P. Let (bn)n∈IN be a regularly varying sequence such that

bn

n
→ 0,

b2
n

n
→∞ as n →∞, (2)

and suppose |p̂n(i, j) − p(i, j)| = o(bn/n), |π̂n(i) − π(i)| = o(bn/n) for all

i, j ∈ Ω. Then, for any open subset G and closed subset F of M0(Ω)Ω, we

have

lim inf
n→∞

n

b2
n

logPn

(
P +

bn

n
G

)
≥ − inf

Q∈G

∑
i,j∈Ω

π(i)q(i, j)2

p(i, j)
.

lim sup
n→∞

n

b2
n

logPn

(
P +

bn

n
F

)
≤ − inf

Q∈F

∑
i,j∈Ω

π(i)q(i, j)2

p(i, j)
.
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Here, M0(Ω) is the set of signed measures λ on Ω such that
∑

i∈Ω λ(i) = 0.

As happened with the LDP, the above theorem implies an almost sure MDP

but under stronger conditions on the sequence bn.

Corollary 2 Suppose R, the transition matrix of (Xi)i∈IN, is a regular point

of the support of P. Let (bn)n∈IN be a regularly varying sequence such that

bn

n
→ 0,

b2
n

n log log n
→∞ as n →∞.

Then the conclusions of Theorem 2 hold R-almost surely with π and P re-

placed by ρ and R respectively, where ρ is the stationary distribution corre-

sponding to R.

By the law of the iterated logarithm,
√

n/ log log n‖P̂n−R‖ is almost surely

bounded and so ‖P̂n − R‖ = o(bn/n) R-almost surely under the above as-

sumptions on bn. The same is true of ‖π̂n−ρ‖. The corollary is now obvious.

Remarks: We have stated our results above in terms of first-order Markov

transition functions in order to keep the notation simple. The statements

and proofs carry over essentially unchanged to the setting of higher-order

Markov chains, provided the order is known and the prior concentrates on

transition functions of the correct order.

3 Proofs of the results

Proof of Theorem 1: Let Z1, Z2, . . . be an iid sequence in Ω2 with P(Z1 =

(i, j)) = ρ(i)r(i, j), i, j ∈ Ω, where R is an irreducible Markov transition

matrix and ρ its unique stationary distribution. Suppose the distribution,
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ρ × R, of this iid sequence is unknown and is to be inferred by a Bayesian

procedure, based on the observed sequence Z1, . . . , Zn. Define

µn(i) =
1
n

n∑
k=1

1(Zk(1) = i), qn(i, j) =
1

nµn(i)

n∑
k=1

1(Zk = (i, j)), i, j ∈ Ω,

where Zk(1) denotes the first component of Zk. We assume that for large

enough n, µn(i) is positive for all i ∈ Ω and so Qn = {qn(i, j) : i, j ∈ Ω} is

well-defined.

Let π be any probability distribution on Ω such that π(i) > 0 for all i ∈ Ω,

and let δπ ∈ M1(M1(Ω)) denote unit mass at π. We take our prior on

ρ × R, the distribution of Z1, to be δπ × Q, where Q is some probability

distribution on M1(Ω)Ω. A simple calculation using Bayes’ theorem shows

that the posterior based on Z1, . . . , Zn is δπ × Qn where Qn is absolutely

continuous with respect to Q and has density

dQn

dQ
(ν) =

∏
i,j∈Ω ν(i, j)nµn(i)qn(i,j)∫

M1(Ω)Ω
∏

i,j∈Ω λ(i, j)nµn(i)qn(i,j)dQ(λ)
(3)

at ν ∈ supp Q.

Suppose µn → π and Qn → Q ∈ supp Q as n → ∞, for a given realization

of Z1, Z2, . . .. Since (Zk)k∈IN is an iid sequence, it follows from [3, Theorem

1] that the sequence of posterior distributions δπ×Qn satisfies an LDP with

rate function I given by

I(λ×R) =

{
h(π ×Q|λ×R), if λ×R ∈ supp δπ ×Q,

+∞, otherwise.

In other words, the rate function is h(π×Q|π×R) if λ = π and R is in the

support of Q, and infinite otherwise. Here h is the relative entropy function

for probability measures,

h(π ×Q|π ×R) =
∑

i,j∈Ω

π(i)q(i, j) log
π(i)q(i, j)
π(i)r(i, j)

=
∑

i,j∈Ω

π(i)q(i, j) log
q(i, j)
r(i, j)

.
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Thus, for any open subset A of M1(Ω)Ω, we have the lower bound,

lim inf
n→∞

1
n

logQn(A) = − inf
R∈A∩supp Q

∑
i,j∈Ω

π(i)q(i, j) log
q(i, j)
r(i, j)

,

and a corresponding upper bound for closed sets.

With the identification Zn = (Xn, Xn+1), it follows from (1) and (3) that, if

P = Q, µn = π̂n and P̂n = Qn, then Pn = Qn. Consequently, if π̂n → π and

P̂n → P as n →∞, we immediately have for any open subset A of M1(Ω)Ω

that

lim inf
n→∞

1
n

logPn(A) = − inf
Q∈A∩supp P

∑
i,j∈Ω

π(i)p(i, j) log
p(i, j)
q(i, j)

.

Likewise, we obtain a corresponding upper bound for closed sets. This

completes the proof of the theorem.

Proof of Theorem 2: The reason that we can’t follow the same approach

to prove the MDP is that the MDP for iid sequences was proved under

certain ‘regularity’ conditions on the prior. A prior of the form δπ × Q

which concentrates on a single point in one of the co-ordinates does not

satisfy these conditions. The proof now proceeds through a sequence of

lemmas.

Lemma 1 Under the assumptions of Theorem 2, there are constants c1, c2

in (0,∞) such that

c1n
−|Ω|(|Ω|−1)/2 ≤

∫
M1(Ω)Ω

exp(−nH(P̂n|R))dP(R) ≤ c2n
−|Ω|(|Ω|−1)/2.

The relative entropy between Markov transition functions is defined as

H(P̂n|R) =
∑

i,j∈Ω

π̂n(i)p̂n(i, j) log
p̂n(i, j)
r(i, j)

,
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where π̂n is the stationary distribution corresponding to the transition ma-

trix P̂n, which is assumed to be irreducible.

Proof : In the following, c and k will denote generic positive constants, not

necessarily the same at each occurrence. We fix α, δ > 0 and define the sets

An = {R ∈ M1(Ω)Ω : |r(i, j)− p̂n(i, j)| < αn−1/2 ∀ i, j ∈ Ω},

An
δ = {R ∈ M1(Ω)Ω : |r(i, j)− p̂n(i, j)| < δ ∀ i, j ∈ Ω}.

Now, for R ∈ An, we have

H(P̂n|R) = −
∑

i,j∈Ω

π̂n(i)p̂n(i, j) log
[
1 +

r(i, j)− p̂n(i, j)
p̂n(i, j)

]
=

−
∑

i,j∈Ω

[
π̂n(i)r(i, j)− π̂n(i)p̂n(i, j)− π̂n(i)

(r(i, j)− p̂n(i, j))2

2p̂n(i, j)

]
+ O

(
n−

3
2

)
.

But
∑

i,j π̂n(i)r(i, j) =
∑

i,j π̂n(i)p̂n(i, j) = 1, and so it follows from the

above that there is a positive constants k such that nH(P̂n|R) ≤ k for all

R ∈ An and n sufficiently large. Since we assumed that P ≥ cm on An for

some c > 0 (here m denotes Lebesgue measure on M1(Ω)Ω), we have∫
M1(Ω)Ω

exp(−nH(P̂n|R))dP(R) ≥
∫
An

ce−kdm

= ce−k vol(An) = const n−|Ω|(|Ω|−1)/2,

which completes the proof of the lower bound. We also obtain from the

non-negativity of relative entropy and the assumption that P ≤ cm on An

for some c > 0 that,∫
An

exp(−nH(P̂n|R))dP(R) ≤ c vol(An) = const. n−|Ω|(|Ω|−1)/2. (4)

Recall that the total variation distance between two probability measures

p and q on Ω is defined as dTV (p, q) =
∑

x∈Ω |p(x) − q(x)|/2. Now, by a
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well-known inequality of Csiszar and Kullback (see, e.g., [1, Ex. 6.2.17]),

H(P̂n|R) =
∑
i∈Ω

π̂n(i)h(P̂n(i, ·)|R(i, ·))

≥ 2
∑
i∈Ω

π̂n(i)dTV (P̂n(i, ·)|R(i, ·))2

≥ 2 min
i∈Ω

π̂n(i) max
i∈Ω

dTV (P̂n(i, ·)|R(i, ·))2

≥ mini∈Ω π̂n(i)
|Ω|

max
i∈Ω

dTV (P̂n(i, ·)|R(i, ·))
∑

i,j∈Ω

|r(i, j)− p̂n(i, j)|.

Now, if R /∈ An, then maxi∈Ω dTV (P̂n(i, ·)|R(i, ·)) ≥ αn−1/2/2. Moreover,

π(i) > 0 for all i by the assumption that P is irreducible, and so mini∈Ω π̂n(i)

is bounded away from zero for all n large enough. Hence, nH(P̂n|R) ≥

k
√

n
∑

i,j∈Ω |r(i, j) − p̂n(i, j)|. Since P ≤ cm on An
δ for some c > 0 and

small enough δ by assumption, it follows that∫
An

δ
\An

e−nH(P̂ n|R)dP(R) ≤
∫
An

δ

ce
−k
√

n
∑

i,j∈Ω
|r(i,j)−p̂n(i,j)|

dm(R)

≤ c
∏
i∈Ω

|Ω|−1∏
j=1

∫ δ

−δ
e−k

√
n|x|dx ≤ cn−|Ω|(|Ω|−1)/2. (5)

Finally, if R /∈ An
δ , then the total variation distance, dTV (R(i, ·), P̂n(i, ·))

exceeds δ for some i ∈ Ω, and so H(P̂n|R) ≥ kδ2. Hence,∫
M1(Ω)Ω\An

δ

exp(−nH(P̂n|R))dP(R) ≤ ce−knδ2
. (6)

It is clear from (4,5,6) that the upper bound in the lemma holds. Together

with the lower bound established earlier, this completes the proof of the

lemma.

A similar argument shows that there are constants c1, c2 > 0 such that

c1n
−|Ω|(|Ω|−1)/2 ≤

∫
M1(Ω)Ω

exp(−nH(P̂n|R))dm(R) ≤ c2n
−|Ω|(|Ω|−1)/2, (7)
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where m denotes Lebesgue measure on M1(Ω)Ω.

We can rewrite (1) as

dPn

dP
(Q) =∏

i,j∈Ω q(i, j)nπ̂n(i)p̂n(i,j)∫
M1(Ω)Ω

∏
i,j∈Ω r(i, j)nπ̂n(i)p̂n(i,j)dm(R)

∫
M1(Ω)Ω exp[−nH(P̂n|R)]dm(R)∫
M1(Ω)Ω exp[−nH(P̂n|R)]dP(R)

.

Hence, by Lemma 1 and (7), there are constants c1, c2 such that

c1
dPn

dP
(Q) ≤

∏
i,j∈Ω q(i, j)nπ̂n(i)p̂n(i,j)∫

M1(Ω)Ω
∏

i,j∈Ω r(i, j)nπ̂n(i)p̂n(i,j)dm(R)
≤ c2

dPn

dP
(Q).

Using the assumption of regularity of P once more, we obtain for any mea-

surable A ⊆ M0(Ω)Ω and large enough n that

c1Pn
(

P +
bn

n
A

)
≤ P̃n

(
P +

bn

n
A

)
≤ c2Pn

(
P +

bn

n
A

)
(8)

where

P̃n(B) :=

∫
B

∏
i,j∈Ω r(i, j)nπ̂n(i)p̂n(i,j)dm(R)∫

M1(Ω)Ω
∏

i,j∈Ω r(i, j)nπ̂n(i)p̂n(i,j)dm(R)
. (9)

The claim of Theorem 2 is now immediate from the following lemma.

Lemma 2 Let P̃n be defined as in (9). For any open subset G and closed

subset F of M0(Ω)Ω, we have under the assumptions of Theorem 2 that

lim inf
n→∞

n

b2
n

log P̃n

(
P +

bn

n
G

)
≥ − inf

Q∈G

∑
i,j∈Ω

π(i)q(i, j)2

p(i, j)
.

lim sup
n→∞

n

b2
n

log P̃n

(
P +

bn

n
F

)
≤ − inf

Q∈F

∑
i,j∈Ω

π(i)q(i, j)2

p(i, j)
.

Proof : Let B = B1 × · · · × B|Ω| be an open rectangle in M1(Ω)Ω. Since m

is the product measure λΩ, where λ is Lebesgue measure on the Ω-simplex,

SΩ, we can rewrite (9) as

P̃n(B) =
∏
i∈Ω

∫
Bi

∏
j∈Ω x(j)nπ̂n(i)p̂n(i,j)dλ(x)∫

Ω

∏
j∈Ω x(j)nπ̂n(i)p̂n(i,j)dλ(x)

.
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For i ∈ Ω and B ⊆ M1(Ω), define

P̃nπ̂n(i)
i (B) =

∫
B

∏
j∈Ω x(j)nπ̂n(i)p̂n(i,j)dλ(x)∫

Ω

∏
j∈Ω x(j)nπ̂n(i)p̂n(i,j)dλ(x)

,

so that

P̃n(B) =
∏
i∈Ω

P̃nπ̂n(i)
i (Bi). (10)

Here, P̃nπ̂n(i)
i is the posterior distribution for transitions out of state i when

the prior is Lebesgue measure on M1(Ω) and there are nπ̂n(i) observations, a

fraction p̂n(i, j) of which are transitions to state j. Note that the transitions

out of each state i are iid. Thus, for each i ∈ Ω and any open set Ai ⊆ M0(Ω),

we have by [2, Theorem 1] that,

lim
n→∞

nπ̂n(i)
b2
nπ̂n(i)

log P̃nπ̂n(i)
i

(
P (i, ·) +

bnπ̂n(i)

nπ̂n(i)
Ai

)
= − inf

q∈Ai

∑
j∈Ω

q(j)2

p(i, j)
. (11)

Here, we have used the continuity of q 7→
∑

j q(j)2/p(i, j) to replace the

upper and lower bounds in the statement of the MDP with an equality for

the limit.

By the assumption that bn is a regularly varying sequence, and that π̂n(i) →

π(i) as n →∞, we obtain that as n →∞,

bnπ̂n(i)

bn
→ c(π(i)) and so

bnπ̂n(i)

nπ̂n(i)

/
bn

n
→ c(π(i))

π(i)
. (12)

Thus, for arbitrary δ > 0, we have for large enough n that

bnπ̂n(i)

nπ̂n(i)
A−δ

i ⊆ bn

n

c(π(i))
π(i)

Ai ⊆
bnπ̂n(i)

nπ̂n(i)
Aδ

i . (13)

Here Aδ
i = {x ∈ M0(Ω) : infy∈Ai d(x, y) < δ}, where d(·, ·) denotes Euclid-

ean distance, and A−δ
i is the interior of the complement of (Ac

i )
δ, where Ac

i

denotes the complement of Ai. Letting δ → 0 and using the continuity of
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q 7→
∑

j q(j)2/p(i, j), we have from (11,12,13) that

lim
n→∞

n

b2
n

log P̃nπ̂n(i)
i

(
P (i, ·) +

bn

n
Ai

)

= −c(π(i))2

π(i)
inf

q∈ π(i)
c(π(i))

Ai

∑
j∈Ω

q(j)2

p(i, j)
= − inf

q∈Ai

∑
j∈Ω

π(i)q(j)2

p(i, j)
. (14)

Let A = A1 × . . . × A|Ω| be an open rectangle in M0(Ω)Ω. It follows from

(10) and (14) that

lim
n→∞

n

b2
n

log P̃n
(

P +
bn

n
A

)
= − inf

Q∈A

∑
i,j∈Ω

π(i)q(i, j)2

p(i, j)
.

Since the open rectangles constitute a base for the topology on M0(Ω)Ω, we

obtain a weak MDP using [1, Theorem 4.1.11]. In other words, the upper

bound in the statement of the lemma holds for all compact F , while the

lower bound holds for all open G. In order to strengthen this result to a full

MDP, we need to establish exponential tightness, which we do below.

Fix α ∈ IR. For i ∈ Ω, let

Ki =

q ∈ M0(Ω) :
∑
j∈Ω

q(j)2

p(i, j)
≤ α

 .

Clearly, K = K1 × · · · ×KΩ is compact. Defining

Ai = {Q ∈ M0(Ω)Ω : Q(i, ·) ∈ Kc
i }, i ∈ Ω,

where Kc
i denotes the complement of Ki, we see that Kc ⊆ ∪i∈ΩAi and, by

(10) and (14),

lim
n→∞

n

b2
n

log P̃n
(

P +
bn

n
Ai

)
≤ −απ(i), i ∈ Ω.

Therefore,

lim
n→∞

n

b2
n

log P̃n
(

P +
bn

n
Kc

)
≤ −α min

i∈Ω
π(i).

14



Since π(i) > 0 for all i ∈ Ω under the assumptions of the lemma, and α is

arbitrary, the above establishes exponential tightness of {Pn, n ∈ IN}. By

[1, Lemma 1.2.18], this implies the full MDP, and concludes the proof of the

lemma and of Theorem 2.
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