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On the Race of Worms, Alerts and Patches
Milan Vojnović and Ayalvadi Ganesh

Abstract— We study the effectiveness of automatic patching
and quantify the speed of patch or alert dissemination required
for worm containment. We focus on random scanning as this
is representative of current generation worms, though smarter
strategies exist. We find that even such “dumb” worms require
very fast patching. Our primary focus is on how delays due
to worm detection and patch generation and dissemination
affect worm spread. Motivated by scalability and trust issues,
we consider a hierarchical system where network hosts are
partitioned into subnets, each containing a patch server (termed
superhost). Patches are disseminated to superhosts through an
overlay connecting them and, after verification, to end hosts
within subnets. When patch dissemination delay on the overlay
is negligible, we find that the number of hosts infected is
exponential in the ratio of worm infection rate to patch rate.
This implies strong constraints on the time to disseminate, verify
and install patches in order for it to be effective. We also
provide bounds that account for alert or patch dissemination
delay. Finally, we evaluate the use of filtering in combination
with patching and show that it can substantially improve worm
containment. The results accommodate a variety of overlays
through the novel abstraction of a minimum broadcast curve.
They demonstrate that automatic patching can be effective if
combined with mechanisms to bound worm scan rate and with
careful engineering of the patch dissemination. The results are
obtained analytically and verified by simulations.

Index Terms— Patching, Software Updates, Automatic Up-
dates, Epidemic, Worm, Virus, Minimum Broadcast Curve

I. I NTRODUCTION

M OST Internet worms observed to date have been reverse
engineered from patches released to address some vul-

nerability. The time between patch release and worm appear-
ance has been shrinking; e.g., the Witty worm [5] was observed
little more than a day after patch release. It may soon happen
that a worm appears before the patch is available (a.k.a.zero-
day worms). How can we limit the spread of such a worm? The
doubling time of the number of infected hosts for some worms
is in the order of tens of seconds, which means Internet scale
infection is possible within minutes. Clearly, human response
is too slow and a worm containment systemmust be automatic.
An automatic patching system requires (i) worm detection, (ii)
patch generation, and (iii) patch dissemination, verification
and installation. Our work is primarily concerned with item
(iii). The first two items have been considered in work by
others, discussed later. Incorporating the effect of delays due
to items (i) and (ii) through appropriate choice of the initial
conditions (number of infected hosts), we consider the system
from the time instant at which the worm has been detected and
a patch generated. From then on, the two processes of patch
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dissemination from the server at which it was generated, and
of worm spread from the population of infected hosts, are
in a race. Our objective is to patch vulnerable hosts before
they can be infected. How fast does patch dissemination have
to be in order to win the race, i.e., to limit worm spread to
a specified multiple of the number of initially infected hosts?
Note that we do not propose a new automatic patching system,
but rather provide analytical results that apply to a broad set
of patching systems. We complement and verify our results
by simulations.

A. Motivation

If vulnerable hosts could be patched many orders of mag-
nitude faster than the worm can spread, then the problem
would be rendered of marginal interest. But this is not a safe
assumption in practice. In fact, current practice relies on the
assumption that the time between disclosure of a vulnerability
and the appearance of a worm exploiting is sufficiently long,
so that the majority of hosts can be patched before the onset
of the worm. For example, with central server systems, such
as the present-day Microsoft Windows Update, about80%
of distinct IP machines can be patched within a day, with
the mean time until a query from a specific host equal to
about 20 hours [4]. Comparing this with the timescale of some
worms, such as the aforementioned Witty, it is clear that the
system is not designed to contain zero-day or almost zero-day
worms. This difficulty could be ameliorated by using a content
distribution service1 and by increasing the frequency of host
queries, but this is unlikely to be a viable solution in practice
due to the service provisioning costs involved. This would
make the patch a faster runner in the race with a worm, but
worms can also be made faster by using smarter strategies such
as subnet-biased scanning, so the arms race between worms
and countermeasures is likely to continue for some time into
the future. Hence, a quantitative understanding of how the
relative speeds of worm and patch influence the outcome of
the epidemic is important.

B. Related Work

Much work has been done on studying worms and their
containment [8], [11], [14]. We do not aim at addressing all
related work, but only that which to our knowledge is closely
related to automatic patching. There are several schemes for
worm detection, e.g., (i) honeypots: these monitor unused
segments of IP address space. The presumption is that scans
to these addresses are either due to malicious attempts or
misconfigured protocols (ii) detecting anomalous scanning

1By way of illustration, Windows Update serves about 300 million clients.
If these were partitioned perfectly among Akamai’s 15,000 servers, each server
would need to serve patches to about 20,000 client machines.



behaviour either at end hosts or in the network (iii) detecting
worm signatures either by looking for common patterns in
network traffic or by analysing data and control flow of
computer program executions. Automatic patch generation is
addressed in Vigilante, which was proposed by Costa et al [3],
and motivates the work in this paper. Vigilante is an end-
host based system for automatic worm containment. Its main
feature is that when a host detects a worm, it generates a
self-certifying alert (SCA). Such alerts identify a vulnerability
and provide a machine-generated proof of it which can be
verified by any recipient. Vigilante uses a structured overlay to
propagate alerts to all hosts in the system, which then use some
mechanism to generate a filter which essentially corresponds
to a patch. The self-certifying property of alerts is important
as it solves the problem of trust and the concomitant one of
attacks using the automatic response system. A similar system
was also proposed by Sidiroglou and Keromytis [13]. There
has also been work on analysing the competing processes of
patching, filtering and worm spread [11], [14], [17]. These
works typically consider a ‘flat’ network for both the worm
and patch processes, whereas we study a hierarchical model
motivated by considerations of scalability and trust.

C. Structure of the Paper

In Section II, we discuss our system assumptions and
summarise our results. Section III-B shows our results for
a patching system. We first provide a closed-form estimate
for the number of ultimately infected hosts, for a patching
system with all subnets initially alerted (Corollary 1), which
can be interpreted as an approximation for systems with fast
dissemination of alerts among superhosts. The effect of alert
dissemination time is considered in Theorem 3. Section IV
addresses push-based patch delivery. In Section V, we study
the patching system complemented with filters that block all
incoming and outgoing worm scans for alerted subnets. We
present our simulation results in Section VI and then conclude
in Section VII. Proofs of our results are provided in the
appendices.

II. SYSTEM MODEL AND SUMMARY OF RESULTS

A. Worm Model

We consider worms that scan the IP address space uniformly
at random. This is the method used by many, but not all, worms
observed so far. Smarter strategies include biasing the scan in
favour of the local subnet (routing worms), and exploiting the
topology of some application-layer overlay (e.g. instant mes-
senger buddy lists, ssh address lists etc.) While the techniques
described here can be extended to routing worms, topological
worms appear to be a much harder problem. Random scanning
worms are characterised by the worm infection rateβ, which
is the rate at which per-host scans hit vulnerable IP addresses.
For concreteness,β = 0.00045 per second for CodeRed2 and
β = 0.117 per second for Slammer [7]. In our discussions,
we use the infection rate of Slammer as a recurring example,
but the reader should bear in mind that this worm exhibits

2See www.caida.org/analysis/security/code-red.

Fig. 1: Patching system illustration. Host address space is
partitioned into subnets (e.g. ISP-like or IP prefix subnets).
There is a superhost in each subnet, a dedicted patch sever.
Superhosts are interconnected with an overlay. Each superhost
(or subnet) is either alerted or dormant. An alerted superhost
(i) provides patches to hosts in its own subnet and (ii)
disseminates alerts to superhosts in other subnets. Hosts either
pull the patch from their superhost or the patch is pushed from
a superhost to a host. The highlighted subnets in the figure are
alerted.

global spread behaviour that is somewhat different from that
of a random scanning worm; see [6] for an analysis of the
underlying causes.

B. Patch Dissemination Model

1) Hosts, superhosts, subnets:The use of a centralised
server to distribute patches to all clients is not scalable. Costa
et al [3] consider a fully decentralised peer-to-peer scheme
where hosts are organised into a structured overlay over which
alerts/patches are spread. It is not clear whether such a system
will be universally deployed. In this work, we consider an
intermediate setting where hosts are partitioned into subnets
and there is a patch server in each subnet, which we call
a superhost. Superhosts are connected by an overlay, which
is used to propagate patches between them. A superhost that
has received a patch is said to be alerted, as is the subnet to
which it belongs. Once a superhost is alerted, it propagates
the patch to other superhosts as well as to hosts within its
own subnet. We think of subnets as corresponding to network
administration domains such as a university or corporation;
one could also imagine ISPs maintaining a distributed set
of superhosts. The superhost could be thought of as either
enforcing a security policy by pushing patches on to clients,
or as sending them self-certifying alerts (as in [3]), which the
clients use to generate filters. The two are equivalent from a
modelling perspective.

2) Alert dissemination to superhosts:Alerts are dissemi-
nated through the overlay connecting superhosts. The overlay
can be arbitrary, e.g., a balanced multicast tree, one of several
standard structured overlays (such as Pastry [10], Chord [15]
or CAN [9]) or an unstructured overlay (such as Gnutella).

The impact of overlay topology on the performance of
the patch dissemination system is captured through the new
concept of aminimum broadcast curve, which is discussed
in detail in Section III-E. Briefly, it abstracts the impact of
overlay topology through a function which is a lower bound
on the number of superhosts alerted over time. Such a lower
bound can be computed easily for commonly used overlays.
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3) Patch delivery within a subnet:Once a superhost is
alerted, it has a patch for hosts within its own subnet and
in addition propagates the alert to other superhosts. Patch
dissemination within a subnet can be either by pull or push.
In the former, patch delivery is initiated by a query from the
host, while in the latter, it is initiated by superhosts. In the
pull model, we assume that each host queries its superhost at
the instants of a Poisson process of rateµ. In the push model,
we assume that each superhost has an inventory of hosts in its
own subnet. On becoming alerted, it pushes patches to them
sequentially (in arbitrary order) at rateNµ, whereN is the
number of hosts in the subnet. Thus, the mean load on the
patch server is the same in both models. We show in Section
IV that the push system performs somewhat better.

In the pull model, we assumed that inter-query times at
each host are exponentially distributed with mean1/µ. This
is analytically convenient as it simplifies the dynamics due to
the memoryless property of the exponential distribution. We
show in Section III-E that this assumption entails no significant
loss of generality; see the Remark following Propostion 2.

C. Summary of the Results

1) Required Frequency of Host Queries:Simple analysis
shows that in the absence of countermeasures, the character-
istic timescale of epidemic spread is1/β (the time to double
the number of infected hosts islog 2/β) and most hosts are
infected within some fairly small multiple of this time; for
example, the time to go from 100 infected hosts to 1 million
is about10/β. This suggests that any reactive countermeasure
needs to have response time smaller than or comparable to
the worm characteristic time. Note that the time1/β is about
40 minutes for Code Red and smaller than 10 seconds for
Slammer. In the case of a worm like Slammer, this suggests
that we either need to patch most hosts within a timescale
of about 1 minute or deploy additional mechanisms like rate
capping [16] in order to slow down the worm.

In an idealised scenario, when alert dissemination between
superhosts is instantaneous, we obtain an exact expression
relating the initial and final number of infected hosts, for
a given worm infection rateβ and patching rateµ; see
Corollary 1. The result implies that the ratio of final to initial
infectives is at mostexp((1 − p(0))β/µ), wherep(0) is the
fraction of hosts that are initially patched (e.g. because the
patching has started earlier than the worm appeared). Thus, for
instance, presuming that no host is initially patched, the final
number infected can be limited to no more than 100 times the
initial by takingµ > β/5. This is the sort of operating regime
in which we are interested. In particular, we find that we need
1/µ to be about 3 hours for Code Red and 50 seconds for
Slammer. If a subnet contains 1000 hosts, this means that we
need to patch at a rate of 5 hosts per minute for Code Red
and 20 hosts per second for Slammer.

2) Minimum Broadcast Curve:More realistically, we are
interested in the situation when alert dissemination to super-
hosts is not instantaneous. The time it takes to alert superhosts
depends on the broadcast mechanism and the shape of the
overlay used. We abstract these details by introducing the

concept of a minimum broadcast curve: a functiona(t), t ≥ 0,
is said to be a minimum broadcast curve for an overlay of
superhosts if, for any broadcast of alerts initiated at time0, the
fraction of alerted superhosts of the overlay at timet is at least
a(t). We can explicitly compute the minimum broadcast curve
for simple topologies (see [1] for details). It is given by (i)
exponential function (truncated at 1) for a tree, and (ii) logistic
function for hypercubes and for gossip-based dissemination.
We also verify that when flooding alerts on a Pastry [10]
overlay, the fraction of alerted superhosts over time is well
approximated by a logistic function.

We can use the minimum broadcast curve to obtain an upper
bound on the fraction of hosts that eventually become infected;
the results are presented in Theorem 2, for the specific case
of a logistic minimum broadcast curve. Theorem 3 extends
the results to the case whenµ and β are both small, i.e.,
alert dissemination is fast compared to both worm spread
and patching. Simulation results presented later show that this
formula is indeed accurate in realistic parameter regimes.

3) Patching and Filtering:We investigate the effectiveness
of patching combined with filters that block worm scans in and
out of alerted subnets, and obtain a closed-form solution for
the fraction of infected and susceptible hosts at any time within
non-alerted subnets. The eventual fraction of infected hosts
within a subnet is now entirely determined by the fraction of
infected hosts in the subnet at the time instant when it became
alerted.

III. PATCHING

A. System Assumptions

In this section we consider a hierarchical patch distribution
where, in the first layer, the patch is disseminated among
superhosts and in the second layer, superhosts make the patch
available to hosts within their subnet. We have a population of
N hosts stratified intoJ disjoint subnets, with thejth subnet
being of sizeNj . Associated with each subnet is a superhost,
denoted by the same indexj. A host is either susceptible,
infected or patched. We assume that patched hosts cannot be
infected by the worm and, conservatively, that once infected,
a host cannot be patched (on the timescale of our automatic
patching system; this subsumes the case where the ‘patch’
is actually an alert that enables filtering out attacks, but not
curing the infection). An infected host attempts to infect other
hosts by scanning the address space of sizeΩ uniformly at
random at a fixed rateη. We say that a superhost is alerted
if it has received a patch and dormant otherwise; in a system
like Vigilante, we could say that a superhost is alerted when
it has received and verified an alert, and generated a filter for
that vulnerability.

Dormant superhosts do nothing. Active superhosts make the
patch available for hosts within their subnet to pull; each
host in the subnet becomes patched after a random time
which is exponentially distributed with mean1/µ. In addition,
active superhosts disseminate alerts among themselves. We
shall make some specific assumptions on this dissemination
process and show how the framework accommodates a variety
of alert dissemination systems. We analyse these models by
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considering an asymptotic regime (large population limit) in
which Ω, N andJ increase to infinity, while the ratiosΩ/N
andJ/N are kept fixed.

Time scale. Without loss of generality, we scale time by
κ, the rate of alert dissemination, and henceforth take the rate
of alert dissemination to be unity. All our statements can be
interpreted without difficulty by merely replacing the ratesβ
andµ and timest with β/κ, µ/κ andκt respectively.

B. Host Population Dynamics

Denote byi(t) and s(t) the fraction of hosts which are
infected and susceptible respectively, at timet. Similarly,
let iA(t) and sA(t) be the fraction of all hosts which are
infected and susceptible respectively, and reside under alerted
superhosts. Denote bya(t) the fraction of superhosts which
are alerted. We assume that superhosts cannot be infected by
the worm, e.g., because they do not run services exhibiting
the vulnerability. The system dynamics is as follows:

a′(t) = a(t)(1− a(t)) (1)

i′(t) = βi(t)s(t) (2)

s′(t) = −βi(t)s(t)− µsA(t) (3)

i′A(t) = βi(t)sA(t) + a(t)(i(t)− iA(t)) (4)

s′A(t) = −(βi(t) + µ)sA(t) + a(t)(s(t)− sA(t)) (5)

This system of differential equations describes host popula-
tion dynamics and is justified in the limit of many hosts and
many superhosts in the precise sense described in Appendix A.

The last term in (4) comes from a subnet whose superhost
undergoes transition from dormant to alerted state. This hap-
pens at rateJa(t)(1 − a(t)) and, when it does, the number
of infectives belonging to subnets with alerted superhosts
jumps up by the number of infectives in that subnet, which is
N [i(t)− iA(t)]/[J(1−a(t))] on average. The last term in the
derivative for sA(t) is explained similarly; see Appendix A
for details.

We can solve fora(t) explicitly:

a(t) =
a(0)

a(0) + (1− a(0))e−t
. (6)

Any alert dissemination mechanism that results in the same
time evolution ofa(t) as in (6), namely a logistic function, will
yield the same solution for the dynamics (1)–(5). In particular,
the results apply equally to alert dissemination by gossip or
over a hypercube, or commonly used structured overlays such
as Pastry.

We recast the system of equations (1)–(5) into an equivalent
form by defining the auxiliary processw(t) = sA(t)/s(t). In
words,w(t) is the fraction of all susceptible hosts at timet
which belong to subnets that have been alerted by this time.
We have

d

dt
i(t) = βi(t)s(t), (7)

d

dt
s(t) = −βi(t)s(t)− µ w(t)s(t), (8)

d

dt
w(t) = µw(t)2 − (µ + a(t)) w(t) + a(t). (9)
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Fig. 2: Fraction of susceptible hosts that belong to alerted
subnets,w(t), for w(0) = a(0) = 1/10 (left) and w(0) =
a(0) = 1/100 (right). Different curves correspond to different
values of1/µ, in seconds. Convergence to limit points1 and
1/µ is well exhibited.

Equations (7)–(8) are similar to those one would obtain for
single-subnet patching, but with a time-dependent hazard func-
tion, µw(t), of host queries; the extraw(t) term corresponds
to the fraction of hosts that have access to patches at timet.
The differential equation (9) is known as Ricatti’s equation
and can be solved in closed form.

Proposition 1. The solution forw is given by

w(t) = 1− eµt

1− a(0) + a(0)et

1
Φµ(t)− z(0)

, (10)

wherez(0) = −1/[1− w(0)], and

Φµ(t) =
∫ eµt

1

dx

1− a(0) + a(0)x1/µ
. (11)

Moreover, the limit point ofw(t) is specified as follows:

lim
t→+∞

w(t) =
{

1, if µ ≤ 1,
1
µ if µ > 1.

Interpretation . As t tends to∞, both the number of sus-
ceptible hostss(t) and the number of such hosts belonging
to subnets with an active superhost,sA(t), tend to zero at
an exponential rate. Hence, in looking at the limit ofw(t)
as t → ∞, we are asking about the relative speeds and the
manner in whichs(t) andsA(t) tend to zero.

If µ ≤ 1, then the per host patching rate is slower than
the spread of the epidemic process describing the activation
of superhosts. Hence, new superhosts get alerted faster than
hosts within the subnet are patched; eventually, all superhosts
have been alerted but only a small fraction of hosts have been
patched. From this time onwards, the system behaves like
a single large unstratified network. Thus, in this case, most
susceptibles (a fraction approaching 1) belong to a subnet with
an active superhost; it is the per-host patching rateµ which is
the bottleneck.

On the other hand, ifµ > 1, then patching within a
subnet is faster than the activation of new superhosts. A
non-negligible fraction of hosts within the subnet have been
patched before the superhost activates a new superhost. By the
time most superhosts have been activated, most hosts in active
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subnets have also been patched, and a substantial fraction
of susceptible hosts belongs to those few subnets where the
superhost is still dormant. In this case, the system behaves like
a collection of subnets that are activated sequentially rather
than like one big subnet where patching is active from the start.
Here, it is the rate of alert dissemination among superhosts that
limits the speed with which patching is achieved.

Comment. A somewhat similar host immunisation process
to (7)–(8) was considered by Wong et al [17]. They do not
consider patch dissemination on an overlay, hencew(t) ≡ 1.
The major distinction is that Wong et al (Section 6.1 [17])
assume a host can be patched in both infected and susceptible
state. This amounts to the following system:

d

dt
i(t) = βi(t)s(t)− µi(t),

d

dt
s(t) = −βi(t)s(t)− µs(t).

In contrast, we assume that an infected host cannot be patched
over the timescale of patch dissemination, which could be
the case, e.g., for smart worms which disable patching at
an infected host. Also, as noted earlier, this is a realistic
assumption for systems which disseminate alerts rather than
patches; here, the alert can be used to generate filters which
guard against infection, but cannot cure an existing infection.

C. Ultimately Infected Hosts

We now present a main theorem that allows derivation of
more explicit results later:

Theorem 1. For the system of differential equations (1)–(5),
it holds that

i(+∞) +
µ

β

∫ +∞

0

w(u)d log i(u) = 1− p(0). (12)

where, recall,p(0) is the fraction of initially patched hosts.

The following corollary is of interest. It provides an implicit
function for the number of ultimately infected hosts, for the
special case with all superhosts initially alerted.

Corollary 1. Assumea(0) = 1, i.e. all superhosts are initially
alerted. Then,w(·) ≡ 1 and it follows that

i(+∞) +
µ

β
log

i(+∞)
i(0)

= 1− p(0). (13)

Indeed, in this special case, the network behaves like a
single large subnet. The result may be regarded as an approx-
imation for the limiting case in which patch dissemination on
the overlay connecting superhosts is much faster than either
worm spread or patch spread within subnets.

Comment. Corollary 1 has the following implication:

i(+∞) ≤ i(0) exp
(

(1− p(0))
β

µ

)
. (14)

In words, the number of hosts which ever become infected
is a multiple of the number initially infected; this multiple is
at most exponential in the ratio of worm infection rateβ to
patching rateµ. We see in Section VI that this bound is a

good approximation for ranges of the value ofβ/µ that are
of practical interest.

For further intuition on this bound, note that the fraction of
infected hostsi(t) for a random scanning worm with infection
rate β, and with no patching, satisfies the inequalityi(t) ≤
i(0) exp(βt), for any t ≥ 0. Suppose now that the automatic
patching system ensures that all vulnerable hosts are patched
no later than timeT , if not already infected by the worm. Then
it follows from the above thati(+∞) ≤ exp(βT ). Now (14)
is of the same form, but with the deterministic upper bound
T replaced by the mean patching time1/µ.

D. The Effect of Alert Broadcast Time

In Corollary 1, we consider the case with all superhosts
initially alerted, which would hold by observing the system
evolution from a time instant when all superhosts became
alerted, and would be a good approximation for systems with
fast dissemination of alerts. This yields a lower bound on
the fraction of eventually infected hosts in a practical system
with a non-zero alert time. Suppose now thatT > 0 is a
deterministic bound on the time to alert all superhosts; we
call it an alert broadcast time. An upper bound on the fraction
of hosts eventually infected can be obtained by making the
worst-case assumption that no superhost is alerted prior to
time T . Thus, we get:

Theorem 2. Suppose the patching rate isµ in each subnet,
and that the alert dissemination system guarantees that the
alert broadcast time is at mostT . Then, the fraction of
ultimately infected hostsi(+∞) satisfies:

i(+∞) +
µ

β
log

(
i(+∞)
i(0)

i(0) + s(0)e−β(1−p(0))T

i(0) + s(0)

)
≤ 1− p(0).

The inequality of the theorem implies

i(+∞) +
µ

β
log

i(+∞)
i(0)

≤ (1− p(0))(1 + µT ).

As in the comment after Corollary 1, this implies

i(+∞) ≤ i(0) exp
(

(1− p(0))β
(

1
µ

+ T

))
. (15)

Comparing the last inequality with (14), which holds when all
superhosts are alerted at the start, we note that the alert broad-
cast time enters by effectively increasing the mean patching
time from 1/µ to (1/µ) + T . This is a simple and intuitive
result.

The inequality in the statement of Theorem 2 becomes
tight as the worm infection rateβ and patching rateµ both
tend to zero. This limit regime corresponds to a separation
of timescales whereby alert dissemination runs on a fast
timescale compared to patching and worm spread. This regime
is of practical interest. We formalise these statements in
the following theorem, which applies to alert dissemination
mechanisms characterised by a logistic functiona(t).
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Fig. 3: Empirical fraction of alerted superhosts by flooding on a Pastry overlay of100 superhosts and delayed-logistic minimum
broadcast curves. (Left) the per-superhost delay = 0 seconds, (Middle) 1.16 seconds, and (Right) 2.38 seconds. The figure
suggests delayed-logistic curve a natural candidate for a minimum broadcast curve of standard overlays.
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Theorem 3. The patching system described by (1)–(5) satisfies

i(+∞) +
µ

β
log

(
i(+∞)
i(0)

)
∼ 1− p(0) + µ

s(0)(1− w(0))
1− a(0)

log
(

1
a(0)

)
,

where we write∼ to mean that the ratio of the two sides tends
to 1 as µ and β tend to zero with their ratio fixed.

Interpretation . The following heuristic argument provides
intuition for the result. Suppose that initially, one subnet is
alerted, so thata(0) = 1/J . Multiply both sides of the result
of the theorem withβ/µ and note that the right hand side
scales asβ ((1− p(0))(1/µ) + K log(J)), whereK is appro-
priately defined constant. The alert broadcast time by random
gossipping is indeed of the orderlog(J), so that the result
simply amounts to enlarging the mean patch dissemination
time with the mean alert broadcast time.

E. Minimum Broadcast Curve

The concept ofminimum broadcast curveis an abstraction
of the mechanism of alert broadcast on arbitrary overlay

topologies. It is attractive as it allows us to abstract diverse
broadcast networks by a single curve. We say that a function
m(t) is a minimum broadcast curve for a given alert dissem-
ination system, if, definingt = 0 as the time of first alert,
the fraction of alerted hosts on any interval[0, t] is at least
m(t). Now note that the patching system (7)–(9) holds more
generally than fora(t) a logistic function (corresponding to
alert dissemination by random gossip). It is intuitive to expect
that if we replacew(t) in (7) and (8) with some function that
is a lower bound for allt, then the resulting solution yields an
upper bound on the fraction of infected hosts for allt. This is
the content of:

Proposition 2. Consider functionsf1 and f2 satisfying0 ≤
m ≤ f1(t), f2(t) ≤ M < +∞, and the following two systems
of differential equations:

d
dt ij(t) = βij(t)sj(t)
d
dtsj(t) = −βsj(t)ij(t)− fj(t)sj(t)

j = 1, 2.

Assume thatf1(t) ≥ f2(t) for all t ≥ 0, and that on any finite
interval [s, t], there exists a finite partitions ≤ t1 ≤ · · · ≤
tn−1 ≤ tn = t, such that (C):

inf
u∈[tk,tk+1]

f1(u) ≥ sup
u∈[tk,tk+1]

f2(u), all k = 1, 2, . . . , n− 1.

Then,i1(t) ≤ i2(t) ands1(t) ≥ s2(t), for all t ≥ 0, whenever
i1(0) ≤ i2(0) and s1(0) ≥ s2(0).

The conditions of the proposition are satisfied if the func-
tionsf1 andf2 are continuous, andf1(t) > f2(t) for all t. Its
relevance is that the solution of (7)–(9), using any minimum
broadcast curvem(t) in place ofa(t), yields an upper bound
on the fraction of infected hosts in the actual system. In
Figure 3, we compare the empirical broadcast curve obtained
by flooding in Pastry and a minimum broadcast curve taken
to be a logistic function; see [1] for details.

Remark: General query time distributions. We have as-
sumed so far that inter-query times at each host are ex-
ponentially distributed with mean1/µ. This is analytically
convenient (it simplifies the dynamics due to the memoryless
property of the exponential distribution) but is not essential.
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Indeed, letF (t) be an arbitrary cumulative distribution (CDF)
of per-host inter-query times. The patch becomes available
(superhost becomes alerted) at some arbitrary time, and we
want to know how long it takes until a given host pulls the
patch. By the renewal theorem, the residual time until the next
pull event has the CDF:

Fr(t) = µ

∫ t

0

(1− F (x))dx,

where 1/µ =
∫∞
0

(1 − F (x))dx is the mean time between
pull attempts. From this, we can calculate thehazardfunction
λ(t), denoting the intensity that a query from a specific host
is made at timet, given that the host made no query on the
time interval[0, t). The hazard function is given by

λ(t) =
d
dtFr(t)

1− Fr(t)
. (16)

In the special case of exponentially distributed inter-query
times, F (t) = 1 − e−µt, and it can be readily verified that
Fr(t) = 1 − e−µt and thatλ(t) ≡ µ, i.e., the hazard rate is
constant. Now, for arbitrary hazard functionsλ(t), if λ(t) > λ
for all t ≥ 0 and someλ > 0, then the pull system with inter-
query time having CDFF (·) performs at least as well as the
pull system withExp(λ) inter-query times. More precisely,
the number of hosts that ever become infected is smaller in
the former system. This result follows from the Proposition 2
above, and shows that there is no significant loss of generality
in restricting attention to the exponential distribution.
Example (Windows Update) Consider the query times of
a host to Windows Update service. Suppose the host is
always on. Then the host query times form a renewal process
with inter-query times uniformly distributed on[a, b], where
(a, b) = (18, 22) hours [4]. Note that the host query rate is
µ = 2/(a + b), thus1 query per20 hours. The residual time
distribution of a host query is thus:

Fr(t) =

{
µt 0 ≤ t ≤ a

1− (b−t)2

b2−a2 a < t ≤ b.

It follows from (16) that

λ(t) =
{ µ

1−µt 0 ≤ t ≤ a
2

b−t a < t < b,

and λ(t) is undefined fort ≥ b. It is clear thatλ(t) ≥ µ
for all t ∈ [0, b]. Thus, by Propostion 2 above, the number of
eventually infected hosts using the Windows Update patching
system is no higher than if each host pulled patches at the
instants of a Poisson process of rate once per20 hours.

IV. PUSH-BASED PATCH DISSEMINATION

We have so far discussed a pull mechanism for patch
dissemination, motivated by currently deployed systems. We
now explore push schemes for comparison. We consider two
approaches: a hierarchical scheme analogous to that studied
for pull, and a peer-to-peer scheme, either system-wide or
deployed within each subnet.

In the hierarchical scheme, each alerted superhost pushes
patches on to theN nodes in its subnet in some order, at rate
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1
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8
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 / 
i(0

)
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Fig. 5: The ratio of the ultimately infected hosts to initially
infected hosts in a single subnet with pull and push patch
dissemination. The initial fraction of infectives is10−5.

Nµ. Thus, the server capacity is taken to be the same as in the
pull system considered earlier. For a single subnet, the system
dynamics is:

d

dt
i(t) = βi(t)s(t) (17)

d

dt
s(t) = −βs(t)i(t)− µ

1
1− µt

s(t) (18)

for 0 ≤ t < 1/µ. Comparing with system (7)–(8), withw(t) ≡
1, we note that (17)–(18) differs by the additional term1/(1−
µt). Intuitively, for the same initial fractions of infectives and
susceptibles and identical patch rateµ, the push system will
result in a smaller number of infectives than the pull system.
This intuition is indeed true in view of Proposition 2 above.
The numerical values in Figure 5 illustrate the superiority of
push, for the same server load.

A. Worm-like Patch Dissemination

We noted above that a superhost can improve the effec-
tiveness of patching by pushing patches to hosts rather than
waiting for them to be pulled. Even better performance is
achievable using peer-to-peer dissemination. Specifically, we
consider gossip or epidemic-style protocols to disseminate the
patch within subnets since such a scheme is fast, scalable,
and robust. (The process of alert dissemination to superhosts
remains the same as before.) We make the reasonable assump-
tion that hosts have some side knowledge about addresses
of other hosts in the same subnet and don’t rely on random
scanning to locate them. Then, the gossip scheme used for
patch dissemination can proceed much faster than worm
infection. This is modelled by taking the patch scan rate to
be larger than the worm scan rate.

We distinguish two cases. In the first, we assume that as
soon as a host receives a patch (or alert), it is quarantined and
cannot be infected by the worm. This quarantine state lasts
until the host verifies and installs the patch. In the second
case, the host continues to be vulnerable in the interim. In both
cases, we consider a single subnet. Equivalently, the analysis
would apply if, instead of employing a hierarchical scheme,

7



the peer-to-peer scheme were deployed system-wide, as in
Vigilante.

1) With Perfect Quarantine:We deal with two epidemics
both spreading in the same manner, but the worm has smaller
infection rate than the patch. Denote the worm infection rate
by β and the patch infection rate byµ. Let p(t) denote the
fraction of patched hosts at timet. The race of worm and patch
is specified by the following differential equations describing
two competing epidemics:

d

dt
i(t) = βi(t)(1− i(t)− p(t)) (19)

d

dt
p(t) = µp(t)(1− i(t)− p(t)). (20)

The limit point of the system (19)–(20) follows readily.

Proposition 3. The fraction of hosts ultimately infected,
i(+∞), is the solution of the following equation

i(+∞) = i(0)
(

1− i(+∞)
p(0)

) β
µ

.

The proposition implies the following simple bound on the
final fraction of infected hosts:

i(+∞) ≤ i(0)e
β
µ log( 1

p(0) ). (21)

The last inequality fleshes out the appeal of worm-like patch
dissemination asµ can typically be chosen much larger
than β. Then β/µ is close to 0 and, if the fraction of
initially patched hostsp(0) is not inordinately small, then so
is (β/µ) log(1/p(0)). In other words, the fraction of hosts
eventually infected exhibits only a small increase over the
fraction initially infected at the time of worm detection.

Comparing (21) with (14), we see that it is (14), corre-
sponding to the pull system, which yields the tighter bound
on i(+∞), for givenβ andµ. But it should not be concluded
from this that peer-to-peer patch dissemination performs worse
than a centralised system! The explanation lies in the fact that
while the patching load per host is proportional toµ in the
peer-to-peer setting, the patching load per superhost scales like
Nµ. So what the comparison really tells us is that peer-to-peer
patch dissemination can achieve performance comparable to
the hierarchical scheme with much smaller per-host load.

2) With Imperfect Quarantine:Suppose now that after a
host receives a patch or alert, it is not patched instantaneously.
Instead, there is some non-zero time required to verify the
patch and install it. Such an assumption is required if trust
cannot be assumed. During the time between receiving and
installing a patch, the host continues to be vulnerable and
will become infected if scanned by the worm. This may be a
reasonable assumption if the worm can bypass quarantine. To
facilitate further analysis, we assume that the time between re-
ceiving a patch and installing it is an exponentially distributed
random variable with mean1/µ at each host, and independent
across hosts. Denote bya(t) the fraction of hosts that are
alerted but not yet patched. We now have three epidemics in

place that specify the race of worm, alert, and patch:

d

dt
i(t) = βi(t)(1− i(t)− p(t)) (22)

d

dt
a(t) = κp(t)(1− i(t)− p(t)− a(t))

−βi(t)a(t)− µa(t) (23)
d

dt
p(t) = µa(t). (24)

Note that we assume that a host participates in dissemination
of alerts only after it is patched; this is reflected in the factor
p(t) in (23). The reason for this assumption is that the time
between alerting and patching includes the time for verifying
the alert; the assumption is needed to prevent attacks based
on enticing hosts to flood the network with bogus alerts.

The system of differential equations (22)–(24) can be
solved numerically. Figure 4 shows the ultimate number of
infected hosts for a range of values ofβ and1/µ.The figure
demonstrates that patch verification and installation time does
significantly affect the number of ultimately infected hosts.

V. FILTERING AND PATCHING

We have studied a model with an overlay network of
superhosts that acted as distribution servers for patches. In
this section, we extend the model by letting superhosts also
act as filters (or firewalls). Whenever a superhostj is alerted,
a worm scan originating from or destined to the subnet of
superhostj fails with probability 1. In other words, a worm
scan at timet from subnetk to subnetm succeeds only if
neither superhostk nor superhostm are alerted. As earlier,
each host under an alerted superhost installs a patch with rate
µ.

The race of worm and patch can be described by a Markov
process (see [1]). Here we directly proceed to the limit pop-
ulation dynamics under the many hosts and many superhosts
assumptions. We first consider the subpopulation of hosts in
non-alerted subnets. Denote byiD(t) and sD(t) the fraction
of infected and susceptible hosts in dormant (non-alerted)
subnets. We have the following dynamics:

d

dt
iD(t) = βiD(t)sD(t)− a(t)iD(t) (25)

d

dt
sD(t) = −βsD(t)iD(t)− a(t)sD(t) (26)

d

dt
a(t) = a(t)(1− a(t)). (27)

The equation fora(t) is the same and has the same solution
as given by (6). We obtain closed form solutions foriD and
sD in this case.

Theorem 4. The system of equations (25)–(26) has the solu-
tion:

iD(t) = iD(0) u(t)β′

ρ+(1−ρ)u(t)β′
1−a(0)u(t)

1−a(0)

sD(t) = (1− iD(u(t))) 1−a(0)u(t)
1−a(0) ,

(28)

with u(t) := a(t)/a(0), β′ := β(iD(0) + sD(0))/(1 − a(0)),
and ρ := sD(0)/(iD(0) + sD(0)).
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Fig. 6: (Top) The fraction of infected hosts in non-alerted
subnets versus time, as given by (28). (Bottom) Same but
versus the fraction of alerted superhosts.

The fraction of infected hostsiD(t) increases witht on some
initial interval [1, t0), attains its maximum at somet0 > 0 and
then decreases to0 as t goes to+∞. The decrease is due
to the fact that superhosts become alerted and so the fraction
of non-alerted subnets decreases over time. See Figure 6 for
numerical plots of the functioniD(t). This is also validated
in Section VI.

The reason for being interested in the evolution ofiD(t)
and sD(t) is that they can be used to obtain the number of
infectives and susceptibles in a subnetj, at the timeTj at
which superhostj becomes alerted. After this time, subnetj
is isolated and its evolution decouples from that of the rest of
the network. On[0, Tj ], we have

d

dt
ij(t) = βiD(t)sj(t), (29)

d

dt
sj(t) = −βiD(t)sj(t). (30)

Defining φ(t) := exp
(
−β

∫ t

0
iD(u)du

)
, it follows that, in

particular,sj(Tj) = sj(0)φ(Tj) and

ij(Tj) = (1− φ(Tj))nj + φ(Tj)ij(0). (31)

The functionφ(t) can be obtained in closed-form by inte-
grating the solution (28):

φ(t) =
iD(0) + sD(0)

sD(0) + iD(0)u(t)β′
.

Now, for t > Tj , we have

d

dt
ij(t) = βij(t)sj(t)

d

dt
sj(t) = −βsj(t)ij(t)− µsj(t).

But this is a familiar dynamics that we already encountered in
Section III-B. We have an explicit relation between the initial
and limit point of this system given in Corollary 1. Specialising
to the current context, the identity of Corollary 1, for a subnet
j, reads

ij(+∞) +
µ

β
log

ij(+∞)
ij(Tj)

= nj . (32)

In view of the last identity, the ultimate fraction of infectives in
a subnet is fully specified givenij(Tj), i.e. given the function
φ(t) and the alert timesTj (see Equation (31)).

A. The Effectiveness of Filtering

We discuss filtering in the limit when alert propagation
time is negligible, so that we can assume thatTj = 0 for
all j. The benefit of filtering can be discerned from (32). To
see this, suppose thatnj is of the order of1/J (or exactly
equal to1/J , assuming equal-sized subnets); then (32) implies
ij(+∞) ≤ ij(0) exp((β/J)/µ). Recall that this inequality is
a good estimate forij(+∞) in the limit case where the first
element in the left-hand side of (32) is much smaller than
the second element. Summing overj, we havei(+∞) ≤
i(0) exp((β/J)/µ), which is precisely the inequality that one
would obtain for a patching system with worm infection rate
β/J and patching rateµ. Thus, for the same initial conditions,
the final number of infectives in a system with patching
and filtering and worm infection rateβ is bounded by the
final number of infectives in the patching only system with
worm infection rateβ/J . In other words, filtering effectively
reduces the speed of worm spread by a factorJ equal to the
number of subnets, which would be large in practice. This
demonstrates the potential effectiveness of filtering in reducing
worm infection rate.

We end this section by noting that, as in patching-only
systems (Section III-B), we can use the abstraction of a
minimum broadcast curve in patching and filtering systems
to obtain an upper bound on the number of infected hosts.
This is shown in [1, Proposition 3].

VI. SIMULATION VALIDATION

Setup. We verify some of our results by packet-level
discrete-event simulations in SimPastry [2]. In our simulations,
superhosts are nodes in a Pastry overlay [10]. The Pastry
nodes are attached toJ nodes chosen uniformly at random
from a network topology that is input to the simulator. We
used a transit-stub topology generated by the Georgia Tech
topology generator [18]. The topology has slightly more than
5000 routers arranged into two hierarchical levels: (top)10
transit domains with approximately5 routers in each transit
domain; (bottom)10 stub domains attached to each transit
router with approximately10 routers in each stub domain. The
delays between routers are provided by the topology generator.
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Fig. 7: Patching with all-alerted, equal-size subnets with the total number of hosts: (left)N = 1000, (middle)N = 10000, and
(right) N = 100000. Each graph shows simulation results of two settings: (lighter)i(0) = 1/100 and (darker)i(0) = 1/1000.
For each of the setting, there are5 simulation outcomes obtained with distinct random seed. The worm infection rate isβ = 0.1.
The dark solid curves are that obtained by Corollary 1. The light solid lines are from (14).
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Fig. 8: Patching with filters and a Pastry overlay: Fraction of
infected hosts in non-alerted subnets versus time. The worm
scan rate isβ = 0.1 and the initial fraction of infected hosts
i(0) = 1/1000. The number of superhosts,J , is equal to100.
There areN = 100000 with 1000 hosts in each subnet. The
graph shows sample paths of5 simulation runs with random
seeds. The thick lines are from Theorem 5, obtained fora(t),
a delayed-logistic minimum broadcast curve. The simulation
results and analytical predictions match well.

The Pastry parameters are set asb = 1 and ` = 32. The alert
broadcast system isflooding performed as follows. Suppose
a Pastry node becomes alerted at some time instant. It then
broadcasts an alert to all other nodes that are in its routing
table. Subsequently, each Pastry node receiving an alert, if
not already alerted, broadcasts the alert to all the nodes in
its routing table; otherwise, it discards the alert. This process
continues until all Pastry nodes are alerted. We do not consider
faults in this work. The alert broadcast time depends on the
number of routing hops between any two nodes (diameter),
and on the delays between nodes. In the presence of a worm,
it may well happen that the network becomes saturated due
to worm traffic and some servers slow down. To capture this,
we vary as input parameter a fixed delay at each routing hop
in the Pastry overlay. This lets us examine the performance

under overload without making specific assumptions on the
workload causing the delays. We implemented a packet-level
worm propagation model. The model is that of a birth-and-
death Markov process for infected and susceptible hosts found
in [1] (Section III and Section V therein). The difference is
that in the simulator, the alerts disseminate by flooding on
Pastry. We next present our simulation results:

Patching with instantly alerted superhosts. The goal
is to validate the result of Corollary 1 and the bound (14)
on the ultimate fraction of infected hosts. We separate the
effects of the alert broadcasting delays by configuring zero-
valued delays at each link of the input network topology. See
Figure 7 for the results; a detailed description of the simulation
parameters can be found in the caption of the figure. The
simulation results conform well to the analytical estimate of
Corollary 1. Indeed, as expected, the larger the number of
hostsN , the smaller the variability in the results. The figure
also shows that the bound (14) is a good estimate as long as
the number of ultimately infected hosts is sufficiently small.
All the observations confirm predictions of the analysis.

Patching with alert delays. We also examined how our
analysis predicts the fraction of ultimately infected hosts when
alerts are propagated on overlay with some delay. We varied
alert delays by adding a fixed per-hop delay in Pastry routing,
ranging from0 to 3 sec. The simulations results are in good
agreement with the analytical prediction of Theorem 3; see [1].

Patching with filters. We consider the same simulation
setup as with patching described earlier, but now, in addition,
we have filters in place as described in Section V. We
first validate Theorem 4. See the caption of Figure 8 for
a description of the simulation setup. The figure provides a
comparison of analytical and simulation results, and shows
that there is a good agreement.

We also performed simulations to validate the identity (32).
To that end, we used the same setup as in Figure 8, but varied
a fixed per-hop-delay of alerts at each superhost. The results
are not shown due to lack of space, but they confirm that: (i)
patching with filters significantly outperforms a system with
no filters; (ii) alert broadcast time is a significant factor.
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VII. C ONCLUSION & D ISCUSSION

Our analysis suggests that (i) patching can be effective
only if the product of the fraction of the host population that
is not patched and the ratio of the worm infection rate to
patching rate is not too large. This would require the use of
mechanisms such as per-host capping of scan rates in order
to limit worm infection rates; (ii) for networks partitioned
into subnets, with each subnet having a dedicated server for
patch distribution (superhost), and superhosts connected by an
overlay, the alert broadcast time on the overlay is a significant
factor in determining the number of ultimately infected hosts;
it is thus important to employ overlays with small diameter
to ensure fast dissemination; (iii) the concept of minimum
broadcast curve may prove useful as a unifying abstraction to
capture alert dissemination delay over variety of overlays; (iv)
worm-like dissemination of patches is an effective solution for
patch dissemination, but only if the time to verify and install
patches is not too large, presuming no host quarantining.

There are several problems to investigate further: (i) the
implications of system heterogeneity with respect to subnet
sizes and patching rates over subnets; (ii) extension of the
framework to routing or local preference worms; (iii) the
models provide a framework to study adversarial strategies
for worms to maximise the ultimate number of infected hosts.
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APPENDIX

A. Patching System (1)–(5), the Limit of Many Hosts and
Many Superhosts

Consider a patching system withN vulnerable hosts parti-
tioned intoJ subnets, withNj vulnerable hosts in a subnetj.
Let J = {1, . . . , J}. The patching system is described by the
stochastic processX(t) defined by:

X(t) := (Ij(t), Sj(t), Vj(t), j ∈ J ), t ≥ 0,

whereIj(t) is the number of infected hosts in a subnetj, Sj(t)
is the number of susceptible hosts in a subnetj, andVj(t) = 1
if and only if a subnetj is alerted, otherwiseVj(t) = 0. Here
t is time, t ≥ 0. Note that this is a complete state description
as the number of patched hosts,Rj(t), can be recovered from
the identityIj(t)+Sj(t)+Rj(t) = Nj , for all t. Denote with
I(t) and S(t) the total number of infected and susceptible
hosts at timet.

The stochastic processX(t) is Markov, with transition rates
from a state(I,S,V) to other states given as follows:

(I + ej ,S,V) with rate η
Ω

(∑J
k=1 Ik

)
· Sj

(I,S− ej ,V) with rate η
Ω

(∑J
k=1 Ik

)
· Sj + µVjSj

(I,S,V + ej) with rate 1
J

(∑J
k=1 Vk

)
(1− Vj)

(33)
whereej is theJ-dimensional vector with all elements equal
to 0 except for thejth element, which is equal to1. Define

IA(t) =
J∑

j=1

Ij(t)Vj(t), SA(t) =
J∑

j=1

Sj(t)Vj(t), (34)

to be the number of infected and susceptible hosts belonging
to subnets where the superhost is active at timet. Denote with
a(J)(t) = 1

J

∑J
j=1 Vj(t), the fraction of alerted superhosts at

time t. From the transition rates ofX, it follows:

I → I + 1 :
η

Ω
IS

S → S − 1 :
η

Ω
IS + µSA

IA → IA + 1 :
η

Ω
ISA + a(J)(I − IA)

SA → SA − 1 :
η

Ω
ISA + µSA + a(J)(S − SA)

a(J) → a(J) +
1
J

: Ja(J)(1− a(J))

Consider now a family of a sequence of stochastic
processes, defined by scaling the space with parameter
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N , i(N)(t) = I(N)(t)/N , i
(N)
A (t) = I

(N)
A (t)/N and

similarly for s(N)(t) and s
(
AN)(t). We assume that

β = ηN/Ω is fixed as N tends to infinity. Note that
the transition rates are functions only of the scaled state
space, except the multiplier, eitherN or J , so the process
is a density-dependent Markov jump process. We can
thus invoke Kurtz’s theorem [12] to assert that presuming
limN,J→+∞(i(N)(0), s(N)(0), i(N)

A (0), s(N)
A (0), a(J)(0)) =

(i(0), s(0), iA(0), sA(0), a(0)), where the latter if fixed, the
Markov process (i(N)(t), s(N)(t), i(N)

A (t), s(N)
A (t), a(J)(t))

uniformly converges on all compact intervals to the solution
of (1)–(5) asN andJ go to infinity.

B. Proof of Proposition 1

The differential equation (9) is known as Ricatti’s differen-
tial equation. Noting thatv(t) ≡ 1 is a particular solution of
(9), we use the standard transformationwµ(t) = v(t) + 1

z(t)

= 1 + 1
z(t) , to obtain the linear differential equation:

d

dt
z(t) = (a(t)− µ)z(t)− µ.

This equation has the solution

z(t) = e−µt+
∫ t
0 a(u)du

(
z(0)− µ

∫ t

0

eµu−
∫ u
0 a(y)dydu

)
,

(35)
with z(0) = −1

1−w(0) = s(0)
s(0)−sA(0) , as can be verified by

differentiatingz(t). Now, we have from (6), after elementary
calculations, that∫ t

0

a(u)du = log
(
1− a(0) + a(0)et

)
. (36)

DefiningΦµ(t) = µ
∫ t

0
eµu−

∫ u
0 a(y)dydu, we see from (36) that

Φµ(t) = µ

∫ t

0

eµu

1− a(0) + a(0)eu
du,

which yields (11) on making the change of variablesx = eµu.
We also see from (35) and (36) that

wµ(t) = 1− eµt

1− a(0) + a(0)et

1
Φµ(t)− z(0)

,

which verifies (10).
It only remains to verify thatlimt→∞ w(t) satisfies the

claims of the proposition. We consider three cases.

1) µ < 1: Observe from (11) that the integral in the
definition of Φµ converges ast → ∞. Hence, it is
immediate from (10) thatlimt→∞ w(t) = 1.

2) µ = 1: Observe thatΦµ(t) = log(1 − a(0) +
a(0)eµt) ∼ µt, where we writef(t) ∼ a(t) to denote
that f(t)/a(t) → 1 as t → ∞. Hence, by (10),
limt→∞ w(t) = 1.

3) µ > 1: We have by (11) that

Φµ(t) ∼ 1
1− (1/µ)

x1−(1/µ)

a(0)

∣∣∣eµt

1
∼ µ

(µ− 1)a(0)
e(µ−1)t.

Substituting this in (10) yieldslimt→∞ w(t) = 1/µ.

This completes the proof of the proposition.

C. Proof of Proposition 2

The proof uses an auxiliary lemma that is showed first:

Lemma 1. Let f(t), t ≥ 0 be a function such that0 ≤ m ≤
f(t) ≤ M < +∞. Consider(i(t), s(t)) that is solution of
the following system of differential equations, withβ > 0 and
i(0), s(0) ≥ 0,

d
dt i(t) = βi(t)s(t)
d
dts(t) = −βs(t)i(t)− f(t)s(t).

(37)

Then, we have the following estimates:
1) i(t) ≤ i+(t) and s(t) ≥ s+(t), for all t ≥ 0, where

(i+(t), s+(t)) is solution of (37) withf(t) replaced bym,
wheneveri(0) ≤ i+(0) < +∞ and s(0) ≥ s+(0) ≥ 0.

2) i(t) ≥ i−(t) and s(t) ≤ s−(t), for all t ≥ 0, where
(i−(t), s−(t)) is solution of (37) withf(t) replaced by
M , wheneveri(0) ≥ i−(0) ≥ 0 and s(0) ≤ s−(0) <
+∞.

Proof. From (37),

d

dt
(i(t) + s(t)) = −f(t)s(t).

Integrating, we have

i(t) + s(t) = i(0) + s(0)−
∫ t

0

f(u)s(u)du.

Plug-in s(t) from the last identity into the first differential
equation in (37) to obtain

d

dt
i(t) = βi(t)

(
i(0) + s(0)− 1

β

∫ t

0

f(u)s(u)du− i(t)
)

.

(38)
Noting that d log i(t) = βs(t) and d log i(t) = di(t)/i(t)
transform the differential equation in the last display into

d

dt
log i(t) = β

(
i(0) + s(0)−

∫ t

0

f(u)d log i(u)− i(t)
)

.

Now, d log i(t) ≥ 0, so that

d
dt log i(t) ≤ β

(
i(0) + s(0)−m

∫ t

0
d log i(u)− i(t)

)
= β

(
i(0) + s(0)−m log i(t)

i(0) − i(t)
)

.

The last inequality permits us to use standard comparison
argument to conclude thati+(t), defined as the solution of
the differential equation specified by taking equality in the
last relation, is a super-solution fori(t), which shows the
first assertion of the result. In view of the second differential
equation in (37),i(t) ≤ i+(t), t ≥ 0, implies (d/dt)s(t) ≥
−s(t)i+(t)− f(t)s(t), so that by a similar comparison argu-
ment, s+(t) is sub-solution fors(t). This proves item 1 of
the lemma. The item 2 follows similarly, which completes the
proof of the lemma.

We now proceed with the proof of the proposition. The
proof is by induction showing that under condition C, the
bounds established in Lemma 1 propagate over time.

Fix an interval [0, t]. By hypothesis, there exists a finite
partition 0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn = t, so that condition C
holds. Base step: under C, there existsm0 such thatf1(u) ≥
m0 ≥ f2(u), for all u ∈ [0, t1], hence by Lemma 1,i1(u) ≥
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i2(u) and s1(u) ≤ s2(u), for all u ∈ [0, t1]. Inductive step:
assumei1(u) ≥ i2(u) and s1(u) ≤ s2(u), for all [0, tm],
for somem < n. Then, from Lemma 1,i1(u) ≥ i2(u) and
s1(u) ≤ s2(u), for all u ∈ [tm, tm+1]. The proof follows by
induction.

D. Proof of Theorem 2

We consider the patching system (7–8). By definition of
w(t), it holds 0 ≤ w(t) ≤ 1, all t ≥ 0. By the hypothesis
of the theorem,1 ≤ a(t), for all t ≥ T , so that by definition
of w(t), we havew(t) = 1, for all t ≥ T . It follows that
w(t) ≥ 1t≥T , t ≥ 0.

It is readily checked that hypotheses of Proposition 2 hold,
so that by settingi2(t) ≡ i(t) andf1(t) ≡ 1t≥T andf2(t) ≡
a(t), we havei(t) ≤ i1(t), underi1(0) = i(0). In view of the
representation (38) of an equivalent system, we can directly
write

d

dt
log i1(t) =


β(i(0) + s(0)− i1(t)), 0 ≤ t < T

β
(
i1(T ) + s1(T )− µ

β log i1(t)
i1(T )

−i1(t)) , t ≥ T.

The solution on[0, T ] can be obtained in closed form as the
differential equation on[0, T ] is standard logistic. Plugging
this solution fori1(T ) and noting that indeedi1(T )+s1(T ) =
i(0) + s(0), yields, for anyt ≥ T ,

i1(t)+
µ

β
log

(
i1(t)
i(0)

i(0) + s(0)e−β(i(0)+s(0))T

i(0) + s(0)

)
≤ i(0)+s(0).

The left-hand side is increasing withi1(t), so that replacing
i1(t) with i(t) ≤ i1(t), we have, fort ≥ T ,

i(t)+
µ

β
log

(
i(t)
i(0)

i(0) + s(0)e−β(i(0)+s(0))T

i(0) + s(0)

)
≤ i(0)+s(0).

The proof follows.

E. Proof of Theorem 3

From Theorem 1, andd log i(t) = βs(t), we have

µ

∫ +∞

0

w(t)s(t)dt = i(0) + s(0)− i(+∞).

This can be rewritten as

µ

β
log

i(+∞)
i(0)

−µ

∫ +∞

0

(1−w(t))s(t)dt = i(0)+s(0)−i(+∞).

(39)
From (10), for any fixedt ≥ 0,

µ(1− w(t)) ∼ µ(1− w(0))
1

1− a(0) + a(0)et
, asµ → 0.

Furthermore, for any fixedt ≥ 0, s(t) ∼ s(0), asµ, β → 0.
In view of (39), the result follows by integrating∫ +∞

0

dt

1− a(0) + a(0)et
=

1
1− a(0)

log
(

1
a(0)

)
.

F. Patching and Filtering (25)–(26), the Many-Subnets Limit

Whenever a superhostj is alerted, i.e.Vj(t) = 1, a worm
scan originating from or destined to the subnet of superhostj

fails with probability1. In other words, a worm scan at timet
from subnetk to subnetm succeeds only if bothVk(t) = 0 and
Vm(t) = 0. As earlier, each host under an alerted superhost
installs a patch with rateµ.

The numbers of susceptible and infected hosts are specified
by a Markov process with the following transition rates:

Ij → Ij + 1 : η
Ω

(
Ij +

∑
i6=j Ii(1− Vi)(1− Vj)

)
Sj → Sj − 1 : β

Ω

(
Ij +

∑
i6=j Ii(1− Vi)(1− Vj)

)
− µVjSj ,

Vj → Vj + 1 : 1
J

(∑J
k=1 Vk

)
(1− Vj).

Assume now that the number of vulnerable hosts in any subnet
is bounded, i.e. there exists a fixedM > 0, so that for the
number of vulnerable hostsNj , holdsNj ≤ M , for any subnet
j. We defineKi,j as the number of dormant subnets with
i infected hosts andj susceptible hosts. The processK :=
(Ki,j)i,j is Markov with transition rates:

K→

 K + ei,j − ei−1,j+1 : η
Ω

(∑
n,m nKn,m

)
(j + 1)Ki−1,j+1

K− ei,j : 1
J

(
J −

∑
n,m Kn,m

)
Ki,j

whereei,j is a M ×M matrix with the(i, j) element equal
to 1 and other elements equal to0. Note thatID =

∑
i,j iKi,j

and that the transition rates ofID are given by:

ID →

 ID + 1 η
Ω

(∑
i,j iKi,j

) ∑
i,j jKi,j

ID − n 1
J

(
J −

∑
i,j Ki,j

) ∑
j Kn,j

Assume now thatβ = ηJ/Ω is fixed asJ tends to infinity, and
note thatK is a density-dependent Markov process. Similarly
as in Section A, the Kurtz’s convergence result yields that the
scaled version of(ID, SD) converges to (25)–(26) asJ goes
to infinity.

G. Proof of Theorem 4

Observe from (25) and (26) that

d

dt
(iD(t) + sD(t)) = −(iD(t) + sD(t))a(t),

and so,

iD(t) + sD(t) = (iD(0) + sD(0))e−
∫ t
0 a(u)du. (40)

PluggingsD(t) obtained from above into (25), we obtain the
generalized logistic equation

d

dt
iD(t) = βiD(t)(f(t)− iD(t)) (41)

with

f(t) = (iD(0) + sD(0))e−
∫ t
0 a(u)du − 1

β
a(t). (42)

We shall use the following general result for a generalized
logistic equation.

Proposition 4. Consider the generalized logistic equation,

d

dt
y(t) = βy(t)(f(t)− y(t)), β > 0. (43)

DefineF (t) =
∫ t

0
f(u)du, and suppose thatf(t) is a real-

valued function for whichF (t) < ∞ for all t ≥ 0. Then, the
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solution of (43) is given by

y(t) = y(0)
eβF (t)

1 + βy(0)
∫ t

0
eβF (u)du

, t ≥ 0. (44)

Proof: Let Y (t) =
∫ t

0
y(u)du. Equation (43) can be rewritten

as
d

dt
log y(t) = βf(t)− βy(t).

It follows that

log
y(t)
y(0)

= βF (t)− β

∫ t

0

y(u)du.

Hence,
Y ′(t) = y(t) = y(0)eβF (t)e−βY (t). (45)

This differential equation can be solved explicitly by the
classical method of separation of variables. Indeed,

eβY (t)dY (t) = y(0)eβF (t)dt.

Integrating, we have

eβY (t) = 1 + βy(0)
∫ t

0

eβF (u)du,

since eβY (0) = 1. In view of the last identity and (45), the
claim of the proposition follows.

We shall now use this result to solve the particular general-
ized logistic equation (41). Assume without loss of generality
that iD(0) + sD(0) = 1. Using (6) and (36), we can rewrite
(42) as

f(u) =
iD(0) + sD(0)

1− a(0) + a(0)eu
− a(0)eu

β[1− a(0) + a(0)eu]
. (46)

Next, making the change of variablesx = eu, we get

βF (t) =
∫ et

1

β(iD(0) + sD(0))dx

x[1− a(0) + a(0)x]
− a(0)dx

1− a(0) + a(0)x

= β′t− log
(
1− a(0) + a(0)et

)1+β′

whereβ′ := β(iD(0) + sD(0))/(1− a(0)). Hence, in view of
(6), we have

eβF (t) = e−t
( a(t)

a(0)

)1+β′

. (47)

We now proceed with computing
∫ t

0
eβA(u)du. Making the

change of variablesx = a(0) + (1− a(0))e−t, we obtain∫ t

0

eβF (u)du =
1

1− a(0)

∫ 1

a(0)+(1−a(0))e−t

dx

x1+β′

=
1− a(0)

β′

((
a(t)
a(0)

)−β′

− 1
)
. (48)

Now, substituting (47) and (48) in (44), we get

iD(t) = iD(0)

( a(t)
a(0)

)1+β′

sD(0)
iD(0)+sD(0) + iD(0)

iD(0)+sD(0)

( a(t)
a(0)

)β′
e−t.

After appropriate substitutions, this is the same as (28). The
asserted identity forsD(t) follows in the view of (40), which
completes the proof.
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