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Peer counting and sampling in overlay networks:

random walk methods

Abstract We address the problem of counting the num-

ber of peers in a peer-to-peer system, and more gener-

ally of aggregating statistics of individual peers over the

whole system. This functionality is useful in the design

of several applications. It is delicate to achieve when

nodes are organised in an overlay network, and each node

has only a limited, local knowledge of the whole system.

We propose two generic techniques to solve this prob-

lem. First, theRandom Tour method is based on a con-

tinuous time random walk, and exploits the return time

of the walk to the node originating the query.

Second, theSample and Collide method essentially

relies on a sampling sub-routine which returns randomly

chosen peers. Such a sampling sub-routine is of inde-

pendent interest. It can be used for instance for neigh-

bour selection by new nodes joining the system. We use

a continuous time random walk to obtain such samples.

L. Massoulié
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The core of the second method consists in gather-

ing samples until a target number of redundant samples

are obtained. This method is inspired by the “birthday

paradox” technique of [7], upon which it improves by

achieving a target variance with fewer samples.

We analyse the complexity and accuracy of the two

methods. We illustrate in particular howexpansion prop-

erties of the overlay affect their performance.

We use simulations to evaluate their performance in

dynamic environments with sudden changes in peer pop-

ulations. Both methods track varying system sizes accu-

rately. As predicted by the analysis, the cost incurred by

the Sample and Collide method is significantly lower for

a comparable accuracy.

1 Introduction

Peer-to-peer systems have achieved fast and widespread

adoption for both legal and illegal applications, ranging

from file sharing (e.g. Kazaa or eDonkey) to VoIP (e.g.

Skype). It is reasonable to expect novel applications to

appear, and the scale of such systems to increase beyond

millions of interacting peers.

A key feature of peer-to-peer systems is theirdis-

tributed nature. Indeed, popular architectures organise

the peers in anoverlay network, typically layered over

the Internet, and let peers communicate solely with their

overlay neighbours. In such architectures, a peer’s knowl-



edge of the system is limited to its collection of neigh-

bours. These architectures have good scalability proper-

ties; in particular they do not suffer from central servers

becoming performance bottlenecks, or single points of

failure.

On the flip side however, overlay architectures make

it delicate to monitor system characteristics of interest

that would be straightforward to observe in centralised

systems. One example of such a system characteristic

that will concern us in this paper is the system size, namely

the number of peers. More generally, we are interested in

(approximately) counting the number of peers with given

characteristics, or aggregating characteristics of interest

of individual peers over all peers.

The need to perform such peer counting arises in the

following contexts. Recently proposed overlay mainte-

nance protocols, such as Viceroy [28], rely on approxi-

mate knowledge of the overlay size to incorporate a newly

arrived peer in the system. Several gossip-based infor-

mation dissemination protocols (see e.g. [16], [14]) rely

on system size to determine the number of gossip targets

per peer. We expect that such peer counting could find

other applications. For instance, in a Live Media stream-

ing system such as that of [36], it may be of interest to

measure the number of peers using a Broadband connec-

tion or a dialup connection, in order to decide whether

new dialup users can be accepted without compromising

performance.

For particular overlay architectures, specific overlay

properties may be exploited to efficiently measure sys-

tem size. In contrast, our aim here is to design measure-

ment techniques that are generic, in that they are applica-

ble to arbitrary overlay networks. We propose two such

techniques in this paper.

The first technique, which we call theRandom Tour

method, relies on launching a message from the peer ini-

tiating the measurement. This message then performs a

random walk along the overlay until it returns to the ini-

tiator, i.e. a random tour. Local statistics accumulated

along the tour within this message provide an estimate

of system size. We analyse the quality of the resulting

estimate, and in particular show how thespectral gap of

the overlay graph, which is in turn affected by theex-

pansion properties of the graph, conditions the accuracy

of the estimate. This technique can be easily adapted to

estimate aggregate statistics of other node properties.

We then propose a second technique, which we call

theSample&Collide method. One building block of the

method is a sampling function, which aims to provide a

requesting overlay node with another node chosen uni-

formly at random from the overlay. Previous proposals

have relied on a Discrete Time Random Walk stopped

after a large constant time; clearly, this yields samples

biased towards high-degree nodes. We describe a sam-

pling algorithm based on a Continuous Time Random

Walk (CTRW), which yields unbiased samples. We char-

acterise the sampling quality/complexity trade-off and

find that it is again critically affected by the expansion

properties of the overlay graph.

The Sample&Collide method produces an estimate

of the system size based on the number of uniform ran-

dom samples it takes before a target number of redun-

dant samples are obtained. This method is inspired by

the “Inverted Birthday Paradox” method of [7]. We pro-

vide a detailed analysis of the accuracy and complex-

ity of the Sample&Collide method, and show how it im-

proves upon the original proposal of [7] by achieving a

target accuracy with fewer samples.

While we do not study the impact of churn analyt-

ically, we evaluate it through simulations. These show

that the proposed techniques are robust to both gradual

and sudden changes in system size.

The paper is structured as follows: in the next sec-

tion we survey related work. We present the Random

Tour method and its analysis in Section 3, and the Sam-

ple&Collide method and its analysis in Section 4. The

evaluation of the two methods by simulation is shown in

Section 5. We conclude in Section 6.



2 Related Work

We distinguish two classes of techniques for system size

estimation. Techniques of the first type are tailored to a

specific overlay architecture, while those of the second

type are generic and applicable to any overlay.

2.1 Architecture-specific techniques

In structured peer to peer overlay networks, peers are as-

signed identifiers drawn uniformly at random. The ap-

proach taken in [11] deduces the network size in dis-

tributed hash tables (DHT) by measuring the density of

identifiers around a node initiating a size estimate. The

communication cost for getting a relative error of order�

is������� message exchanges, irrespective of the num-

ber of nodes� . A similar approach is also considered in

[33,24,19,29].

In [13], an estimate of the system size is constructed

based on observations of node degrees, and relies on

prior knowledge of a power law structure for the distri-

bution of node degrees. A conceptually similar approach

is described in [7]. It produces an estimate of system

size based on node degree observations, assuming a spe-

cific topology (namely, the Erd˝os-Rényi random graph

model). No error estimates are provided in these papers;

the cost of the latter is�������.

Another approach involves building a spanning tree

on top of the overlay, and using it to estimate the system

size [9,32,25] by aggregating estimates along the tree.

The obtained estimates are then exact in the absence of

failures, and the cost is����.

Jelasity and Preuß [21] estimate the network size by

observing the renewal of contacts in peers’ views, in a

gossip based overlay.

2.2 Generic techniques

Jelasity and Montresor [20] have considered the follow-

ing gossip-based method. Initially one distinguished node

sets a counter to 1 while all other nodes set their counter

to 0. Nodes communicate asynchronously; when a pair

of nodes communicates, they both reset their individual

counters to the mean of the two previous values. In the

long run, all counter values coincide with the recipro-

cal of the system size. This approach is suitable in sta-

ble environments. As all users eventually share the same

size estimate, its cost is amortized over all nodes when

they are all interested in obtaining such an estimate. A

theoretical evaluation of the cost of such schemes can

be found in [10]. The cost, evaluated in number of mes-

sages, is���������� for �-dimensional random geomet-

ric graphs.1 It is ��� ������� for expander graphs.

Another generic approach [15,33,24], sometimes re-

ferred to as probabilistic polling, consists of a querying

node requesting all nodes to report their presence prob-

abilistically, the probability of responding being a func-

tion of node characteristics, such as distance (in number

of hops) from the initial requestor. This produces un-

biased estimates. One drawback of the method is that

the initial querior is potentially faced with “ACK implo-

sion”. The cost of this method scales linearly with sys-

tem size.

Finally, Bawa et al. [7] propose a method which as-

sumes one can sample peers uniformly at random. They

form an estimate of system size based on the number of

samples required before the same peer is sampled twice.

The cost, measured in number of samples, scales like

�
�
� where� is the system size, and for a target relative

error of ��
�
�. The second technique we shall describe

builds on this work. It improves upon it by proposing a

scheme to generate approximately uniform random sam-

ples, and also reduces the number of samples required to

achieve the same target accuracy to
�
�� , hence a reduc-

tion by a factor of
�
�.

1 See [10] for a definition of such graphs. Here, we write

���� � ������� when���� � ������ �������� for some

�.



3 The Random Tour method

Here and in the sequel, we assume that peers (or nodes)

are organised in an undirected graph, each node being

aware of, and able to communicate directly with its neigh-

bours. The node set is denoted by� , and its size is� .

Thedegree of node� is denoted��, and is by definition

the number of neighbours of node� in the overlay graph.

The aim is to design lightweight techniques for esti-

mating for instance the system size� . In fact, our tech-

niques also apply to the estimation of sums of functions

of the nodes,� ��
�

��� 	�
�, for general functions	.

Estimation of the system size is just one special case,

corresponding to	 � �. One may for instance be inter-

ested in evaluating the number of nodes
 with a degree

larger than 100; this would correspond to the special case

	��� � � if �� � �		, and	��� � 	 otherwise. There are

many variants of interest, e.g. counting peers that have

an upload capacity above 10Mb/s. We assume through-

out that the graph is connected; if it is not, each node

will only be able to estimate the size of its connected

component.

This section is organised as follows. We first decribe

the Random Tour method. We then prove that it is unbi-

ased. We next interpret it in terms of Continuous Time

Random Walks. This allows us to evaluate its accuracy,

captured by the variance, and how it is affected by the

spectral gap of the graph. Finally we discuss the role of

the expansion property of the overlay, and the cost/accuracy

trade-off of the method.

3.1 Basic Algorithm

An estimation procedure is launched at an arbitrary node,

say node�, of the system. It proceeds as follows:

1. The initiator, node�, initialises a counter value,�,

to 	������. It forwards a message, tagged with the

counter value�, and its identity,�, to one of its neigh-

bours, chosen uniformly at random.

2. A node
, when receiving such a message, if it is not

the originating node (� �� 
), increments the counter

by 	�
���� (� � � 
 	�
���� ), and forwards it to

one of its neighbours, chosen uniformly at random.

3. When the originator,�, receives the message it origi-

nally sent, with associated counter value�, it forms

the following estimate�� of the system size�:

�� � ���


The estimate is thus obtained by adding a specific amount

to a probe message at each node along a random tour,

that is, a random walk started at initiator node� and

ended upon return to node�.

3.2 Lack of bias

We now establish that the above estimation procedure

is unbiased. We shall use����� to denote mathematical

expectation when the random walk is started at node�.

Note that so far we are considering discrete time random

walks.

Proposition 1 The Random Tour algorithm produces an

unbiased estimate, that is, the expectation ����� coin-

cides with the quantity to be estimated,
�

��� 	�
�.

Proof: Consider the discrete time random walk started

at node�, which, from a given state
 goes to a randomly

chosen neighbour of
, each neighbour being equally

likely (and thus chosen with a probability of����). De-

note by�� the position of the random walk at time step

�. Then���� is a Markov chain with transition probabil-

ities��� � ���� if � is a neighbour of
 and	 otherwise.

If the graph is connected, then the transition probability

matrix is irreducible and the Markov chain has a unique

stationary distribution. It is readily verified that the prob-

ability distribution

�� ��
���

��� ��
� 
 � � � (1)

satisfies the detailed balance equations����� � �����

for all 
� � � � . Hence, the Markov chain���� is re-

versible, with unique stationary distribution�.



Let �� denote the random time of the first return to

node � for the random walk started in�, i.e., �� is the

smallest� � 	 for which�� � �. Recall that the counter

value produced by the Random Tour algorithm is

� �

�����
���

������

where��
� � 	�
���� . In order to compute its expecta-

tion, we rely on thecycle formula for so-calledregener-

ative processes (see [5], Chapter VI for definitions and

rigorous statements). Basically, a regenerative process is

a stochastic process the trajectories of which can be bro-

ken into cycles, the cycles being independent from one

another and identically distributed. In the present setting,

���� is a regenerative process, as can be seen by defining

a cycle to start with a visit to state�, and to end before

the next visit to state�. In this context, the cycle formula

yields that, for an arbitrary function� :

��

�����
��� ��� ����

������
� ����� ���� �

�
���

����
�� (2)

here�� denotes expectation when the process�������
is in a stationary regime (so that the marginal distribution

of �� is �, for any�), �� denotes the expectation when

it is started from the initial state�� � �, and�� is the

(random) time of the first� such that�� � �, i.e.�� is

the beginning of the second cycle. Specialising (2) to the

indicator function��
� � ���� (that is,��
� � 	 unless


 � �) yields

������ � ���� �

�
��� ��
��

� (3)

Finally, note that the counter value� obtained in the

algorithm above when the original message returns to

the sending node� is exactly

� �

�����
���

������

where��
� � 	�
���� . We thus have by formula (2) that

����� � ������
�
���

����
�

�

�
��� ��
��

�
���

���
��� ��

	�
�

��

�
�

��



Since�� � ���, this last expression guarantees that the

mathematical expectation of�� is indeed equal to�. �

3.3 Analysis of Variance

Here we specialise the discussion to the case where	 �
�, that is we consider only estimation of the system size

� . We shall give bounds on the variance in this case,

which involve a global parameter of the graph, namely

the spectral gap of the graph. Before providing a defi-

nition, we re-interpret our estimation procedure in terms

of Continuous Time Random Walks (CTRW).

Consider the CTRW defined as follows. After enter-

ing a node
, the walker stays there for exactly���� time

units, and then moves to a randomly selected neighbour

of node 
. We shall denote by�� the position of the

walker at time�. To distinguish from the discrete time

case, we let�� denote the first time� � 	when the walker

moves from another node to node�. It is readily seen that

our estimate� also reads

� � ��

� 	�

�

	������� (4)

and thus in the special case where	 � �, this reads� �

����.

We now introduce some more notation required to

describe bounds on the variance of�.

Definition 1 The Laplacian matrix of a graph� is by

definition the matrix� such that��� � 	� if � �� 
,

and ��� 
� is an edge of the graph�, ��� � �� if 
 �

�, and��� � 	 otherwise. Its eigenvalues��� 
 
 
 � �


are real, non-negative. Assuming they are sorted in non-

decreasing order (�� 
 �� 
 
 
 
 �
 ), then�� � 	, and

�� is called the spectral gap of the graph.



This Laplacian matrix is intimately connected to another

CTRW defined on the set of nodes of the graph, namely

the CTRW where a walker’s visit to a given node� lasts

for an exponentially distributed duration, with mean����.

This is the standard CTRW on a graph; it is a continuous

time Markov process, and the matrix	� is its infinitesi-

mal generator. The CTRW we described previously dif-

fers from the standard one because sojourn times are de-

terministic, rather than exponentially distributed.

We now state our result concerning the variance of

the estimator�.

Proposition 2 For an arbitrary undirected graph on �

nodes with spectral gap ��, the Random Tour estimate �

of the number of nodes � verifies:

��
�
���	 ����� 	 �

�	��� 
 Var ��� 
 �� ���
��
� (5)

The proof is deferred to the appendix. We now interpret

this result. Consider the lower bound first. When�� is

small compared to� (which one expects to be the nor-

mal situation) and� is large, the lower bound on the

variance of� is equivalent to� �. Thus, the standard de-

viation
�

Var��� of the estimate is at least of the order

of its mean, that is� . As for the upper bound, it is then

of order��
�������. Provided����� is of order 1, this

matches the order of the lower bound, and the estimate

� has a standard deviation precisely of the order of its

mean.

3.4 The role of graph expansion

To illustrate this further, introduce the notation

���� �� ���
������
��

���� ��

��� �

where���� �� denotes the number of edges in the graph

� between the set of nodes�, and the complementary

set�. The constant���� is known as the isoperimetric

constant of the graph, or also as its conductance; see e.g.

Mohar [31] for further discussion. The so-called Cheeger

inequality (see [31]) states that the spectral gap�� of the

graph verifies

�� � �����

�����
�

where���� is the maximal degree of nodes in the graph.

Combined with (5), Cheeger’s inequality entails that

Var��� 
 �� �������

�����

 ��

�
�����

����

��


 (6)

This illustrates how the ratio��������� controls the

quality of the estimator�. The conductance parameter�

is sometimes called the expansion parameter of a graph,

and graphs with large� are referred to as expanders. The

reader can find additional material on expanders in [3],

or [27]. Several overlay architectures proposed in the lit-

erature ensure good expansion properties by design: the

expansion parameter� is bounded away from 0.

In particular, overlays comprising sufficiently many

“random” edges have large expansion parameter. It is

shown for instance in [17], Theorem 5.4, that Erd˝os-

Rényi graphs on� nodes with average degree� such

that� �� ������ have an expansion of���. It is also

shown in [18] that, if each node chooses� � � other

nodes uniformly at random as its neighbours in the over-

lay, then the resulting graph has expansion at least���.

3.5 Complexity/Accuracy trade-off

We measure the complexity of a single Random Tour by

the number of (discrete-time) steps taken by the random

walk during that tour, that is�� with the above nota-

tion. Thus, in view of (3),� consecutive Random Tours

launched by node� cost on average�
�

��� �����. De-

note the estimates of the corresponding Random Tours

by ����� 
 
 
 � ����. Their empirical mean� has a vari-

ance� times smaller than that of an individual estimate.

By Tchebitchev’s inequality, we obtain that for a given

� � 	, the relative error��	� ��� verifies:

����	� ��� � �� 
 Var�
����

�



If we can tolerate a relative error greater than� with

probability of �� for some�� � �	� ��, then in view of

(6) and the previous display it suffices to take

� �
�
�����

�����

��
�

��
�

Assuming for concreteness�� � �	� is fixed, and the

graph isregular, that is all its nodes have degree�, then

for � runs we get on average a cost of�� , and we can

guarantee a relative error of

� �
��

����

��
���




Thus the cost is linear in� , and an extra cost factor of�

buys a reduction in relative error of order��
�
�.

4 The Sample&Collide method

In this section we present an algorithm which is based

on, and improves upon a technique proposed in [7]. This

technique essentially relies on sampling uniformly at ran-

dom from the peer population. It then uses such random

samples to produce an estimate of system size, based on

how many random samples are required before two sam-

ples return the same peer.

We improve the proposal of [7] in two ways. First,

we propose a uniform peer sampling technique which

produces unbiased samples by emulating acontinuous

time random walk (CTRW), contrary to existing propos-

als which rely ondiscrete time random walks (DTRW)

and suffer from a bias whenever peers have unequal de-

grees.

Second, we refine the way those samples are used,

and effectively obtain estimates with a given variance

with fewer sampling steps.

4.1 Peer sampling with CTRW

The probing peer’s label is again denoted by�, and the

overlay is modelled as an undirected graph�. For peer

sampling, we shall use the standard CTRW, namely the

random walk where each visit to a node
 lasts for an ex-

ponentially distributed, random time with expected du-

ration ���� , where�� is the degree of node
. The sta-

tionary distribution of the standard DTRW puts mass

���
�

� �� on each node
, and is thus biased towards

high degree nodes. In contrast, the CTRW we just de-

scribed has a uniform stationary distribution. Our peer

sampling algorithm proceeds as follows.

1. A timer is set at some predefined value� � 	, by the

initiator, node�, in a sampling message.

2. Any node
, either after receiving the sampling mes-

sage, or (if it is the initiator) after having initialised

the timer, does the following. It picks a random num-

ber , uniformly distributed on
	� ��. It decrements

� by	 ���� ���� (� � � 
 ���� ����). If � 
 	,

then this node
 is the sampled node; it returns its ID

to the initiator, and the procedure stops. Otherwise, it

forwards the message with the updated timer to one

of its �� neighbors, chosen uniformly at random.

This procedure returns a random node sample, the distri-

bution of which is exactly that of the state of the standard

CTRW at time� , started from node�. This follows from

the well-known fact that	 ���� � has a unit mean expo-

nential distribution. See Ross [35], and in particular the

inverse function method for random numbers generation,

for a proof.

A convenient measure of accuracy of the proposed

sampling technique is provided by thevariation distance

between the probability distribution of the returned sam-

ple, and the target uniform probability distribution. Re-

call that the variation distance between two measures�,

! on� is defined as

���� !� ��
�

�

�
���

��� 	 !��


It admits the following useful interpretation [26, Theo-

rem 5.2]: a random sample� from a distribution� coin-

cides, with probability�	���� !�, with a random sample

from distribution!. We can now relate the quality of our



sampling method to the choice of� , and the spectral gap

of the graph:

Lemma 1 Let ������� be a continuous time, reversible

Markov process on a finite state space � , with spec-

tral gap ��, and stationary distribution �. Denote by

������ the distribution of �� when the process is started

at �� � �. Then it holds that

��������� �� 
 �

�
�
��
"�
��


The proof is given in the appendix. When specialised to

the standard CTRW, for which�� � ��� , taking� �

# ���������, this reads

������� �� �� 
 �

�
� �������


If for instance# � ���, then this variation distance is of

order���.

Thus, in view of the above-mentioned interpretation

of variation distance, for such a choice of� , �� coin-

cides with a uniform random sample from� with prob-

ability � 	 ������. Equivalenty, it takes on average of

the order of� samples before retrieving an improperly

selected node.

The reason this is important is the following: we shall

see that our algorithm requires of the order of
�
� uni-

form random samples in order to estimate� . But since

we cannot sample uniformly at random exactly, we use

the CTRW procedure described above to obtainapprox-

imately uniform random samples. The error estimate on

the approximation tells us that for� chosen as above, it

is as if we sampled exactly from the uniform distribu-

tion; with high probability, our sampling procedure will

yield the same samples (on runs of length$���) as the

exact procedure.

We should mention that, as both� and�� are a pri-

ori unknown, it is in practice not feasible to set� to pre-

cisely say,� ���������. One possibility is to use sam-

pling with a first value of� , get back from the Sam-

ple&Collide procedure (described in next Subsection) an

estimate��� of � , then re-run the whole procedure with

�� instead of� , get a new estimate��� of � , and re-

peat until estimates��� appear to stabilise; they should

increase with� until � is sufficiently large.

Another possibility is to assume suitable lower bounds

on��, and upper bounds on������ are known, so that a

conservative value of� can be used. This is the approach

we take in this paper.

Remark 1 Instead of the standard CTRW, we could al-

ternatively base sampling on the CTRW with determin-

istic sojourn times. This suppresses the need to generate

uniform random numbers at nodes traversed by the

random walk. However, in general there is no analogue

of Lemma 1 for the deterministic sojourn time CTRW,

as the following counter-example shows.

Consider a bipartite, regular graph with common node

degrees�, nodes being partitioned into�� and��, with

���� � ����. Then with the latter CTRW, whenever
����
is even, the returned node belongs to the same bipartition

as the node� from which sampling started, no matter how

large� is. Assume say that node� belongs to��. Then

the variation distance between the sampled distribution

and the uniform distribution is at least
�

����
��� �

���, and does not go to zero.

4.2 Estimation procedure

The technique we use is as follows. We pick an integer

� � 	, which will determine the accuracy of our esti-

mates. We then obtain node samples����� 
 
 
 � ����.

Denote by%� the first time�when a sample���� is ob-

tained which has already been seen (the first collision),

i.e., for some� & �, ���� � ����. Likewise, denote

by%� the second time� when the corresponding sample

���� has previously been observed, and define%� simi-

larly for � � �. We shall stop sampling at� � %�, that is,

when exactly� newly obtained samples have previously

been observed, where� is a fixed control parameter.

For a given� , we denote by�
���� 
 
 
 � ��� the

probability that%� � ��� 
 
 
 � %� � ��. Elementary com-



binatorics show that

�
 ���� 
 
 
 � ��� �

���� 
��� 	 �� � � � �� 	 �� 
 �
 ����
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��� 	 ����� 	 �� � � � ��� 	 ��� 


(7)

This formula can be written as the product of two terms,

one that is a function of���� 
 
 
 � ��� only, and another

that is a function of� and�� only. This implies that

%� is asufficient statistic for the estimation of� : all the

information about the unknown parameter� that is car-

ried by the observations%�� 
 
 
 � %� is contained in the

variable%�. Or to put it another way, given%�, the other

%�’s don’t contain any additional information about� .

Hence, the best estimator (for any performance measure)

based on%�� 
 
 
 � %� is a function of%� only.

Our approach to estimating� will be to use the Max-

imum Likelihood (ML) method. Note that

'

'�
����
 �%�� 
 
 
 � %�� � 	%�
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(8)

The derivative of the log-likelihood function is called

the score, and the expectation of its square is called the

Fisher information. These quantities play a role in deter-

mining the variance of the optimal estimator, as we shall

see later.

It is clear from the formula above that the likelihood

is well defined for� in the interval� � �%� 	 � 	
��
��, is increasing on the interval�%�	�	�� �� �, and

decreasing on
 ���
��, where �� is the ML estimate. (It

is also clear that%� can’t be bigger than�
�.) Thus the

ML estimate �� can be readily computed by solving the

equation

( ��� ��

�������
���

�

� 	 � 	 � � 	� (9)

using standard bisection search. Before detailing the pro-

cedure, we note the following. The monotonic decreas-

ing function( ��� satisfies

�%� 	 �	 ���%� 	 ��
��

	 � 
 ( ���


 �%� 	 �	 ���%� 	 ��
��� 	 �%� 	 �	 ���

	 �


Each of the bounding functions is also monotonic de-

creasing in� . This readily implies that the ML estimate�� lies in the interval
��� ���, where��

�� � ��������������

�� �

�� � ��������������
�� 
 %� 	 �	 �


(10)

The binary search determination of�� then proceeds as

follows. Initialize the search range
��� ��� with the

values given in (10). Then repeat the following step until

�� 	�� 
 �. Set� � ��� 
�����; if ( ��� � 	,

set�� � � ; otherwise set�� � � .

4.3 Accuracy/Complexity trade-off

We now provide an asymptotic analysis of the quality

of the proposed ML estimate when� is large. This will

then be used to analyse the accuracy/complexity trade-

off of the Sample&Collide procedure, under the assump-

tion that samples returned by the CTRW module are in-

deed uniformly distributed.

Proposition 3 Let � � 	 be fixed. As � tends to infinity,

we have the following convergence in distribution:

%�
�

��
� �� 
 � � �
��� (11)

where ��� 
 
 
 � �� are i.i.d. random variables, that are

exponentially distributed with parameter 1.

Furthermore, for any positive �, we also have con-

vergence of the �-th moments:

�


��
%�
�

��

���
� � 
��� 
 � � �
���

�� 
 (12)

Proof: We prove the weak convergence property by in-

duction on�. We shall evaluate the following conditional

probability:

�
 �%� 	 %��� � )
�
� �%��� � *


�
���



where*
 � *, * is a fixed positive number, as� ��.

Let � � *

�
� 	 �� 	 ��, and� � )

�
� . Elemen-

tary combinatorics show that this conditional probability

equals

�

��
�� 	���� 	�	 �� � � � �� 	�	 � 
 ���

and hence:
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We thus have the following equivalent as� ��:

�


�
%�	%��� � )

�
�
��� %��� � *


�
�
�
� "�����

���


In turn, setting* �
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�+ and) �

�
��,
 +�	��+, we

get
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This establishes the claimed weak convergence property.

In order to deduce convergence of moments from

weak convergence, it is enough to show that for all� �

	, the distributions of variables
%��
�
� �� for varying

� are uniformly integrable (for a definition see e.g. [8]).

By a standard criterion for uniform integrability, this will

follow if for some positive-, it holds that
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 (13)

By a simple coupling argument (see [26] for background

on coupling), it can be shown that the distribution of%�

is stochastically dominated by that of the sum of� inde-

pendent copies of%�. Thus,
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It is therefore enough to prove (13) in the special case

where� � �. Write
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We bound the integrand in the last expression as follows.

Set� �
�
� ����+��-. Then,
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Combined with the previous expression, this yields
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where the equality is obtained by the change of variables

. � ����+��- 	 ��
�
� . The final term is finite and in-

dependent of� , which implies the announced uniform

integrability. �

This proposition allows us to evaluate the asymptotic

mean square error of the ML estimate:

Corollary 1 The ML estimate �� is such that

���

	�

�

��
�


� �� 	�
��

�
�

�
� (14)

The proof of this corollary is deferred to the Appendix.

It shows that, for a variance of the order of����, we

use%� samples, hence on average a number of samples

of the order of
�
��. The average number of messages

exchanged in a single sampling step is, assuming the

originator is randomly selected, equal to��, where� �

����
� �� is the average node degree. Thus, assuming

as in Section 4.1 that� equals� ���������, the aver-

age number of messages used by the Sample&Collide

method is of order�� ������
�
������, for an estimate

with relative variance of���. This presents an improve-

ment on the cost of the “inverted birthday paradox method”

of [7] by a factor
�
�.

Next, we show that no other unbiased estimator can

do substantially better.



Lemma 2 Let �� � ��%�� be an arbitrary estimator

with the property that �
 
��%��� � � . Then,

��� ���

	�

�

��
Var
 � ��� � �

�



The proof is in the appendix. It is a well-known result

in statistics that the maximum likelihood estimator is

asymptotically efficient (has asymptotic mean square er-

ror no larger than that of the best unbiased estimator),

but this is in the context where the parameter to be esti-

mated is fixed, while the number of samples increases to

infinity. In the setting we are studying, both the parame-

ter and the number of observations go to infinity; hence,

we have included a proof of optimality.

Remark 2 Observe that, since%�
� ����� � � (in proba-

bility and expectation), the bounds�� and�� in (10)

are both asymptotic to� , and differ only by a term of

order
�
� . Hence, instead of computing the maximum

likelihood estimator by binary search, we could equally

well use either�� or ��, or the asymptotically unbi-

ased estimator�� � %�
� �����. All three estimators are

within
�
� of the ML-estimator, and hence, all three are

asymptotically efficient. In fact, for ease of computation,

we use the estimator�� � %�
� ��� in the next section,

where we evaluate the algorithm.

We now compare the accuracy/cost trade-offs of our

two methods. Assume for ease of discussion that degrees

are constant, equal to�. Recall that for the Random Tour

method, for a cost of order�� , we have an upper bound

on the relative variance of��������. In order to match

the variances of the two methods, we need to set� �

������. Thus the ratio of costs of the methods becomes

cost�/� �
cost���%�

�
���������

�� ������
�
�����

�

�
��

������



Thus for large systems (large� ), or for accurate mea-

surements (large�), the Sample&Collide method should

be preferred.

5 Experiments

We first describe the setting of the experiments. We then

report results on the accuracy and cost of the two meth-

ods in a static environment, and finally consider dynamic

environments with both gradual and abrupt changes in

system sizes.

5.1 Setup and evaluation criteria

Our experiments are simulation-based. We consider over-

lay networks of exactly 100,000 nodes in the static case,

and comprising between 50,000 and 150,000 nodes in

the dynamic case. We consider two classes of topolo-

gies in the evaluation, which we refer to as balanced and

scale-free random graphs.

Overlays of the first type (balanced random graphs)

are generated so as to guarantee node degrees lying be-

tween 1 and 10, in the following manner. Sequentially,

each node� selects a random number����� between 1 and

10. It then selects����� target nodes at random, among

target nodes with a current degree less than 10. Then

����� undirected edges are created between node� and

its ����� targets, whose degree is increased by 1 at this

stage. The resulting average degree is between 7 and 8.

From the results of [18], we expect such graphs to have

large expansion, hence a favourable situation for our two

techniques. Existing overlay maintenance protocols aim

to maintain graphs with similar statistical properties; see

e.g. [22] and [16].

In scale-free networks on the other hand, the node

degree distribution follows a power law; there is evi-

dence that the Internet and the World-Wide-Web have

this property. We generate random scale-free graphs us-

ing the preferential attachment scheme of Barab´asi and

Albert [1]. Here, each new node added to the network

chooses its links prefentially targeting high-degree nodes.

The result is a random graph in which the probability

that a node has� neighbors decays like���. Thus, node



degrees are much more variable than in the balanced ran-

dom graph model.

In the dynamic scenarios, newly incorporated nodes

are connected via their own set of random targets, chosen

according to the rule for the corresponding model. Nodes

to be removed are selected uniformly at random, and the

remaining nodes that lose neighbors do not search for

new ones. The actual system size we report is always

that of the connected component to which the probing

node belongs.

We evaluate our algorithms for estimating system size

on the following metrics.Accuracy relates to the relative

error in the system size estimate and is clearly a basic cri-

terion. It can be improved by taking more measurements.

So there is a tradeoff with theOverhead, specified as the

number of messages required to obtain the system size

estimate. Depending on the application, a quick approxi-

mate estimate could be preferable to a more accurate one

which would take much longer to compute, and create

more overhead. This could also be the case when churn

is high, causing the system size to change rapidly. In that

case,Reactivity to changes is an important characteristic

of the algorithms. To evalutate this, we compute the time

to react to a growth or increase in the number of peers in

the system.

5.2 Results in static settings

5.2.1 Balanced random graphs

We did repeated runs on a 100,000 node overlay of the

following schemes: Random Tour (RT), Sample&Collide

(S�C) with � � �	, and S�C with � � �		. For both

instances of S�C, the timer value used in the sampling

module was fixed to� � �	. In view of our suggestion

to take� � � ���������, this is consistent with a spec-

tral gap�� larger than 2.3.

Figure 1 displays the empirical average of estimates

obtained by RT, as a percentage of the actual value, rang-

ing from one to 3000 estimates. The cost increases lin-

early with the number of runs, and the variance of the

averaged estimate decreases like the reciprocal of this

number. The three different curves correspond to three

distinct generated graphs on which the measurements

were launched. The curves plotted in Figure 2 display
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Fig. 1 Empirical averages of Random Tour estimate values

(as percentage of system size) over increasing numbers of

samples, on a 100,000 node overlay random graph.
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Fig. 2 Empirical averages of Random Tour esimate values (as

percentage of system size) on a sliding window of the last 200

samples, on a 100,000 node overlay random graph.

estimates obtained by taking the empirical average on a

sliding window of 200 samples. This choice of sliding

window size corresponds to a standard deviation of 0.2,

roughly consistent with an accuracy of +/-20%.

Figure 3 plots a run of S�C with � � �		. It shows

that S�C with � � �		 needs about an order of magni-

tude fewer samples to achieve the same accuracy as RT,

which is consistent with the theoretical analysis.
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Fig. 3 Sample and collide with� � ��� (no sliding window), on

a 100,000 node random graph.

The cumulative distribution functions (cdfs) of the

normalised estimate values for the three candidate meth-

ods, RT, S�C (�=10) and S�C (�=100) are displayed

on Figure 4. The steeper the curve, the less dispersed

the sample values. This is further illustrated by the sum-

mary statistics reported in Table 5.2.1. All three methods

provide samples with the correct mean value; RT has a

larger variance than S�C (�=10), which in turn has a

larger variance than S�C (�=100). Note how the vari-

ances of both S�C methods match the theoretical pre-

diction, and coincide with���.

We next report on the costs incurred in a single run of

each of the three methods. The cdfs of costs, normalised

by system size, are shown in Figure 5. It is clear that

the costs of S�C are far less variable than those of RT.

The mean and variance of normalised cost, reported in

Table 5.2.1, show that the cost of RT is both higher and

more variable. Note how S�C(�=100) incurs a cost per

run that is larger than that of S�C(�=10) by only a factor

of 3.27 (consistent with the ratio of
�
�		�

�
�	 � �
��

predicted by the analysis), for a variance reduction by a

factor of 10.

5.2.2 Scale-free graphs

Figures 6 and 7 depict the system size estimates as a per-

centage of the actual system size, on scale-free graphs

in the static scenario. The plots show that both the Ran-
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Fig. 4 CDF of estimate values, normalised by system size,

on a 100,000 overlay random graph, for Random Tour,

Sample	Collide and with� � �� and� � ���.
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Fig. 5 CDF of estimation cost in messages, normalised by

system size, on a 100,000 overlay random graph, for Random

Tour, and Sample	Collide with � � �� and� � ���.

Algorithm RT S	C, � � �� S	C, � � ���

Average value 1.01 1.08 1.01

Variance(value) 1.3 0.1 0.01

Average cost 7.16 1.08 3.27

Variance(cost) 8.06 0.1 0.02

Table 1 Summary statistics of sampling strategies: mean and vari-

ance of normalised estimate values, and mean and variance of nor-

malised estimate costs.

dom Tour and Sample&Collide methods achieve accu-

racy comparable to what they achieved in the balanced

random graph setting. This suggests that they are capa-

ble of dealing with considerable node heterogeneity in

providing unbiased estimates of system size.
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Fig. 6 Random Tour with sliding window (last 200), on a 100,000

node scale-free graph.
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Fig. 7 Sample and collide with� � ��� (no sliding window), on

a 100,000 node scale-free graph.

5.3 Results in dynamic settings

We did repeated runs on random graphs with varying

numbers of nodes of the two following procedures: Ran-

dom Tour (RT), and Sample&Collide (S�C) with � � �	

and� � �		. For space reasons we don’t show the results

for � � �	.

We considered three distinct dynamic scenarios:

– Gradual decrease, where the node population steadily

decreases from 100,000 to 50,000;

– Gradual increase, where the node population grows

regularly from 100,000 to 150,000;

– Catastrophic changes, where the initially node pop-

ulation of 100,000 is suddenly decreased to 75,000

and then to 50,000, and finally faces a flash crowd

with a sudden arrival of 25,000 nodes.

For both estimation procedures, we consider using slid-

ing windows over past sampled values. The size of the

sliding window conditions both the accuracy, with a vari-

ance estimate proportional to the reciprocal of the win-

dow size, and the reactivity of the estimates, which are

less reactive to changes for larger windows. For S�C

with � � �		, we choose not to average, i.e. take a slid-

ing window of size 1.

5.3.1 Random Tour

The performance of RT is illustrated on a shrinking net-

work (gradual decrease scenario) in Figure 8, on a grow-

ing network (gradual increase scenario) in Figure 9, and

on a network with catastrophic failures and flash crowd

arrivals in Figure 10. A sliding window of 700 samples

is used in all three cases.
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Fig. 8 Random Tour with sliding window (last 700) on shrinking

network; 100,000 nodes at beginning, 50% nodes removal from

run 3000 to run 8000.

The key observation to make from these figures is

the following. The overlay structure can be drastically

affected by population changes; in particular, node de-

partures may reduce the expansion parameter of the ini-

tial overlay, which would lead to a poorer accuracy of

the RT estimators. Nevertheless, in all three scenarios,

we observe that RT maintains a constant accuracy level

throughout the changes in system size. In summary, RT

is robust to changes in system sizes.



We also note, particularly in Figure 10, an increased

convergence time of the estimate due to the averaging

sliding window; obviously, the smaller the window, the

faster the convergence time but the higher the estimator

variance.
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Fig. 9 Random Tour with sliding window (last 700) on growing

network; 100,000 nodes at beginning, 50% nodes join from run

3000 to run 8000.
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Fig. 10 Random Tour with sliding window (last 700) on network

with catastrophic failures failures; 100,000 nodes at beginning, -

25,000 nodes at runs 1000 and 5000, +25,000 nodes at run 7000.

We should mention at this stage that in the simula-

tions reported here, we did not allow a departing node to

leave the system with the probing message. Such a situ-

ation may however arise in practice, for instance due to

node crash or improper departure from the overlay.

One way of handling such message loss at the node

initiating the measurement is to declare a probing mes-

sage to be lost if it has not been recovered in a given

duration since its launch. The corresponding timeout pa-

rameter needs to be sufficiently large so that only few

Random Tour packets time out while the corresponding

message is not lost, and still traveling through the sys-

tem. One could for instance set this time-out to the aver-

age trip time, plus a few multiples of the trip time stan-

dard deviation. Here trip time refers to real-world time,

as measured by the initiator’s clock. Both standard devia-

tion and average of trip time can be estimated adaptively

from past trip time measurements.

A similar solution could be applied to protect the

sampling procedure used in S�C against packet losses;

now the trip time is the time till the walk stops, rather

than the time till the walker returns to the originator.

5.3.2 Sample&Collide

The performance of S�C is illustrated on a shrinking

network (gradual decrease scenario) in Figure 11, on a

growing network (gradual increase scenario) in Figure

12, and on a network with catastrophic failures and flash

crowd arrivals in Figure 13.
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Fig. 11 Sample&Collide with� � ���, no sliding window, on

shrinking network; 100,000 nodes at beginning, 50% nodes re-

moval from run 30 to run 80.

Changes in system size could affect the performance

of S�C, because the quality of the random samples re-

turned by the sampling module deteriorates if the expan-



sion of the overlay is reduced. However, as we observe

on the three figures, the S�C estimator maintains a con-

stant level of accuracy. The analysis predicts a relative

variance of��� � ���		 for individual estimates, un-

der the assumption of perfect random sampling. Hence

theory predicts a relative standard deviation of 10% for

the estimates plotted on these figures, provided sampling

works well. The fluctuations on figures 11, 12 and 13 are

consistent with a 10% magnitude.

Thus we conclude that S�C, and its sampling mod-

ule, are robust to changes in system size, both gradual

and sudden. We emphasize here that the costs incurred

are much lower than for RT; a single point on Figure

11 costs on average 350,000 messages; a single point on

Figure 8 costs on average 560 millions messages, i.e.,

three orders of magnitude larger.
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Fig. 12 Sample&Collide with� � ���, no sliding window, on

growing network; 100,000 nodes at beginning, 50% nodes join

from run 30 to run 80.

6 Conclusion

We addressed the issue of estimating the size of large-

scale peer-to-peer overlay networks. We proposed two

peer counting approaches based on random walks. More

generally, these approaches may be used to count the

number of peers with given characteristics or to esti-

mate aggregate statistics. This is useful for basic overlay
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Fig. 13 Sample&Collide with� � ���,no sliding window, under

catastrophic failures: -25,000 nodes at runs 10 and 50, +25,000

nodes at run 70.

maintenance, and we expect it to be useful as well for

applications such as live media streaming.

The Random Tour method aggregates local node statis-

tics along a “random tour”, that is a random walk stopped

when it returns to its starting node. It is simple to imple-

ment, and is suitable for small to moderate systems. Its

cost scales linearly with system size, like several other

proposals we reviewed, such as gossip or random polling.

It does not incur the ACK implosion problem that ran-

dom polling techniques face. We analysed the properties

of the Random Tour estimator, and showed that it is un-

biased, and how its standard deviation is controlled by

the expansion parameter of the overlay.

The Sample&Collide method requires random sam-

ples of peers. We proposed a peer sampling algorithm

based on a Continuous Time Random Walk and showed

that it produces asymptotically uniform samples, in con-

trast to previous proposals which were biased towards

high degree nodes. We showed that its cost for a speci-

fied accuracy is characterised again by the expansion pa-

rameter of the overlay. We constructed a system size esti-

mate based on the number of samples required to observe

duplicated samples. We analysed in detail the asymptotic

properties of this estimate, and showed that it makes the

most efficient use of the information in the samples, by

achieving the smallest possible variance. To our knowl-

edge this achieves the best cost / accuracy trade-off of



proposals to date[30], with a cost scaling like the square

root of the system size, and the square root of the re-

quired accuracy (measured in reciprocal of relative vari-

ance). It is therefore a suitable candidate for large scale

environments. Random Tour can still be attractive in mod-

erately large systems, when one is interested in measur-

ing aggregates of node properties rather than just system

size.

Finally we evaluated our two schemes via simula-

tions, in both static and dynamic environments. The sim-

ulation results confirmed the theoretical analysis of the

two schemes. We found that both were robust to system

changes, both gradual and sudden.
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7 Appendix

7.1 Proof of Proposition 2

We shall in fact derive a more general result. To this end,

we need to introduce notation, and a key result on re-

versible Markov processes described in detail in [2].

Consider a continuous time Markov process���� on

a finite set� . Let ������� denote its stationary distri-

bution, assumed to be unique. Let0 be the infinitesimal

generator of the Markov process����. Denote the diag-

onal term!�� by 	!�. In particular, each visit to a given

state� lasts for an exponentially distributed random time

with mean!��� . Assume the process is reversible, and

denote by�� the spectral gap of the generator, i.e.	��
is the second largest eigenvalue of0. Let����� denote

expectation when the initial state of the process is dis-

tributed according to the stationary distribution�. Fi-

nally, let� �
� denote the first time� � 	 such that�� � �.

One then has:

Lemma 3 (Aldous-Fill [2], Ch. 3 p.21) For any state

� � � , one has

��	 ����
!���


 �������
�
� � 


�	 ��
����

� (15)

Given a Markov process���� as above, consider the

process�� 

�� which has the same state space� , vis-

its the states in the same order as the other process, but

whose visits to each state� last for a deterministic dura-

tion !��� , instead of an exponentially distributed random

duration. We denote by�� the firstentrance time of� 

�

into state�, that is the smallest� � 	 such that�� �� � and

�� � �. The previous lemma will be used to establish the

following

Proposition 4 For any process �� 

�� as above, started

at the beginning of a visit to state �, it holds that

�������
���

�������

 �

����

	
�
��
	����

��

���




 Var����


 �
�������

	
���������


�
	 �




 �

�����
�

(16)

Proof: The process�� 

�� is regenerative, with as regen-

eration points the entrances into state�. By the cycle for-

mula, it holds that

����� ���� �
��

� ��

� ��� 	 ����
������

�
����

�
� �

�������
�

It thus follows that

Var���� � ����������������	 ��������
�

 (17)

We shall now relate��������� to �������
�
� �, which will

allow us to use the previous lemma. One has the follow-

ing identity:

��������� � �������
�
� � 
 ��������	

�
���

��
�!�


 (18)

Indeed, this follows directly from the following identi-

ties.�������
�����


��������� �
�

��� ������������ 

� � 
��

�������
�
� � �

�
� ��� ���������

�
� ��� � 
��

���������� 

� � �� � ������	 �

���
�

���������� 

� � 
� � �������

�
� ��� � 
�	 �

���
� 
 �� �


The first two identities are obvious. We omit the details

of the proof of the last two identities for brevity; a for-

mal argument can be constructed by making use of Palm

calculus (see e.g. [6]).

By the cycle formula,������ � �����!��. Combined

with (17) and (18), this yields

Var���� �
�

��!�

�
��������

�
� � 


�

!�
	
�
�

��
�!�

�
�	 �

���!���
�



The proposition follows by combining this expression

with (16). �

Upon specialising Proposition 4 to the CTRW on a

graph�, for which�� � ��� , and!� � �� , one easily

shows that

�� ���	 ����� 	 �

���
	 �

��

 Var���� 
 ��

���

���
��
�

Proposition 2 follows, as Var��� � ��� Var����.

7.2 Proof of Lemma 1

By Lemma 8, page 10, Chapter 4 in [2], it holds that

��������� �� 
 �

�
�
��

�
�������	 ��
 (19)

Besides, as mentioned on Eq. (46), page 20, Chapter 3 in

[2], the function�� ������	 �� is completely monotone

(see p.19, chapter 3 in [2] for a definition), and thus, by

lemma 13, p. 20, ch.3 [2], it verifies

������	 �� 
 
����	�	 ���"�
��


Combined with (19), this yields the claim of the lemma.

7.3 Proof of Corollary 1

We have by the Cauchy-Schwarz inequality that

�
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 (20)

In view of the bounds (10),�� 	 �� is bounded in ab-

solute value by�� 	�� 
 %�. Hence,

�
 
� �� 	����� 
 �
 �%�
� � � ���� (21)

by (12). Convergence of moments (12) also guarantees,

in view of the expression for��, that

�
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�%�
�
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�
� �� (22)

while
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 ��
 (23)

Here, we have used the fact the exponential distribution

with parameter 1 has mean 1 and variance 1. Now, by

(22) and (23),

�
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������	�� � ��

�

 (24)

Substituting (21) and (24) in (20), we get

���

	�

�

��
�
� �� 	��� �

�

�
�

as claimed. �

7.4 Proof of Lemma 2

Let �� � ��%�� 
 
 
 � %�� be any unbiased estimator of� ,

i.e.,�
 
��%�� 
 
 
 � %��� � � . We shall use the Cram´er-

Rao inequality (see, e.g., [12, Theorem 12.11.1]) to ob-

tain a lower bound on the variance of this estimator. To

use this inequality, we need to compute the Fisher in-

formation (a measure of the ‘information’ that the ran-

dom vector�%�� 
 
 
 � %�� contains about the parameter

� ). The Fisher information���� is defined as the vari-

ance of the score function,

1��� �
'

'�
����
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 � %��


Therefore, it follows from (8) that
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Recall that the mean of the score function is zero (see,

e.g., [12, Section 12.11]). Thus, by (8),
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Substituting this in (25) yields
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Now observe using (12) and Markov’s inequality that,

for any fixed� � 	

�
 �%� � ��� 
 �����
�
 
%

� � 
 #���� (27)

for some constant# � 	 that depends on� but not on� .

Now, on the event that%� � �� ,
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whereas, on the event that%� 
 �� ,
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Hence,
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(28)

Now, the first term in the last expression above goes to

zero as� � � by (27), while the second term goes to

��� 
 �����	 ��� by (12), and well-known properties of

the exponential distribution. Hence, we have from (26)

and (28) that
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 �
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�



Hence, by the Cram´er-Rao bound [12, Theorem 12.11.1],

for any unbiased estimator�� � ��%�� 
 
 
 � %��, we have

Var� ��� � �

����
� ��	 �����

�
 ���	 ����� 


Since� is fixed, letting� decrease to zero yields the claim

of the lemma.


