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Abstract—We study the effectiveness of automatic patching dissemination from the server at which it was generated, and
and quantify the speed of patch or alert dissemination required of worm spread from the population of infected hosts, are
for worm containment. We focus on random scanning as this j, 5 race. Our objective is to patch vulnerable hosts before

is representative of current generation worms, though smarter . . S
strategies exist. We find that even such “dumb” worms require they can be infected. How fast does patch dissemination have

very fast patching. Our primary focus is on how delays due 0 be in order to win the race, i.e., to limit worm spread to
to worm detection and patch generation and dissemination a specified multiple of the number of initially infected hosts?

affect worm spread. Motivated by scalability and trust issues, Note that we do not propose a new automatic patching system,
we consider a hierarchical system where network hosts are but rather provide analytical results that apply to a broad set

partitioned into subnets, each containing a patch server (termed f patchi t Wi | t and . It
superhost). Patches are disseminated to superhosts through anO! patching systems. We complement an verify our results

overlay connecting them and, after verification, to end hosts DY simulations.
within subnets. When patch dissemination delay on the overlay
is negligi_ble_, we find_ that the r_lumbc_er of hosts infected is A. Motivation
exponential in the ratio of worm infection rate to patch rate.
This implies strong constraints on the time to disseminate, verify ~ If vulnerable hosts could be patched many orders of mag-
and install patches in order for it to be effective. We also nitude faster than the worm can spread, then the problem
provide bounds that account for alert or patch dissemination \yould be rendered of marginal interest. But this is not a safe
e o Ih Sl assumpton in practice. I fact, curent pracice refies on the
containment. The results accommodate a variety of overlays assumption that the time between disclosure of a vulnerability
through the novel abstraction of a minimum broadcast curve. and the appearance of a worm exploiting is sufficiently long,
They demonstrate that automatic patching can be effective if so that the majority of hosts can be patched before the onset
comlfoi?ee(:] V;’::geﬁ‘r‘fc“oa}“tiﬁgns ;‘t"cﬁocﬂgge"%%gigﬁar_‘r@t‘?e‘;zﬂswgg of the worm. For example, with central server systems, such
carefu . : ;
obtained agnalyticaﬁy and veprified by simulations. as t.he. present-day_ Microsoft Windows Up.da.te, abai, .
_ _ of distinct IP machines can be patched within a day, with
Index Terms—Patching, Software Updates, Automatic Up- he mean time until a query from a specific host equal to
dates, Epidemic, Worm, Virus, Minimum Broadcast Curve . R .
about 20 hours [4]. Comparing this with the timescale of some
worms, such as the aforementioned Witty, it is clear that the
|. INTRODUCTION system is not designed to contain zero-day or almost zero-day
OST Internet worms observed to date have been reverserms. This difficulty could be ameliorated by using a content
engineered from patches released to address some wistribution servicﬂ and by increasing the frequency of host
nerability. The time between patch release and worm appequeries, but this is unlikely to be a viable solution in practice
ance has been shrinking; e.qg., the Witty worm [5] was observdde to the service provisioning costs involved. This would
little more than a day after patch release. It may soon happmake the patch a faster runner in the race with a worm, but
that a worm appears before the patch is available (azkm@- worms can also be made faster by using smarter strategies such
day worm$. How can we limit the spread of such a worm? Thas subnet-biased scanning, so the arms race between worms
doubling time of the number of infected hosts for some wornad countermeasures is likely to continue for some time into
is in the order of tens of seconds, which means Internet scthe future. Hence, a quantitative understanding of how the
infection is possible within minutes. Clearly, human responselative speeds of worm and patch influence the outcome of
is too slow and a worm containment systemast be automatic the epidemic is important.
An automatic patching system requires (i) worm detection, (ii)
patch generation, and (iii) patch dissemination, verificatio®. Related Work
?E‘d instaII.ation. Ogr work is primarily copcerneq with item Much work has been done on studying worms and their
(iii). The first two items have been considered in work on

. . ntainment [8], [11], [14]. We do not aim at addressing all
others, discussed later. Incorporating the effect of delays §ated work. but only that which to our knowledge is closely
to items (i) and (ii) through appropriate choice of the initi e '

" . ; lated to automatic patching. There are several schemes for
conditions (number of infected hosts), we consider the syst P 9

. . . rm detection, e.g., (i) honeypots: these monitor unused
from the time instant at which the worm has been detected g., () yp

tch generated. From then on. the two b ¢ ments of IP address space. The presumption is that scans

a patch generated. Fro en on, the two processes o p%c hese addresses are either due to malicious attempts or
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superhost subret

behaviour either at end hosts or in the network (iii) detecting |
worm signatures either by looking for common patterns in Ve J e
network traffic or by analysing data and control flow of f Ry g

computer program executions. Automatic patch generation e O @ é @ N
addressed in Vigilante, which was proposed by Costa et al [3] ~ i @wf
and motivates the work in this paper. Vigilante is an end- oty s~ T

host based system for automatic worm containment. Its main

feature is that when a host detects a worm, it generates a . ) ) )

self-certifying alert (SCA). Such alerts identify a vulnerabiliyi9- 1: Patching system illustration. Host address space is

and provide a machine-generated proof of it which can tpélrtltlo_ned into subne'Fs (e.g. ISP-like or IP _preflx subnets).

verified by any recipient. Vigilante uses a structured overlay fg'€re is @ superhost in each subnet, a dedicted patch sever.

propagate alerts to all hosts in the system, which then use sopywerhosts are .mterconnected with an overlay. Each superhost

mechanism to generate a filter which essentially corresporf@& Subnet) is either alerted or dormant. An alerted superhost

to a patch. The self-certifying property of alerts is importari) Provides patches to hosts in its own subnet and (i)

as it solves the problem of trust and the concomitant one disseminates alerts to superhosts in other subnets. Hosts either

attacks using the automatic response system. A similar systefll the patch from their superhost or the patch is pushed from

was also proposed by Sidiroglou and Keromytis [13]. ThefSuperhost to a host. The highlighted subnets in the figure are

has also been work on analysing the competing processeéj‘l@f(ted-

patching, filtering and worm spread [11], [14], [17]. These

works typically consider a ‘flat’ network for both the worm ) ) )

and patch processes, whereas we study a hierarchical médgpal spread behaviour that is somewhat different from that

motivated by considerations of scalability and trust. of a random scanning worm; see [6] for an analysis of the
underlying causes.

C. Structure of the Paper B. Patch Dissemination Model

In Se_ctlonE], we d|scuss_ our system assumptions and1) Hosts, superhosts, subnet$he use of a centralised
summarise our results. S,eCt"B shows our result:'s f?:%rver to distribute patches to all clients is not scalable. Costa
a paiching system. We first F’ro"'de a closed-form estlma&: al [3] consider a fully decentralised peer-to-peer scheme
for the nqmber of UIt'm"?‘t‘,el,y infected hosts, for a patch'”ﬂ/here hosts are organised into a structured overlay over which
system _W'th all subnets initially ?"e”?d (Corolidry 1), V‘_’h'dhlerts/patches are spread. It is not clear whether such a system
can be interpreted as an approximation for systems with f%l be universally deployed. In this work, we consider an

d!ssem!nat!on qf ale.rts among sup_erhosts. The effect of alﬁ'ﬁtermediate setting where hosts are partitioned into subnets
dissemination time is considered in Theorein 3. Sedfioh Ié{nd there is a patch server in each subnet, which we call

addresse§ push-based patch dellvery..ln Seon vV, we st d)o‘uperhost. Superhosts are connected by an overlay, which
_the p"’?“:h'”g system_ complemented with filters that block used to propagate patches between them. A superhost that
ihcoming ano_l outgpmg worm scans for alerted subnets. \/Mss received a patch is said to be alerted, as is the subnet to
present our simulation results in Sectjorj VI and then C‘?”Clu%ich it belongs. Once a superhost is alerted, it propagates
in Section[ VI|. Proofs of our results are provided in the,o naich to other superhosts as well as to hosts within its

appendices. own subnet. We think of subnets as corresponding to network
administration domains such as a university or corporation;

Il. SYSTEM MODEL AND SUMMARY OF RESULTS one could also imagine ISPs maintaining a distributed set

A. Worm Model of superhosts. The superhost could be thought of as either

We consider worms that scan the IP address space uniforri} orcing a security policy by pushing patches on to clients,

at random. This is the method used by many, but not all, worfis @S sending them self-certifying alerts (as in [3]), which the

observed so far. Smarter strategies include biasing the scaff [fNts use to generate filters. The two are equivalent from a

favour of the local subnet (routing worms), and exploiting th@%deg'lngt pde_rspeqtlvet: ¢ hostélert di .
topology of some application-layer overlay (e.g. instant mes- ) Alert dissemination to superhostgilerts are dissemi-

senger buddy lists, ssh address lists etc.) While the techniqﬂggeg thr%g?h the overlatl)y Iconnzctlngit'sup?:hosts. Thef overlayl
described here can be extended to routing worms, topologiccfg‘f1 € arbitrary, €.9., a balanced multicast tree, one of severa

worms appear to be a much harder problem. Random scann‘zﬁr@dard structured overlays (such as Pastry [10], Chord [15]

worms are characterised by the worm infection rétevhich ThAeN'rE"?])a gtr i? gns:[:cuigeagve”i% (tshuech :ffo(?rw;tr?clzlg).of
is the rate at which per-host scans hit vulnerable IP addressges. Imp veriay topology P

For concretenessi — 0.00045 per second for CodeR@dmd the patch dissemination system is captured through the new

- : . concept of aminimum broadcast curyewhich is discussed
5 = 0.117 per second for Slammer [7]. In our dISCUSSIOI’]SI detail in Sectior| IT-E. Briefly, it abstracts the impact of

we use the infection rate of Slammer as a recurring examp C orlay tonoloav throuah a function which is a lower bound
but the reader should bear in mind that this worm exhibif& y topology 9 _
on the number of superhosts alerted over time. Such a lower

2See www.caida.org/analysis/security/code-red. bound can be computed easily for commonly used overlays.



3) Patch delivery within a subnetOnce a superhost is concept of a minimum broadcast curve: a functigt), ¢ > 0,
alerted, it has a patch for hosts within its own subnet ansl said to be a minimum broadcast curve for an overlay of
in addition propagates the alert to other superhosts. Pattiperhosts if, for any broadcast of alerts initiated at timine
dissemination within a subnet can be either by pull or pusfiaction of alerted superhosts of the overlay at tinie at least
In the former, patch delivery is initiated by a query from the(t). We can explicitly compute the minimum broadcast curve
host, while in the latter, it is initiated by superhosts. In théor simple topologies (see [1] for details). It is given by (i)
pull model, we assume that each host queries its superhosexgtonential function (truncated at 1) for a tree, and (ii) logistic
the instants of a Poisson process of ratén the push model, function for hypercubes and for gossip-based dissemination.
we assume that each superhost has an inventory of hosts inWs also verify that when flooding alerts on a Pastry [10]
own subnet. On becoming alerted, it pushes patches to thewerlay, the fraction of alerted superhosts over time is well
sequentially (in arbitrary order) at rat¥ ., where N is the approximated by a logistic function.
number of hosts in the subnet. Thus, the mean load on théVe can use the minimum broadcast curve to obtain an upper
patch server is the same in both models. We show in Sectioound on the fraction of hosts that eventually become infected;
[V]that the push system performs somewhat better. the results are presented in Theorgm 2, for the specific case

In the pull model, we assumed that inter-query times af a logistic minimum broadcast curve. Theorén 3 extends
each host are exponentially distributed with megm. This the results to the case whenand g are both small, i.e.,
is analytically convenient as it simplifies the dynamics due tdert dissemination is fast compared to both worm spread
the memoryless property of the exponential distribution. Wand patching. Simulation results presented later show that this
show in Sectiof TTI-E that this assumption entails no significafdrmula is indeed accurate in realistic parameter regimes.
loss of generality; see the Remark following Proposfipn 2. 3) Patching and Filtering:We investigate the effectiveness
of patching combined with filters that block worm scans in and
out of alerted subnets, and obtain a closed-form solution for
the fraction of infected and susceptible hosts at any time within

1) Required Frequency of Host QuerieSimple analysis non-alerted subnets. The eventual fraction of infected hosts
shows that in the absence of countermeasures, the charagigthin a subnet is now entirely determined by the fraction of
istic timescale of epidemic spreadiig3 (the time to double infected hosts in the subnet at the time instant when it became
the number of infected hosts Isg2/3) and most hosts are alerted.
infected within some fairly small multiple of this time; for
example, the time to go from 100 infected hosts to 1 million m
is about10/3. This suggests that any reactive countermeasure )
needs to have response time smaller than or comparable®toSYyStem Assumptions
the worm characteristic time. Note that the timé3 is about  In this section we consider a hierarchical patch distribution
40 minutes for Code Red and smaller than 10 seconds fehere, in the first layer, the patch is disseminated among
Slammer. In the case of a worm like Slammer, this suggestsperhosts and in the second layer, superhosts make the patch
that we either need to patch most hosts within a timescaleailable to hosts within their subnet. We have a population of
of about 1 minute or deploy additional mechanisms like raf¥ hosts stratified inta/ disjoint subnets, with thgth subnet
capping [16] in order to slow down the worm. being of sizelV;. Associated with each subnet is a superhost,

In an idealised scenario, when alert dissemination betwegenoted by the same index A host is either susceptible,
superhosts is instantaneous, we obtain an exact expressidected or patched. We assume that patched hosts cannot be
relating the initial and final number of infected hosts, foinfected by the worm and, conservatively, that once infected,
a given worm infection rated and patching rateu; see a host cannot be patched (on the timescale of our automatic
Corollary[]. The result implies that the ratio of final to initialpatching system; this subsumes the case where the ‘patch’
infectives is at mostxp((1 — p(0))3/r), wherep(0) is the is actually an alert that enables filtering out attacks, but not
fraction of hosts that are initially patched (e.g. because tbaring the infection). An infected host attempts to infect other
patching has started earlier than the worm appeared). Thus,Hosts by scanning the address space of Sizeniformly at
instance, presuming that no host is initially patched, the finelndom at a fixed rate. We say that a superhost is alerted
number infected can be limited to no more than 100 times tifét has received a patch and dormant otherwise; in a system
initial by taking i« > 3/5. This is the sort of operating regimelike Vigilante, we could say that a superhost is alerted when
in which we are interested. In particular, we find that we neédhas received and verified an alert, and generated a filter for
1/p to be about 3 hours for Code Red and 50 seconds fitvat vulnerability.

Slammer. If a subnet contains 1000 hosts, this means that w®ormant superhosts do nothing. Active superhosts make the
need to patch at a rate of 5 hosts per minute for Code Reatch available for hosts within their subnet to pull; each
and 20 hosts per second for Slammer. host in the subnet becomes patched after a random time

2) Minimum Broadcast CurveMore realistically, we are which is exponentially distributed with medri:.. In addition,
interested in the situation when alert dissemination to supeaective superhosts disseminate alerts among themselves. We
hosts is not instantaneous. The time it takes to alert superhadtall make some specific assumptions on this dissemination
depends on the broadcast mechanism and the shape ofpttezess and show how the framework accommodates a variety
overlay used. We abstract these details by introducing th&alert dissemination systems. We analyse these models by

C. Summary of the Results

. PATCHING



considering an asymptotic regime (large population limit) in
which ©, N andJ increase to infinity, while the ratio@/N
and J/N are kept fixed.

Time scale Without loss of generality, we scale time by  _
k, the rate of alert dissemination, and henceforth take the rate =
of alert dissemination to be unity. All our statements can be
interpreted without difficulty by merely replacing the ratés
andp and timest with 3/k, 1/ and t respectively.

B. Host Population Dynamics Fig. 2: Fraction of susceptible hosts that belong to alerted
subnets,w(t), for w(0) = a(0) = 1/10 (left) and w(0) =
a(0) = 1/100 (right). Different curves correspond to different
values ofl/u, in seconds. Convergence to limit poiritsand

4 is well exhibited.

Denote byi(t) and s(t) the fraction of hosts which are
infected and susceptible respectively, at timeSimilarly,
let i4(t) and s4(t) be the fraction of all hosts which are
infected and susceptible respectively, and reside under aler}é
superhosts. Denote y(t) the fraction of superhosts which
are alerted. We assume that superhosts cannot be infected by
the worm, e.g., because they do not run services exhibitiguations [([7)f(8) are similar to those one would obtain for
the vulnerability. The system dynamics is as follows: single-subnet patching, but with a time-dependent hazard func-
tion, pw(t), of host queries; the extra(t) term corresponds

/ — —
a.,(t) B a(_t)(l a(t)) @) to the fraction of hosts that have access to patches atttime
i't) = pi(t)s(t) (2)  The differential equation[[9) is known as Ricatti's equation
st) = —pBi(t)s(t) — usa(t) (3) and can be solved in closed form.
iy(t) = PBi(t)sa(t) +a(t)(i(t) —ia(t)) (4)  Proposition 1. The solution forw is given by
sa(t) = —(Bi(t) + psa(t) +a(t)(s(t) — sal(t)) (5) oht 1
. . . . . t)y=1- . (@10
This system of differential equations describes host popula- w(®) 1 —a(0) + a(0)e! ®,(t) — 2(0) (10)
tion dynamics and is justified in the limit of many hosts an% — 1/ — d
many superhosts in the precise sense described in Apdehdix .erez(O) /l wEO)]' an
The last term in[(4) comes from a subnet whose superhost o (f) = < dx 11
undergoes transition from dormant to alerted state. This hap- u(t) = L 1—a(0) + a(0)zl/n 1)

pens at rate/a(t)(1 — a(t)) and, when it does, the number, Lo . e .
of infectives belonging to subnets with alerted superho%oreover’ the limit point ofu(t) is specified as follows:

jumps up by the number of infectives in that subnet, which is . 1, ifpu<l,
NTi(t) —ia(t)]/[J(1—a(t))] on average. The last term in the Jim w(t) = { Loifpu>1,
derivative fors,(t) is explained similarly; see AppendA

for details.

Interpretation . As t tends toco, both the number of sus-
ceptible hostss(¢) and the number of such hosts belonging
(t) = a(0) ) (6) to subnets with an active superhosy(t), tend to zero at
a(0) + (1 — a(0))e~" an exponential rate. Hence, in looking at the limit wft)
Any alert dissemination mechanism that results in the sai@? — oo, we are asking about the relative speeds and the
time evolution ofa(t) as in [§), namely a logistic function, will manner in whichs(¢) ands(t) tend to zero.
yield the same solution for the dynami¢$ (IJ—(5). In particular, If © < 1, then the per host patching rate is slower than
the results apply equally to alert dissemination by gossip #te spread of the epidemic process describing the activation
over a hypercube, or commonly used structured overlays suhsuperhosts. Hence, new superhosts get alerted faster than
as Pastry. hosts within the subnet are patched; eventually, all superhosts
We recast the system of equatiopl ()—(5) into an equi\/a|é’mve been alerted but only a small fraction of hosts have been
form by defining the auxiliary process(t) = sa(t)/s(t). In patched. From this time onwards, the system behaves like
words, w(t) is the fraction of all susceptible hosts at time @ single large unstratified network. Thus, in this case, most
which belong to subnets that have been alerted by this tinfé!sceptibles (a fraction approaching 1) belong to a subnet with

We can solve for(t) explicitly:

We have an active superhost; it is the per-host patching ratehich is
d the bottleneck.
i) = Bit)s(), (7)  On the other hand, ifx > 1, then patching within a
d subnet is faster than the activation of new superhosts. A
%S(t) = —Bi(t)s(t) — p w(t)s(t), (8) non-negligible fraction of hosts within the subnet have been
d ) patched before the superhost activates a new superhost. By the
0 = pw®)” = (p+a(t) wt) +at). (9 time most superhosts have been activated, most hosts in active



subnets have also been patched, and a substantial fracgond approximation for ranges of the value ®fu that are

of susceptible hosts belongs to those few subnets where tfigoractical interest.

superhost is still dormant. In this case, the system behaves likgor further intuition on this bound, note that the fraction of

a collection of subnets that are activated sequentially rathgfected hosts(t) for a random scanning worm with infection

than like one big subnet where patching is active from the statte 3, and with no patching, satisfies the inequality) <

Here, itis the rate of alert dissemination among superhosts th@) exp(5t), for anyt > 0. Suppose now that the automatic

limits the speed with which patching is achieved. patching system ensures that all vulnerable hosts are patched
Comment A somewhat similar host immunisation procesgo later than timd’, if not already infected by the worm. Then

to (7)-[8) was considered by Wong et al [17]. They do not follows from the above that(+occ) < exp(3T). Now (I4)

consider patch dissemination on an overlay, hem¢g = 1. s of the same form, but with the deterministic upper bound
The major distinction is that Wong et al (Section 6.1 [17]) replaced by the mean patching timg.

assume a host can be patched in both infected and susceptible
state. This amounts to the following system:

d. . , :
@Z(t) = Bi(t)s(t) — pi(t), D. The Effect of Alert Broadcast Time

d _ . In Corollary[1, we consider the case with all superhosts
dts(t) —Bi)s(t) = ps(®)- initially alerted, which would hold by observing the system

In contrast, we assume that an infected host cannot be patcf¥@lution from a time instant when all superhosts became
over the timescale of patch dissemination, which could i®erted, and would be a good approximation for systems with
the case, e.g., for smart worms which disable patching faﬁt dissemination of alerts. This YIe|dS a lower bound on
an infected host. Also, as noted earlier, this is a realisfige fraction of eventually infected hosts in a practical system
assumption for systems which disseminate alerts rather thaith @ non-zero alert time. Suppose now that> 0 is a

patches; here, the alert can be used to generate filters wiigierministic bound on the time to alert all superhosts; we

guard against infection, but cannot cure an existing infectiog@ll it an alert broadcast time. An upper bound on the fraction
of hosts eventually infected can be obtained by making the

C. Ultimately Infected Hosts worst-case assumption that no superhost is alerted prior to

We now present a main theorem that allows derivation 8P1e T. Thus, we get.

more explicit results later: Theorem 2. Suppose the patching rate jsin each subnet,
Theorem 1. For the system of differential equatiorg (Q_(S)and that the alert dissemination system guarantees that the
it holds that alert broadcast time is at mosf. Then, the fraction of
oo ultimately infected hosti+o00) satisfies:
i(400) + % w(u)dlogi(u) =1 — p(0). (12) ‘ [ i(+00) i(0) + S(O)efﬁ(lfp(o))T
0 i(4+00) + = log | — -
B i(0) i(0) + 5(0)

where, recall,p(0) is the fraction of initially patched hosts.

< 1-p(0).
The following corollary is of interest. It provides an implicit ) _ o
function for the number of ultimately infected hosts, for the The inequality of the theorem implies

special case with all superhosts initially alerted. I i(400)
) o i(+00) + = log — < (1 =p(0))(1 + uT).
Corollary 1. Assume:(0) = 1, i.e. all superhosts are initially B i(0)
alerted. Thenu(-) =1 and it follows that As in the comment after Corollafy 1, this implies
. 1(+o00o 1
i(+00) + %log (i(O) . p(0). (13) i(+00) < i(0) exp ((1 —p(0))3 (u + T>) . (15)

Comparing the last inequality with (JL14), which holds when all
Indeed, in this special case, the network behaves likesaperhosts are alerted at the start, we note that the alert broad-
single large subnet. The result may be regarded as an apprast time enters by effectively increasing the mean patching
imation for the limiting case in which patch dissemination otime from 1/ to (1/u) + T. This is a simple and intuitive
the overlay connecting superhosts is much faster than eithesult.

worm spread or patch spread within subnets. The inequality in the statement of Theordrh 2 becomes
Comment Corollary[] has the following implication: tight as the worm infection rat8 and patching rate: both

. . B tend to zero. This limit regime corresponds to a separation

i(+00) < i(0) exp ((1 —P(O))M)- (14)  of timescales whereby alert dissemination runs on a fast

] ) timescale compared to patching and worm spread. This regime
In words, the number of hosts which ever become infected of nractical interest. We formalise these statements in

is a multiple of the number initially infected; this multiple isyqo following theorem, which applies to alert dissemination
at most exponential in the ratio of worm infection r&#et0 |\ echanisms characterised by a logistic functigt).
patching raten. We see in Sectiofi VI that this bound is a

5
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Fig. 3: Empirical fraction of alerted superhosts by flooding on a Pastry overla§0o$uperhosts and delayed-logistic minimum
broadcast curves. (Left) the per-superhost delay = 0 seconds, (Middle) 1.16 seconds, and (Right) 2.38 seconds. The figure
suggests delayed-logistic curve a natural candidate for a minimum broadcast curve of standard overlays.

topologies. It is attractive as it allows us to abstract diverse
broadcast networks by a single curve. We say that a function
m(t) is a minimum broadcast curve for a given alert dissem-
ination system, if, defining = 0 as the time of first alert,
the fraction of alerted hosts on any interyal¢] is at least
m(t). Now note that the patching systen] (T)}-~(9) holds more
generally than fora(t) a logistic function (corresponding to
alert dissemination by random gossip). It is intuitive to expect
that if we replacew(t) in (7) and [§) with some function that
is a lower bound for alt, then the resulting solution yields an
upper bound on the fraction of infected hosts fortalThis is

the content of:

Fig. 4: The ultimate number of infected hosts with worm-lik&roposition 2. Consider functionsf, and f, satisfying0 <
patch disseminatior] (P2J=(24) versus mean patch tighe ™ < fi(t), f2(t) < M < +oco, and the following two systems
The initial values aré(0) = 1/1000, a(0) = 1/10000, p(0) = ©f differential equations:

: N o 1 ‘ ‘
0. The alert dissemination rate is= 4 sec". ?zj(t) = Bi;(t)s;(t) i1
asi(t) = =Bs;(t)i;(t) — f;(t)s;(t) ’
Theorem 3. The patching system described bl (L)-(5) satisfiggsume thaf, (¢) > f,(¢) for all ¢ > 0, and that on any finite
' M i(+00) interval [s, ], there exists a finite partition < ¢; < --- <
i(+00) + 3 log ( 700) ) tn_1 < t, = t, such that (C):
$(0)(1 — w(0)) 1 inf  fi(u)> sup fao(u), al k=1,2,...,n—1.
~ 1 —p(O) + u 11— CL(O) lo (0) 5 UWE [t trt1] 1( ) u€ [tk trey1] 2( )

where we write~ to mean that the ratio of the two sides tendghen’il(t) <iis(t) and sy (t) > sa(t), for all ¢ > 0, whenever
to 1 asp and 3 tend to zero with their ratio fixed. i1(0) <42(0) and s1(0) > s2(0).

Interpretation . The following heuristic argument provides The conditions of the proposition are satisfied if the func-
intuition for the result. Suppose that initially, one subnet igons f; and f, are continuous, ang (t) > f»(t) for all ¢. Its
alerted, so that(0) = 1/J. Multiply both sides of the result relevance is that the solution df] (7)}(9), using any minimum
of the theorem with3/; and note that the right hand sidebroadcast curven(t) in place ofa(t), yields an upper bound
scales ag ((1 — p(0))(1/u) + Klog(J)), whereK is appro- on the fraction of infected hosts in the actual system. In
priately defined constant. The alert broadcast time by rand@tigure[3, we compare the empirical broadcast curve obtained
gossipping is indeed of the ordésg(J), so that the result by flooding in Pastry and a minimum broadcast curve taken
simply amounts to enlarging the mean patch disseminatimnbe a logistic function; see [1] for details.

time with the mean alert broadcast time. Remark: General query time distributions. We have as-
o sumed so far that inter-query times at each host are ex-
E. Minimum Broadcast Curve ponentially distributed with mean /u. This is analytically

The concept ofminimum broadcast curvis an abstraction convenient (it simplifies the dynamics due to the memoryless
of the mechanism of alert broadcast on arbitrary overlgproperty of the exponential distribution) but is not essential.



Indeed, letF'(¢) be an arbitrary cumulative distribution (CDF)
of per-host inter-query times. The patch becomes available - ]
(superhost becomes alerted) at some arbitrary time, and wk
want to know how long it takes until a given host pulls the
patch. By the renewal theorem, the residual time until the next _ <| ]
pull event has the CDF:

i(es) 1i(

PULL

Folt) = u /O (1 - F(x))da, +

PUSH

where1/p = [[°(1 — F(z))dz is the mean time between i 1
pull attempts. From this, we can calculate trezardfunction e ‘ ‘ ‘ ‘ ‘
A(t), denoting the intensity that a query from a specific host =~ ™ ™ ™ % e Mmoo F
is made at time, given that the host made no query on the
time interval[0,¢). The hazard function is given by Fig. 5: The ratio of the ultimately infected hosts to initially
d infected hosts in a single subnet with pull and push patch
)\(t) o EFI'(t)

= 17F(?‘) (16) dissemination. The initial fraction of infectives 19-°.
—F.(t

In the special case of exponentially distributed inter-query
times, F(t) = 1 — e, and it can be readily verified thatVx. Thus, the server capacity is taken to be the same as in the
F.(t) =1 —e "t and thatA(t) = 4, i.e., the hazard rate is Pull system considered earlier. For a single subnet, the system

constant. Now, for arbitrary hazard functiokg), if A(t) > A dynamics is:

for all ¢ > 0 and some\ > 0, then the pull system with inter- d . )

query time having CDFF(-) performs at least as well as the i) = Bi(t)s(t) 17
pull system with Exp()) inter-query times. More precisely, d ) 1

the number of hosts that ever become infected is smaller in @3(’5) = —Bs(t)it) - . uts(t) (18)

the former system. This result follows from the Proposiﬁ(])niz . . . o
above, and shows that there is no significant loss of generall?)y 0 < ¢ < 1/p. Comparing with systeni (7)4(8), with(t) =

in restricting attention to the exponential distribution. e no_tg tha7)8) d|ff_er_s_ by the a ddltlon_al teI_yt(l—
Example (Windows Update) Consider the query times of ut). Intu_|t|vely, for_the same initial fractions of infectives a_nd
a host to Windows Update service. Suppose the host slgscepnbles and identical pat_ch ra@ethe push system wil
always on. Then the host query times form a renewal procéﬁ?un, na smgllgr number O.f |nf_ect|ves than th? pull system.
with inter-query times uniformly distributed ofa, b], where IS Intuition Is mdeeq true in view of Propositign 2 .ablove.
(a,b) = (18,22) hours [4]. Note that the host query rate iSThe numerical values in Figufg 5 illustrate the superiority of
uw=2/(a+0b), thusl query per20 hours. The residual time push, for the same server load.

distribution of a host query is thus:

Fo(t) { ut 0<t<a A. Worm-like Patch Dissemination

==z a<t<hb. We noted above that a superhost can improve the effec-
tiveness of patching by pushing patches to hosts rather than
waiting for them to be pulled. Even better performance is
A(t) = { = 0<t<a achievable using peer-to-peer dissemination. Specifically, we
—= a<t<hb, consider gossip or epidemic-style protocols to disseminate the

It follows from (18) that

A i defined fort > b. It is cl that\(£) > patch within subnets since such a scheme is fast, scalable,
and A(t) is undefined fort > b. It is clear thatA(t) > u o?nd robust. (The process of alert dissemination to superhosts

forall ¢ € [Q’ bl. Thus, by Prqpostioﬁ]g above, the number Temains the same as before.) We make the reasonable assump-
eventually infected hosts using the Windows Update patchi 9n that hosts have some side knowledge about addresses
system is no higher than if each host pulled patches at t

nstants of a Poi f rat other hosts in the same subnet and don't rely on random
instants of a Poisson process of rate once2fehours. scanning to locate them. Then, the gossip scheme used for

patch dissemination can proceed much faster than worm
IV. PUSH-BASED PATCH DISSEMINATION infection. This is modelled by taking the patch scan rate to
We have so far discussed a pull mechanism for patble larger than the worm scan rate.

dissemination, motivated by currently deployed systems. WeWe distinguish two cases. In the first, we assume that as
now explore push schemes for comparison. We consider taoon as a host receives a patch (or alert), it is quarantined and
approaches: a hierarchical scheme analogous to that studiadnot be infected by the worm. This quarantine state lasts
for pull, and a peer-to-peer scheme, either system-wide wmtil the host verifies and installs the patch. In the second
deployed within each subnet. case, the host continues to be vulnerable in the interim. In both
In the hierarchical scheme, each alerted superhost pusbases, we consider a single subnet. Equivalently, the analysis

patches on to thé&V nodes in its subnet in some order, at raterould apply if, instead of employing a hierarchical scheme,



the peer-to-peer scheme were deployed system-wide, agliace that specify the race of worm, alert, and patch:
Vigilante. d
—i(t) = (t)(1 —(t) — p(t 22
1) With Perfect QuarantineMWe deal with two epidemics gt 0 pie #) =) (22)

both §preading in the same manner, but the worm hag smaller d*a(t) = rpt)(1 —i(t) — p(t) — a(t)

infection rate than the patch. Denote the worm infection rate t )

by 3 and the patch infection rate hy. Let p(¢) denote the —Bi(t)a(t) — pa(t) (23)

fraction_ Qf patched hosts gt timl_eThe race of worm and pqtqh a p(t) = pa(t). (24)

is specified by the following differential equations describing dt

two competing epidemics: Note that we assume that a host participates in dissemination
d of alerts only after it is patched; this is reflected in the factor
i) = B —i(t) - p(t)) (19) p(t) in @3). The reason for this assumption is that the time
d ‘ between alerting and patching includes the time for verifying
%p(f) = pup()(1 —i(t) — p(t)). (20) the alert; the assumption is needed to prevent attacks based

oo . on enticing hosts to flood the network with bogus alerts.
The limit point of the systen] (19)=(R0) follows readily. The system of differential equation§ 122J3(24) can be

Proposition 3. The fraction of hosts ultimately infectedS0lved numerically. Figurg]4 shows the ultimate number of
i(+00), is the solution of the following equation infected hosts for a range of values @fand 1/u.The figure
) demonstrates that patch verification and installation time does

1— Z-(+oo)> " significantly affect the number of ultimately infected hosts.

i(+00) = i(0) ( 0

V. FILTERING AND PATCHING

The proposition implies the following simple bound on the We have studied a model with an overlay network of
final fraction of infected hosts: superhosts that acted as distribution servers for patches. In
] , 2 log( ) this section, we extend the model by letting superhosts also
i(+00) < i(0)er TEF . (21)  act as filters (or firewalls). Whenever a superhpig alerted,

The last inequality fleshes out the appeal of worm-like patéhWorm scan originating from or destined to the subnet of

dissemination asu can typically be chosen much largesuperhost fails with probability 1. In other words, a worm

than 3. Then 3/u is close to0 and, if the fraction of Scan at timet from subnetk to subnetm succeeds only if

initially patched hostg(0) is not inordinately small, then so neither superhost nor superhostn are alerted. As earlier,

is (/1) log(1/p(0)). In other words, the fraction of hosts€ach host under an alerted superhost installs a patch with rate

eventually infected exhibits only a small increase over thé _

fraction initially infected at the time of worm detection. The race of worm and patch can be described by a Markov

. . . process (see [1]). Here we directly proceed to the limit pop-

Co&r']partmgm@]l ) }/thh [tE4)1 Wﬁ. shee. tlhdat t'; 'gllhdt')’ %Orreliation dynamics under the many hosts and many superhosts

sponding to the pull system, which yields the tighter boun sumptions. We first consider the subpopulation of hosts in

on i(+0co), for given 3 and . But it should not be concluded .\ oerteq subnets. Denote by(t) and sp(t) the fraction

from this that peer-to-peer patch dissemination performs WOISE  tocted and susceptible hosts in dormant (non-alerted)

than a centralised system! The explanation lies in the fact t%ﬂbnets We have the following dynamics:
while the patching load per host is proportional foin the ' '

peer-to-peer setting, the patching load per superhost scales like iiD(t) = Bip(t)sp(t) — a(t)ip(t) (25)
Npu. So what the comparison really tells us is that peer-to-peer dt
patch dissemination can achieve performance comparable to isD(t) = —Bsp)ip(t) — alt)sp(t) (26)
the hierarchical scheme with much smaller per-host load. dtd

2) With Imperfect Quarantine:Suppose now that after a %“(t) = a(t)(1 —a(t)). @7)

host receives a patch or alert, it is not patched instantaneouslyl.he equation fon(t) is the same and has the same solution

Instead, thgre IS some non-zero t|me.req.U|red t(.) verllfy t S given by[(p). We obtain closed form solutions fgr and

patch and install it. Such an assumption is required if trust > " .
: ! - sp, in this case.

cannot be assumed. During the time between receiving arfd

installing a patch, the host continues to be vulnerable aftieorem 4. The system of equatiorfs {25)H(26) has the solu-

will become infected if scanned by the worm. This may be t&on:

reasonable assumption if the worm can bypass quarantine. To ip(t) = 1ip(0) +(1“_(t))i(t)5/ 1’1“_(223)(”
facilitate further analysis, we assume that the time between re- P P (28)
ceiving a patch and installing it is an exponentially distributed sp() = (1—ip(u(t)) 1—a(0)u(t)

- 1—a(0) >

random variable with meah/ at each host, and independent
across hosts. Denote hy(¢) the fraction of hosts that arewith u(t) := a(t)/a(0), 8’ := B(ip(0) + sp(0))/(1 — a(0)),
alerted but not yet patched. We now have three epidemicsand p := sp(0)/(ip(0) + sp(0)).



Now, for ¢t > T}, we have

d . .
§zj t) = Bit)s;(t)
S5 = =Bs()i5(t) — psy (b).

But this is a familiar dynamics that we already encountered in
Sectior{ TlI-B. We have an explicit relation between the initial
and limit point of this system given in Corollgry 1. Specialising
to the current context, the identity of Corolldry 1, for a subnet
7, reads

Fraction of infected hosts

. o i(+00)

ij(400) + 6log LT n;. (32)
In view of the last identity, the ultimate fraction of infectives in
a subnet is fully specified givef)(T7), i.e. given the function
¢(t) and the alert timeg; (see Equatior{ (31)).
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A. The Effectiveness of Filtering

We discuss filtering in the limit when alert propagation
time is negligible, so that we can assume tifat= 0 for
all j. The benefit of filtering can be discerned from](32). To
see this, suppose that; is of the order ofl/J (or exactly
o o1 ez o3 oa o5 os o7 o8 o5 1 equal tol/.J, assuming equal-sized subnets); tHer} (32) implies
ij(+00) < i;(0)exp((8/J)/u). Recall that this inequality is
Fig. 6: (Top) The_ fraction _of infected hosts in non-alerte Igr?](;iteisrflEaé[ﬁefg%;??)silgetho%;nzlg (i:sasril:/(\i?le;erngferﬁrtﬁan
subnets versus time, as given By ](28). (Bottom) Same QHE-:- second element. Summing ovgr we havei(+oc) <
versus the fraction of alerted superhosts. 1(0)exp((8/J)/r), which is precisely the inequality that one
would obtain for a patching system with worm infection rate
(3/J and patching ratg. Thus, for the same initial conditions,
The fraction of infected hosts, () increases wittt on some the final number of infectives in a system with patching
initial interval [1, ¢y), attains its maximum at sontg > 0 and and filtering and worm infection ratg is bounded by the
then decreases 10 ast¢ goes to+oc. The decrease is duefinal number of infectives in the patching only system with
to the fact that superhosts become alerted and so the fractieerm infection rate3/.J. In other words, filtering effectively
of non-alerted subnets decreases over time. See Higure 6resfuces the speed of worm spread by a faot@qual to the
numerical plots of the functioniy (t). This is also validated number of subnets, which would be large in practice. This
in Section V). demonstrates the potential effectiveness of filtering in reducing

The reason for being interested in the evolutionigf¢) WOrMm infection rate. _ _ _
and sp(t) is that they can be used to obtain the number of W& end this section by noting that, as in patching-only
infectives and susceptibles in a subpetat the timeT; at SYStems (Sectiofi TB), we can use the abstraction of a
which superhosj becomes alerted. After this time, subrjet minimum broadcast curve in patching and filtering systems

is isolated and its evolution decouples from that of the rest I OPtain an upper bound on the number of infected hosts.

Fraction of infected hosts

0.5+ -

o

the network. 00, 7], we have This is shown in [1, Proposition 3].
%ij(t) = fip(t)s;(t), (29) VI. SIMULATION VALIDATION
d . Setup. We verify some of our results by packet-level
%Sj(t) = —Bip(t)s;(t). (30)  discrete-event simulations in SimPastry [2]. In our simulations,

superhosts are nodes in a Pastry overlay [10]. The Pastry
Defining ¢(t) := exp (_5 fot iD(u)du), it follows that, in nodes are attached t® nodes chosen uniformly at random

particular,s, (T;) = s,(0)¢(T}) and from a network topology that is input to the simulator. We
7 ’ ! ’ , used a transit-stub topology generated by the Georgia Tech
i;(T5) = (1 = o(T;))n; + ¢(T})i; (0). (31) topology generator [18]. The topology has slightly more than

) . . . 5000 routers arranged into two hierarchical levels: (tdp)
The funcﬂon@(t) can be obtained in closed-form by INtransit domains with approximately routers in each transit
grating the solution[(38): domain; (bottom)10 stub domains attached to each transit
ip(0) + sp(0) router with approximately0 routers in each stub domain. The
o(t) = sp(0) +ip(0)u(t)s” delays between routers are provided by the topology generator.
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Fig. 7: Patching with all-alerted, equal-size subnets with the total number of hosts\left] 000, (middle) N = 10000, and
(right) N = 100000. Each graph shows simulation results of two settings: (light@r) = 1/100 and (darker)(0) = 1,/1000.
For each of the setting, there &simulation outcomes obtained with distinct random seed. The worm infection rate i8.1.
The dark solid curves are that obtained by Corol[dry 1. The light solid lines are frgm (14).

under overload without making specific assumptions on the
workload causing the delays. We implemented a packet-level
worm propagation model. The model is that of a birth-and-
death Markov process for infected and susceptible hosts found
in [1] (Section[TT] and Sectiof }V therein). The difference is
that in the simulator, the alerts disseminate by flooding on
Pastry. We next present our simulation results:
Patching with instantly alerted superhosts The goal
| is to validate the result of Corollarfy] 1 and the boufd] (14)
Alert times \ on the ultimate fraction of infected hosts. We separate the
5 L \ T effects of the alert broadcasting delays by configuring zero-
' valued delays at each link of the input network topology. See
Figure[ T for the results; a detailed description of the simulation
Fig. 8: Patching with filters and a Pastry overlay: Fraction gfarameters can be found in the caption of the figure. The
infected hosts in non-alerted subnets versus time. The wosimulation results conform well to the analytical estimate of
scan rate is3 = 0.1 and the initial fraction of infected hostsCorollary[]. Indeed, as expected, the larger the number of
1(0) = 1/1000. The number of superhostg, is equal to100. hostsN, the smaller the variability in the results. The figure
There areN = 100000 with 1000 hosts in each subnet. Thealso shows that the bound {14) is a good estimate as long as
graph shows sample paths ®fsimulation runs with random the number of ultimately infected hosts is sufficiently small.
seeds. The thick lines are from Theorem 5, obtained:foy, All the observations confirm predictions of the analysis.
a delayed-logistic minimum broadcast curve. The simulation Patching with alert delays We also examined how our
results and analytical predictions match well. analysis predicts the fraction of ultimately infected hosts when
alerts are propagated on overlay with some delay. We varied
alert delays by adding a fixed per-hop delay in Pastry routing,
The Pastry parameters are sethas 1 and/ = 32. The alert ranging from0 to 3 sec. The simulations results are in good
broadcast system ifooding performed as follows. Supposeagreement with the analytical prediction of Theofgm 3; see [1].
a Pastry node becomes alerted at some time instant. It thefatching with filters. We consider the same simulation
broadcasts an alert to all other nodes that are in its routingtup as with patching described earlier, but now, in addition,
table. Subsequently, each Pastry node receiving an alertw# have filters in place as described in Sectjoh V. We
not already alerted, broadcasts the alert to all the nodesfinist validate Theorenj]4. See the caption of Fighfe 8 for
its routing table; otherwise, it discards the alert. This proceasdescription of the simulation setup. The figure provides a
continues until all Pastry nodes are alerted. We do not consigemparison of analytical and simulation results, and shows
faults in this work. The alert broadcast time depends on tligat there is a good agreement.
number of routing hops between any two nodes (diameter),We also performed simulations to validate the idenfity (32).
and on the delays between nodes. In the presence of a wofmthat end, we used the same setup as in Figure 8, but varied
it may well happen that the network becomes saturated dadixed per-hop-delay of alerts at each superhost. The results
to worm traffic and some servers slow down. To capture thise not shown due to lack of space, but they confirm that: (i)
we vary as input parameter a fixed delay at each routing hpatching with filters significantly outperforms a system with
in the Pastry overlay. This lets us examine the performanue filters; (ii) alert broadcast time is a significant factor.

o
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VIlI. CONCLUSION& DISCUSSION [14] S. Staniford. Containment of scanning worms in enterprise networks.

. . . . Journal of Computer Security (To Appea004.
Our analy5|s suggests that (|) patchlng can be EﬁeCt'Yl_%] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,

only if the product of the fraction of the host population that  F. Dabek, and H. Balakrisnan. Chord: A scalable peer-to-peer lookup

is not patched and the ratio of the worm infection rate to protocol for internet applicationsIEEE/ACM Trans. on Networking
11(1), February 2003.

patching rate is not too large. This ‘{VOUId require the use 6] M. M. williamson. Throttling viruses: Restricting propagation to defeat
mechanisms such as per-host capping of scan rates in order malicious mobile code. IRCSAG 2002. _
to limit worm infection rates; (i) for networks partitioned[17] C. Wong, C. Wang, D. Song, S. Bielski, and G. R. Ganger. Dynamic
. b ith h b havi dedi d f guarantine of internet worms. IRroc. of the International Conference
Into su _ne_tS' \_N't each subnet having a dedicated server for o, Dependable Systems and Networks (DSN-2@0ddence, Italy, June
patch distribution (superhost), and superhosts connected by an 2004. _ _

overlay, the alert broadcast time on the overlay is a significdf®! E-ro%e%lf*rtf;‘]eamFg-C%h@t;aﬁcggge;é n'gi‘;"cvotocg“lggfrii :r‘lgégr”etw‘”k- In
factor in determining the number of ultimately infected hosts; ' ' ' ’

|tt is thus wppc:rt;nt to .emtploy ?y)ertlﬁys with s;nalfl dlgmeter APPENDIX

0 ensure fast dissemination; (iii) the concept of minimum . -
broadcast curve may prove useful as a unifying abstractionAt‘ asatgtmgrh%ﬁ;enﬂ(lﬁ(s)' the Limit of Many Hosts and
capture alert dissemination delay over variety of overlays; (iv y i P ) _ _
worm-like dissemination of patches is an effective solution for Consider a patching system wifli vulnerable hosts parti-
patch dissemination, but only if the time to verify and instafioned into.J subnets, withV; vulnerable hosts in a subngt

patches is not too large, presuming no host quarantining. LetJ = {1,...,J}. The patching system is described by the
There are several problems to investigate further: (i) tif§ochastic procesX () defined by:
implications of system heterogeneity with respect to subnet X(t) = (I;(), S;(t), V;(t),§ € T), t >0,

sizes and patching rates over subnets; (ii) extension of the
framework to routing or local preference worms; (i) thevherel;(t) is the number of infected hosts in a subpes; ()
models provide a framework to study adversarial strategiigsthe number of susceptible hosts in a subnendV;(t) =1
for worms to maximise the ultimate number of infected host#.and only if a subney is alerted, otherwis&;(t) = 0. Here
t is time, t > 0. Note that this is a complete state description
ACKNOWLEDGEMENTS as the number of patched hosi;(¢), can be recovered from

The work described here was inspired by conversations wf]{ﬁe identity[; (t) + () + R; (t) = N;, for all ¢. Denote with

Don Towsley. We thank Manuel Costa for his comments arhcgjts)tsag(tj t?rr% the total number of infected and susceptible

simulator code, and Miguel Castro and Stuart Staniford for . : . .
. . . The stochastic proced§(t) is Markov, with transition rates
their valuable comments on an earlier draft of this paper. . .
from a state(I, S, V) to other states given as follows:
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N, iM@) = 1™M@yN, M) = 18V1)/N and C. Proof of Propositiof 2

similarly for s(™M(t) and syN)(t). We assume that The proof uses an auxiliary lemma that is showed first:
8 = nN/Q is fixed as N tends to infinity. Note that

the transition rates are functions only of the scaled st . . .
y A}t) < M < +oo. Consider(i(t), s(t)) that is solution of

space, except the multiplier, eithé¥ or J, so the process . . ; .
is a density-dependent Markov jump process. We Célﬁe following system of differential equations, with> 0 and

thus invoke Kurtz’s theorem [12] to assert that presumirf 0),5(0) 2 0,
limy, . soc (1700, 58 (0), 737 (0), 557 (0), a(0) = i) = i) (37)
(1(0),5(0),74(0),54(0),a(0)), where the latter if fixed, the %s(t) —Bs(t)i(t) — f(t)s(t).

(1) s (1) i (). s M) (1), o) : .
uMn;?frIo(?r\rgl pcrc())r?\(/aesrS éi‘, orgtz)avllscoé\t):cft‘ irfttg;\fgls <t2’t6;1e éi))lajtioﬁhen’ we have the following estimates:
y 9 b 1) i(t) < i*(t) and s(t) > s*(¢), for all t > 0, where

of (—(8) asN and J go to infinity. (i (t), sT(t)) is solution of[(3f) withf (¢) replaced bym,
wheneveri(0) < i*(0) < 400 and s(0) > s*(0) > 0.

B. Proof of Propositior [1 2) i(t) > i (t) and s(t) < s~ (t), for all ¢ > 0, where

(i~ (t), s~ (t)) is solution of [(3f) withf(t) replaced by

M, wheneveri(0) > i~ (0) > 0 and s(0) < s7(0) <

mma 1. Let f(¢), t > 0 be a function such thal < m <

The differential equatior] {9) is known as Ricatti’s differen-
tial equation. Noting that(¢) = 1 is a particular solution of

, we use the standard transformatiop(t) = v(t) + ﬁ o0
=1+ ﬁ to obtain the linear differential equation: Proof. From [37),
d,.
%z(t) = (a(t) — p)z(t) — p. 2 (1) +5(t)) = —f(t)s(t).
This equation has the solution Integrating, we have
t t
2(t) = e~ Htt[o alu)du (z(()) _ u/ ehu=Ig' a(y)dydu) , i(t) + s(t) = i(0) + s(0) —/ f(u)s(u)du.
Jo 0
. o 5(0) __(35) Plug-in s(¢) from the last identity into the first differential
W_'th Z(O_) = T-w(©) ~ 0)-sa(0) 3S_Can be verified by gquation in [(3F) to obtain
differentiating z(¢). Now, we have fromm6), after elementary p L gt
calculations, that i) = i(t) <z‘(0) +50) - 3 / F(u)s(u)du — i(t)> :
t 0

/ a(u)du = log(l —a(0) + a(O)et). (36) ) _ ] ) (38)

0 Noting thatdlogi(t) = fBs(t) and dlogi(t) = di(t)/i(t)
Defining®,.() — /tfg eru= I3 @)y gy we see from6) that transform the differential equation in the last display into

t
50— /t en ] %logi(t) —3 (i(O) + 5(0) —/ Flu)dlogi(u) — i(t)) .
m=H T 6(0) + a(0)en 0
i(t) >
which yields [I1) on making the change of variabtes: e/". Now, dlogi(t) = 0, so that
We also see fron{ (35) anfi (36) that dlogi(t) < f (1(0) +5(0) —m [, dlogi(u) — z@))
pt . 7 -
wa(t) = 1— ¢ ! = 8 (i(0) + 5(0) = mlog {5} — (1)) .

1 —a(0) + a(0)et ®,(t) — z(0)’

which verifies [(ID).
It only remains to verify thatlim;_.., w(t) satisfies the
claims of the proposition. We consider three cases.

The last inequality permits us to use standard comparison

argument to conclude that(¢), defined as the solution of

the differential equation specified by taking equality in the

) ] last relation, is a super-solution faft), which shows the

1) p < 1: Observe from[(T1) that the integral in therirst assertion of the result. In view of the second differential
definition of ®, converges ags — oo. Hence, it is equation in )ﬂ'(t) < it (t), t > 0, implies (d/dt)s(t) >

immediate from|[(10) thalim, .. w(t) = 1. —s(t)it(t) — f(t)s(t), so that by a similar comparison argu-
2) p = 1: Observe that®,(t) = log(l — a(0) + ment, s*(t) is sub-solution fors(¢). This proves item 1 of

a(0)e’) ~ ut, where we writef(t) ~ a(t) to denote ihe |emma. The item 2 follows similarly, which completes the
that f(t)/a(t) — 1 ast — oo. Hence, by [(AD), proof of the lemma.

lim; o w(t) = 1. We now proceed with the proof of the proposition. The
3) 1> 1: We have by[(Ij1) that proof is by induction showing that under condition C, the
1 1= (/n) ent bounds established in Lemma 1 propagate over time.

(1)

~ ~ P ey : : b . -
1— (/) a0 h (i — 1)a(o)€ . Fl_x_ an interval [0,¢]. By hypothiS|s, there eX|sts_ a finite
o o ) . partition0 < ¢; < .-- <t,; <t, =t, so that condition C
Substituting this in[(10) yield&im; . w(t) = 1/u. holds. Base step: under C, there exists such thatf; (u) >
This completes the proof of the proposition. m® > fo(u), for all u € [0,¢], hence by LemmE] Ly (u) >
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io(u) and sy(u) < so(u), for all u € [0,¢1]. Inductive step: fails with probability1. In other words, a worm scan at time
assumeii(u) > io(u) and sy(u) < so(uw), for all [0,t,,], from subnet: to subnetn succeeds only if botf, () = 0 and

for somem < n. Then, from Lemma|li;(u) > iz(u) and V,,(t) = 0. As earlier, each host under an alerted superhost
s1(u) < so(u), for all u € [tn,, tms1]. The proof follows by installs a patch with rate.

induction. The numbers of susceptible and infected hosts are specified
by a Markov process with the following transition rates:

D. Proof of Theorem]2 I > I+1: L+ Y, L= Vi) (1 - V;)

We consider the patching systefr] [(F—8). By definition ofS S 1 L+ Y, L -V V))) - uV;S,,
w(t), it holds 0 < w(t) < 1, all ¢t > 0. By the hypothesis . ;
of the theorem] < a(t), for all t > T, so that by definition VimVitl: 3 <Zk:1 V’“) 1=Vj).
of w(t), we havew(t) = 1, for all t > T It follows that Assume now that the number of vulnerable hosts in any subnet

w(t) > Ly>p, t > 0. is bounded, i.e. there exists a fixdd > 0, so that for the

It is readily checked that hypotheses of Proposifipn 2 holgumber of vulnerable hosts;, holdsN; < M, for any subnet
so that by settings(t) = i(t) and f,(t) = L= and fo(t) = J-. We define K; ; as the number of dormant subnets with

; : : ay . i infected hosts amj susceptible hosts. The proceks :=
a(t), we hayez(t) <i1(¢), unde_ml(o) = 1(0). In view of thg {K .1):.; is Markov with transition rates:
representation (38) of an equivalent system, we can directly ™"

= Ow Ok

write K K+eij—ei—1+1 % (an nKn,m) G+ 1DKi—1,j41
; Bi(0) +5(0) —ir (1)), 0<t<T K - ci 3 (T = T K ) Ko
. M i1(t) 7
dt logir(t) =4 A (“(T) +51(T) = log 71tz wheree; ; is a M x M matrix with the (i, j) element equal

—i(t), t =T to 1 and other elements equal @oNote that/p, = 3, ik ;
The solution on[0, 7] can be obtained in closed form as th@nd that the transition rates ¢f, are given by:

differential equation or{0, 7] is standard logistic. Plugging n — —_—
this solution fori; (T') and noting that indeed (T') + s, (T) = Ip — I+l 5 (Ei’j le) 25 K
¥ (J =2 i Km‘) > Knj

i(0) + s(0), yields, for anyt > T,
(042 1og (il(t) i(0) + s(O)eﬁ("(")“(O))T> < i(0)+s(0). Assume now thag = 1.//Q is fixed as/ tends to infinity, and
6] i(0) i(0) + s(0) note thatK is a density-dependent Markov process. Similarly

The left-hand side is increasing with(¢), so that replacing 25 in Sectio_@, the Kurtz’'s convergence result yields that the
ir () with i(t) < i1(t), we have, fort > T, scaled version of/p, Sp) converges to[ (45)F(26) as goes

o, (10 0) s ATy to infinity.
z(t)—f-ﬁ 0g (2(0) 7(0) + 5(0) ) < 4(0)+s(0).

The proof follows.

ID—’I?,

G. Proof of Theorerm]4

Observe from[(25) and (26) that
E. Proof of Theorer]3

From Theorenf |1, andlogi(t) = (3s(t), we have (o) +sp(t)) = =(in(t) + sp(t))alt),
and so,

ip(t)+ sp(t) = (ip(0) + sp(0))e~Jo «®de  (40)
Pluggingsp(t) obtained from above intd (25), we obtain the

+oo
u/ w(t)s(t)dt = i(0) + s(0) — i(+00).
0

This can be rewritten as

gl (;(Lg;) u/+oo(1—w(t))s(t)dt _ i(0)45(0)—i(--00). generalized logistic equation
° (39 Sin(t) = Fin(0)(() ~ ip(t) (41

From [10), for any fixedt > 0,
(1 = (1) ~ (1= 0(0)

Furthermore, for any fixed > 0, s(t) ~ s(0), asu, 8 — 0.
In view of (39), the result follows by integrating

with

£() = (ip(0) + sp(0))e~Ja o u—%au). (42)

asyu — 0.

We shall use the following general result for a generalized
logistic equation.

+oo dt 1 1 - : . - .
= 1 . P tion 4. Consider th lized logist tion,
/O 1= a(0) + a()e! ~ 1= a(0) og (a(o)) roposition onsider the generalized logistic equation
t)), > 0. 43
F. Patching and Filtering[(25)£(26), the Many-Subnets Limit at’ v() =By ), (43)
Whenever a superhogtis alerted, i.eV;(t) = 1, a worm Define F'(t fo u)du, and suppose thaf(t) is a real-

scan originating from or destined to the subnet of superjosvalued functlon for wh|ch( ) < oo for all ¢ > 0. Then, the
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solution of [43) is given by

(6) = y(0)—— (4
y(t) = y(0 , t>0.
14 By(0) ft ePF () dy,
Proof: Let Y(¢ fo u)du. Equation |( .) can be rewritten
as
d
5 losy(t) = B (1) — By(t).
It follows that
y(t) / '
log ==~ = -6 yu)du
y(0) 0
Hence,
Y'(t) = y(t) = y(0)e e, (45)
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This differential equation can be solved explicitly by the

classical method of separation of variables. Indeed,
YDAy (t) = y(0)e’ Dt
Integrating, we have

t
ePY () =1 4 6y(0)/ ePEW gy,
0

since e”Y(©) = 1. In view of the last identity and (45), the
claim of the proposition follows.

We shall now use this result to solve the particular general-
ized logistic equatior[ (41). Assume without loss of generality

thatip(0) + sp(0) = 1. Using [6) and[(36), we can rewrite
@2) as

ip(0) + sp(0) a(0)e*

T = T 0 T e ~ B —a(0) +a0)er]” 4O
Next, making the change of variables= ¢*, we get
/ ﬁ + SD( ))dx a(0)dx
z[1 —a( (O) "~ 1—a(0) + a(0)z
146’

:ﬁtflog(lfa(
wheres’ := B(ip(0) + sD(O))/(l —a(0)). Hence, in view of
(6), we have

B 1+8
Go)

We now proceed with computinﬁot ePA) 4y, Making the

a(t)

BE(t) _
‘ a(0)

(47)

change of variables = a(0) + (1 — a(0))e™*, we obtain
t 1
/ PFW gy = _ / dr 7
0 1 —a(0) Ja()+(1-a())e—t T+°
1—a(0) /[ at)\ "~
- 202 ~1). (4
7 (o )
Now, substituting[(47) and (4#8) i (#4), we get
(M)1+ﬁ/
. _ a(0) —t
ip(t) =1ip(0) 20 L b0 ( (t)) 7
ip(0)+sp(0) " ip(0)+sp(0) \a(0)
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After appropriate substitutions, this is the same[a$ (28). The

asserted identity fosp(¢) follows in the view of [(40), which
completes the proof.
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