
Congestion Notification and Probing Mechanisms for Endpoint

Admission Control ∗

A. J. Ganesh†, Peter Key‡, Damien Polis§and R. Srikant¶

January 5, 2005

Abstract

Recently, there has been much interest in admission control schemes that place the burden of admis-

sion control decisions on the end users. In these schemes, referred to as Endpoint Admission Control.

the decision to join the network is taken by the user, based on the probing of the network using probe

packets. Depending on the level of congestion, routers mark the probe packets and thus inform the user

of the state of the network. In this paper, we analyze three mechanisms for providing Endpoint Admis-

sion Control: virtual-queue marking, random-early marking and tail drop. For each scheme, we analyze

the probing duration necessary to guarantee the required QoS and achieve high link utilization. Our main

conclusion is that very few probe packets have to be sent when early marking is used, whereas tail drop

requires a large number of probe packets.

1 Introduction

Currently, the Internet offers a simple best-effort service where users are expected to adapt their transmission

rates in response to congestion signals from the network. Clearly, this is not sufficient to support real-time

applications that may require packet loss and delay guarantees, along with a fixed or minimum bandwidth

requirement. Diffserv addresses this issue by defining a small number of traffic classes, and then designing
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the network so that some guarantees are provided to calls according to the class they belong to. However,

to provide strict guarantees, some form of admission control is required. Alternatively, the admission of a

call to the network could be based on some measurement of the network state by the routers, and some form

of communication between the source and the routers to determine if the available resources are sufficient

to provide the expected QoS. In a manner similar to the telephone network, Intserv relies on signaling.

Reservation messages sent by the users are processed by the routers. If enough resources are available, the

call is admitted and the routers maintain a state for this call. Otherwise, the call is rejected. While providing

very good quality-of-service, Intserv obviously suffers from scalability problems, both due to the necessity

for the routers to maintain per-call states and due to the amount of signaling required.

In this paper, we study mechanisms for distributed admission control of sources that require a fixed

bandwidth from the network. Commonly referred to as Endpoint Admission Control, these schemes rely

on the availability of congestion information provided by the routers through dropping or marking (through

the ECN bit, for example) [12, 6]. We assume that ECN marking capability is available. When seeking

admission, a call sends a certain number of probe packets. Routers mark the probe packets depending on

their respective loads, according to a marking strategy. The destination then echoes the marked packets to

the source, which takes the appropriate admission decision (join or not) depending on the number of marked

probe packets and the QoS requirement. We emphasize that we only consider non-adaptive sources in this

paper. Extending the techniques to networks containing both adaptive and non-adaptive sources is a topic

for future research.

Related work in [14] looked at the design of optimal probing strategies, specifically on how long to probe

for and at what rate to probe for. In contrast to the current work, [14] focused on the probing strategy rather

than marking strategies, using a very simple model of marking behavior, ignoring packet-scale effects, and

emphasizing the effects of delayed feedback. One of their conclusions was that a critical system parameter

was the ratio of call holding time to round trip time — if this is large, then the effects of delayed feedback

are small. We shall assume we are operating such a regime, and hence can ignore feedback delay. In this

paper, we assume that when accepted a call does not renegotiate, and does not change its rate. The problem

of how frequently to reprobe, if a call is allowed to alter its rate, was considered in [3, 4].

There has recently been considerable work on probing schemes for measuring the available or spare

capacity on a bottleneck link; see [11], for example. Such schemes can also serve as the basis for admission

control. The advantage of our proposed scheme, in comparison, is that it requires fewer probe packets.

In the next section, the main features of an Endpoint Admission Control are described. In Section 3,
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we present a modeling framework for studying distributed control schemes. We model the traffic overhead

generated by probe packets, and show how the probabilities of system occupancy can be derived. We also

introduce a quantity called service objective, related to the quality of the service provided to the user and

to the network utilization, and propose that the design parameters of the mechanism should be chosen to

minimize this quantity. In Section 4 and 5, three marking mechanisms are examined through simulations and

through numerical results based on analytical expressions derived using a large system approximation. The

three mechanisms considered are tail drop, random-early marking (REM) and virtual queue. Conclusions

are provided in the last section.

2 Endpoint Admission Control

A network supporting QoS must guarantee a certain level of performance to the calls sharing the network.

Thus, a new call should not be admitted if the traffic it generates is likely to degrade the service offered

to the calls already sharing the resources. A router is in the best position to estimate the state of its links.

It can thus take accurate decisions regarding call admissions. For example, suppose that no more than n

calls can share a link for QoS requirements to be satisfied. An intelligent router, like one implementing

Intserv, always knows the number of calls sharing the link. In this case, the (n+1)th call is always blocked.

Such a centralized scheme can rely on an exact measurement of the number of calls. However, besides

intelligence in the router, signaling is required for the router and the source to exchange information. This

implies additional delays and overhead traffic.

As mentioned in the previous section, an alternative to centralized admission control is endpoint admis-

sion control. The performance of any admission control scheme is described by two parameters: the QoS

achieved by admitted calls and the fraction of capacity utilized by admitted calls. Clearly, there is a trade-off

between these quanitities. As noted above, a centralized scheme achieves the maximal capacity utilization

compatible with a specified QoS. An end-point admission scheme relies on packet marking to infer the cur-

rent call occupancy. Since it relies on imperfect information, it has to trade off between QoS and utilization:

aggressively blocking calls may achieve the desired QoS but at low utilization whereas a less aggressive

scheme would occasionally violate the QoS requirement. In the next section, we define a quantity called

service objective which is a weighted combination of utilization and the probability of QoS violation. We

use the service objective to evaluate a number of admission control strategies, both analytically (Section IV)

and through simulation (Section V).
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An endpoint admission control scheme can be broken down into three parts: the probing strategy, which

specifies the number of probe packets and the probing rate; the marking strategy, which describes the mark-

ing mechanism on the router side, and the decision strategy, which explains how the source relies on packet

marking to take its decision. These three strategies have to be designed in such a way that the performance

of an endpoint scheme approaches the performance of a centralized scheme.

2.1 Probing strategy

Each source sends a certain number of probe packets into the network. Marked probe packets carry informa-

tion about the state of the network. The network provides this information by either marking or not marking

each probe packet, depending upon the level of congestion. Intuitively, the more probe packets the source

sends, the more accurate will be the information it gathers. However, a large number of probe packets can

lead to a situation where probing itself may contribute to congestion, in addition to the congestion caused

by data traffic [6]. Further, depending upon the rate at which probe packets are generated, a large number of

probe packets may also require a source to wait for an unacceptably long time before it can make an admis-

sion decision. The parameter of interest in the probing process is the number of probe packets generated,

which will be denoted by w. Ideally, we would like a distributed admission control scheme which performs

well for small values of w. This would mean that a call does not have to wait very long before the admission

decision and that probing does not significantly add to congestion.

2.2 Marking strategy

The marking strategy has to be simple enough to minimize the amount of intelligence required in the routers.

Yet, marking must be done in a meaningful manner and must be tightly related to the current ability of the

network to satisfy the QoS requirement. If marking is not aggressive enough, too many calls will be admitted

into the network and the QoS requirement will not be satisfied. On the contrary, if marking is too aggressive,

calls might be denied access to the network while enough capacity is available to accommodate them without

violating the QoS requirement. The simplest strategy uses tail marking to signal impending congestion. In

the following sections, we will show the disadvantage of such a technique and we will consider more robust

marking strategies.

4



2.3 Decision strategy

The source has to make the best use of the information represented by marked probe packets. A simple

decision strategy is the following: if the number of marked probe packets is greater than some threshold,

the call is blocked; otherwise, it is admitted into the network [9]. We will assume such a decision strategy

in this paper.

3 Traffic and System Model

Consider a single link of capacity C (in packets per second) accessed by users who expect the delay expe-

rienced by a packet to be less than some value Dmax. This is equivalent to stating that the QoS guarantee

is violated if the number of packets in the queue exceed B, where B = DmaxC. Therefore, we assume that

the queue has a finite buffer of size B and packets entering when the buffer is full are dropped. The goal of

the network is to keep the packet drop probability (equivalently, the per-packet probability of violating the

delay constraint) below a certain threshold ε.

Call requests arrive according to a Poisson process of rate λ. A call seeking admission uses the following

decision strategy to decide whether or not to join the network: it sends w probe packets and joins the network

if and only if the number of marked probe packets is less than or equal to a threshold r. The choice of

the parameters w and r is discussed later. Each admitted call remains in the system for a duration which is

exponentially distributed with mean 1/µ. The number of packets generated by an admitted call in an interval

of length τ is a random variable with mean λpτ and variance σ2
pτ. Similarly, the number of probe packets

generated by probing calls in an interval of length τ are assumed to have mean λmτ and variance σ2
mτ. The

packet generation processes of distinct calls are mutually independent.

In the remainder of this section, we describe the system dynamics at two time scales: packet-level

time scale, where packets belonging to different admitted calls compete to access the resource and the

call-level time scale, where calls enter and leave the system at random instants. In Section 3.1, we calculate

packet marking and drop probabilities assuming a separation of time scales between the call-level and packet

level dynamics, so that the queue length process comes to equilibrium within the lifetime of a single call

occupancy state. With this assumption, the call blocking probability is simply a function of the current call

occupancy state, the function being determined by the probing, marking and decision strategies. (In the

centralized setting, this function only takes values 0 or 1. Loosely speaking, the goal is to come up with a

decentralized scheme that approximates this {0,1}-valued function.) We use this fact to describe the call-
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level dynamics in Section 3.3. We also introduce here the objectives of the admission control scheme and

relate it to the packet and call-level dynamics. Subsequently, we use these objectives to evaluate different

marking schemes.

First, some remarks on the model are in order. We have chosen a particularly simple model where there is

a single type of call. It is easy to generalize the analysis to consider J different call types with corresponding

packet generation parameters λ j
m and (σ j

m)2, j = 1, . . . ,J. We could further extend the model by assuming

that each call generates packets according to a Markov-modulated process, with the parameters λm and σm

depending on the state of the modulating Markov chain. We have not pursued these generalizations so

as not to burden the exposition or the notation. Intuitively, in a “large” system, we do not expect these

generalizations to alter our main conclusions, for the following reason. (It may be easier to follow this

argument after going through the derivation of the diffusion approximation in Section 3.3.) By the separation

of time scales assumption, the call blocking probability is a function of the current call occupancy state; in

the extended model, this would include the number of admitted and probing calls of each type, and the

state of each of the modulating Markov chains. If we consider a sequence of systems with C and λ going

to infinity but with their ratio fixed, then it can be shown that the dynamics of the call occupancy process

(suitably rescaled) converge to a fixed point on the fluid scale and to an Ornstein-Uhlenbeck process on the

diffusion scale. Suppose the fixed point corresponds to a proportion p j of calls being of type j, j = 1, . . . ,J.

(These proportions can be calculated easily from the type-specific call arrival rate and holding time if the call

admission probability does not depend on its type.) Then, in the vicinity of the fixed point, the average packet

arrival rate per call has mean λp = ∑J
j=1 p jλ

j
p and variance σ2

p = ∑J
j=1 p j(σ

j
p)2. The state influences the call

blocking probability only through the mean and variance of the aggregate packet arrival process generated

in that state. Hence, it suffices (for the purposes of the limiting analysis to be described in Section 3.3)

to consider a single call type with parameters λp and σ2
p. Similar arguments apply if these parameters

depend on the state of some underlying modulating Markov chain. With this justification, we now proceed

to describe the packet and call level dynamics for the single class model.

3.1 Buffer overflow and packet drop probability

We assume a separation between packet time-scale and call time-scale, i.e., we assume that the queue reaches

steady-state between successive call-level events, namely call arrivals and departures. Thus, for a given

traffic model, we can compute the probability that a buffer level B is exceeded, given that k calls are currently

admitted into the system and l calls are currently probing the system to decide whether or not to join the
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network. This quantity is denoted by p(k, l,B). As suggested in [13], we calculate p(k, l,B) using a diffusion

approximation [17, 10]. Recall that the number of packet arrivals generated by admitted calls in an interval

of length τ have a mean λpτ and variance σ2
pτ. Similarly, the number of probe packets generated by probing

calls in an interval of length τ have a mean λmτ and variance σ2
mτ. In particular, the number of packets

arriving in disjoint intervals are uncorrelated. Then, from the diffusion approximation, the state of the buffer

is approximated by a reflected Brownian motion with drift d := C− kλp− lλm and infinitesimal variance

v2 := kσ2
p + lσ2

m. The steady-state probability that the number of packets in the infinite-buffer queue exceeds

B is given by [17, 10]:

p(k, l,B) = exp
(

−2Bd
v2

)

. (1)

This is clearly an upper bound on the probability that the number of packets in the finite-buffer queue is equal

to the buffer size, B. (This can be seen by a coupling construction, whereby both models are constructed

on the same probability space of packet arrival times, starting from the same initial conditions. It is clear

that any given packet leaves the finite buffer queue no later than its infinite buffer counterpart - it may leave

earlier because it is dropped. Hence, the queue size in the finite buffer queue is no bigger than that in the

infinite buffer queue.) By ergodicity, the steady state probability that the buffer is full in the finite-buffer

queue is the fraction of time that the queue spends in this state. It is also equal to the fraction of arriving

packets that see the queue full, because the packet arrival process has been assumed to have independent

increments. Thus, the packet drop probability is bounded above by p(k, l,B).

3.2 Marking probability

We consider three different marking/drop mechanisms in this paper: tail drop, REM and virtual-queue

marking. In the rest of this subsection, we define each of these mechanisms and develop expressions for

computing the probability that a probing packet is marked under each of these mechanisms.

3.2.1 Tail drop

This is the simplest strategy, and can be implemented by end-systems with no support from the router. An

incoming packet is dropped if there are already B packets in the buffer when it arrives. Thus, the packet drop

probability is bounded above by p(k, l,B) computed above. Suppressing the dependence on B, we write this

as

pm(k, l) = exp
(

−2Bd
v2

)

. (2)
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Here, the call relies on acknowledgements from the receiver to detect dropped packets and make its call

admission decision accordingly.

3.2.2 Random-early marking (REM)

This technique is closely related to the RED mechanism proposed for the Internet [8]. An incoming packet

that sees b packets in the buffer upon arrival is marked with probability 1− e−γb [2]. In RED, a different

function of the queue length is used to compute the probability of marking.

Given that there are k admitted and l probing calls, the marking probability in an infinite buffer queue is

given by:

pm(k, l) =
∫ +∞

0
−∂p(k, l,b)

∂b
(1− e−γb)db, (3)

where p(k, l,b) is given in (1). Thus,

pm(k, l) =
γ

γ+ 2d
v2

. (4)

As with the tail drop scheme above, this is an upper bound on the marking probability in the finite buffer

queue; it will be a good approximation in the regime where buffer overflow is rare, which is the targeted

operating regime.

3.2.3 Virtual-queue marking

This marking strategy is based on the idea of virtual queue, a technique first explored by Gibbens and Kelly

[9] and later studied in [12, 15]. Routers maintain the state of a virtual queue, which corresponds to a buffer

of size B drained by a link of capacity θC, where θ < 1. Arriving packets are enqueued in the real queue, but

a counter which tracks of the contents of the virtual queue is incremented by one for each arriving packet.

The virtual queue is drained at rate θC. Incoming packets are marked if the counter denoting the number of

packets in the virtual queue is larger than B. The purpose of such a technique is to provide early congestion

indication: since the virtual queue is drained at a rate slower than the real queue, it will overflow faster than

the real queue.

The marking probability with a virtual-queue mechanism is the probability of exceeding a level B in the

virtual queue; hence, it is given by (1) with the expressions for v2 and d modified by replacing C with θC.

Thus,

pm(k, l) = exp

(

− 2Bθ
kσ2

p + lσ2
m

(θC− kλp− lλm)

)

. (5)
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3.3 Call-level dynamics

There are two types of calls in the network at any time: admitted calls that are sending data packets and

probing calls that are sending probe packets to decide whether or not to join the network. Let k(t) denote

the number of admitted calls and l(t) the number of probing calls in the system at time t. Recall that a user

seeking admission sends w probe packets and joins the network if and only if the number of marked probe

packets is less than or equal to a threshold r. Assuming that each probe packet is marked with probability

pm(k, l), independently of the others, the probability that a call is admitted when there are k admitted calls

and l−1 other probing calls in the network is given by

a(k, l) =
r

∑
j=0

(

w
j

)

pm(k, l) j(1− pm(k, l))w− j. (6)

Note that pm(k, l) depends on the marking strategy employed at the router. The aim is to choose the marking

strategy and the parameters w and r, and thereby the admission function a(k, l), so as to achieve performance

comparable to the centralized scheme which admits calls only when it can do so without violating the QoS

constraint. Observe that this admission control law makes the process (k(t), l(t)) stationary. It is also ergodic

because it regenerates whenever the system is empty, and the mean busy cycle length1 is finite. Indeed, it is

bounded above by the busy cycle length in the system in which every probing call is admitted at the end of its

probing period; this latter system corresponds to an M/G/∞ queue. Thus, the process (k(t), l(t)) possesses

a unique equilibrium distribution, denoted π(k, l).

Now, given ε > 0, let Aε = {(k, l) : p(k, l,B) < ε}, be the set of call occupancy states in which the

QoS requirement is satisfied. Here p(k, l,B), given by (1), is the packet drop probability. For notational

convenience, we assume that λp = λm and σ2
p = σ2

m, i.e., traffic generated by admitted and probing calls is

identical. Then p(k, l,B) depends only on k + l and B, and the set Aε has the form

Aε = {(k, l) : k + l ≤ ηε}, (7)

where ηε = max{k+ l : p(k, l,B) < ε}. Thus, the probability that the call-level system is in a state where the

QoS will be violated is given by

∆ε = 1− ∑
(k,l)∈Aε

π(k, l), (8)

while the link utilization is given by

u =
E(k)

C
=

1
C ∑

k,l
kπ(k, l). (9)

1A busy cycle begins when the first call enters an empty system and ends when the system again becomes empty.
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The distributed admission control scheme faces a multi-objective problem: keep ∆ε small, while making u

large. In other words, there is a tradeoff involved between high levels of QoS and high network utilization.

To study this tradeoff, we consider the following quantity, which we call the service objective:

sα := u−α∆ε,

where α is a parameter that determines the relative weight of QoS and link utilization.

The service objective sα can be computed if π(k, l) is known. But, in general, it is difficult to compute

this equilibrium distribution exactly. Therefore, we approximate the call-level dynamics by an Ornstein-

Uhlenbeck process and use this approximation to calculate sα. To this end, consider a family of systems,

indexed by their capacity C, and let C→ ∞. For notational convenience, we scale time so that λp = 1.

Without providing a formal proof, we will argue that the scaled behavior tends to a fluid limit, and the

deviations from this limit follow an Ornstein-Uhlenbeck process. The asymptotic limits can then be used as

an approximation for a finite system with a large, but fixed, value of C. Let C by the capacity of the system,

and λC the arrival rate of the Cth system, with the departure rate µ of the admitted calls left unscaled. Unlike

the earlier sections, we make the further assumption that the probing calls last for an (unscaled) exponential

time, with mean T where T = w/λp. Let NC(t) = (kC(t), lC(t)) be the number of active and probing calls

in the Cth system. We now consider the scaled process, nC(t) = (nC
k (t),nC

l (t)) = (kC(t)/C, lC(t)/C). Let

aC(k, l) be the acceptance probability given k active and l probing calls, and assume that aC(NC(t)) =

a(nC(t)), which holds in our examples, where the function a is a function of the normalized load.

Assume that nC(0)→ n(0) almost surely for some fixed n(0), the scaled process nC(t) converges uni-

formly on compact sets in t to the fluid limit process n(t), for t ≥ 0, which is the solution to the following

differential equations:

d
dt

nk(t) = nl(t)a(nk(t),nl(t))/T −µnk(t)

d
dt

nl(t) = λ− (1/T )nl(t) [a(nk(t),nl(t))

+ 1−a(nk(t),nl(t))]

= λ−nl(t)/T

The system converges to the unique equilibrium which solves

n̄l = λT (10)

n̄k =
λ
µ

a(n̄k,λT ) (11)
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Now consider the deviations from the fluid limit. Let n̂(t) be the vector of differences from the equilib-

rium, so ẑt = (nk(t)− n̄k,nl(t)− n̄l). Let D
= denote convergence in distribution. Then, as C → ∞, using the

results in [7], it can be verified that
√

Cẑt
D
= n̂t , where n̂t is an Ornstein-Uhlenbeck process, the solution to

the stochastic differential equation

dn̂t = Hn̂tdt +FdBt , (12)

where Bt is a four-dimensional Brownian motion. The matrix H is the linearization of the fluid equations

about the equilibrium, given by

H =





1
T n̄lak (n̄k, n̄l)−µ 1

T n̄lal (n̄k, n̄l)+ 1
T a(n̄l , n̄k)

0 − 1
T





=





λāk−µ λāl + ā/T

0 −1/T





where ak (nk,nl) denotes the partial derivative of a with respect to nk and similarly for al , and āk is shorthand

for ak evaluated a the equilibrium point (n̄k, n̄l). Note that these derivatives have negative sign. The matrix

F is given by

F =





√

n̄l ā/T −√µn̄k 0 0

−
√

n̄l ā/T 0
√

λ −
√

n̄l (1− ā)/T





=





√
λā −

√
λā 0 0

−
√

λā 0
√

λ −
√

λ(1− ā)





In steady state, the scaled difference vector n̂t has a multivariate normal distribution with mean zero and

covariance matrix Σ given by [1]

Σ =
∫ 0

−∞
e−uHFFT (e−uH)T du,

which is also the solution to the following Lyapunov equation:

ΣHT +HΣ+FFT = 0.

Performing the calculations

Σ =







−
(

λ(λ2T 2 al
2+ ā(1+T µ−λT ak+λT al))

(1+T µ−λT ak)(−µ+λak)

)

λ2T 2 al
(1+T µ−λT ak)

λ2T 2 al
(1+T µ−λT ak)

λT







and the variance of the total load is given by

λT +
2λ2T 2 al

(1+T µ−λT ak)

−λ
(

λ2T 2 al
2 + ā (1+µT −λT ak +λT al)

)

(1+µT −λT ak) (λak−µ)
.
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To calculate u, we solve the fixed-point equations (10) and (11) to find n̄k (which is approximately equal

to E(k) when C is large). To compute ∆ε, approximate (k, l) = NC(t) by Cn̄+
√

Cn̂(t) which has stationary

covariance matrix CΣ. Informally

∆ε = P{k + l > ηε}

= P
{

nC
k (t)+nC

l (t) > ηε/C
}

→ P
{

n̂k(t)+ n̂l(t) >
ηε√

C
−
√

C(n̄k + n̄l)

}

= Q
(

ηε√
C
−
√

C(n̄k + n̄l)

)

as C becomes large, where Q(·) is the complementary cumulation distribution of a Gaussian random variable

with mean 0 and variance 1.

Further details on the limit process and analysis can be found by adapting the arguments in [3, 4], which

looked at a different problem (rate adaptation for in-call probing) and derived a limiting functional law of

large numbers and functional central limit theorem.

4 Numerical Results

In this section, we present numerical results obtained using the analytical formulas presented above in

Section 3.3. In what follows, unless otherwise stated, we use the default parameters, ε = 0.01, α = 100,

c = 200 packets/sec., B = 20 packets, λp = 0.2 packets/sec., σ2
p = 0.8λp, λm = λp, σ2

m = σ2
p, and 1/µ = 10000

secs.

4.1 Tail Marking

Figure 1 shows the service objective for λ = 0.11, which corresponds to 10% overload (i.e., if there is no

probing and all calls are accepted, the mean packet arrival rate will exceed capacity by 10%). To achieve

the maximum value of the service objective, the required number of probe packets is close to 200, and the

achieved service objective is around 0.8. The maximum possible value for the service objective, achieved

by a centralized scheme, is approximately ηε/C; thus, it is always smaller than 1 and is close to 1 in a

large system. Figure 2 depicts the service objective in more heavily loaded regimes, with λ = 0.15 and

0.2 (corresponding to 50% and 100% overload). In these instances, tail marking fails to achieve a positive

service objective even with up to 300 probe packets. (Note that the trivial policy of rejecting all calls without
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Figure 1: Service objective for tail marking, for λ = 0.11 with default parameters, optimal r.
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probing achieves a service objective of zero.) In all of the cases, r = 0 turned out to be optimal, i.e., each

user will not join the network even if one probe packet is marked. As w increases, not only does the probing

traffic increase, but also the probability of rejecting a call increases.

4.2 Random Early Marking (REM)

To compute the service objective with REM-based marking, we have to first decide on a value for γ, and

then on a value for the threshold r corresponding to each value of w, the number of probe packets. Our

experiments indicated that the performance of REM-based marking is not too sensitive to the choice of

γ. In what follows, we use γ = 0.2. We report results for λ = 0.11, 0.15 and 0.2, corresponding to 10%,

50% and 100% overloading. For each value of w, the threshold r (of number of marked packets at which

a call is admitted) is chosen optimally for the worst-case λ, namely 0.2, and the same r is used to evaluate

performance for all values of λ.
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Figure 3: Service objective for REM as w is varied with γ = 0.2

Figure 3 shows how the service objective, s, varies with the number of probe packets, w, for γ = 0.2. In

contrast to tail marking, a small number of probe packets suffice to achieve good performance. The plots

show that a service objective of around 0.9 is achievable with 20 probe packets, while just 3 probe packets

suffice to achieve a service objective of 0.85. Moreover, the performance achieved is not sensitive to the

call arrival rate, λ, which will typically be unknown in applications. Thus, call admission based on REM

marking performs well even in a heavily overloaded system. This contrasts with the tail marking case, where

performance degrades substantially as the load increases. Note that the plots in this figure are not smooth
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Figure 4: Optimal choice of r for REM as w is varied with γ = 0.2 and λ = 0.2.

due to the fact that w and r take only discrete values. Figure 4 shows how the optimal choice of r (for

λ = 0.2) varies with w.

4.3 Virtual queue marking

For virtual-queue marking, we have to first decide on the value of θ. Roughly speaking, the maximum

utilization achievable by such a scheme is around θ; when the packet arrival rate begins to exceed θC, the

virtual queue fills up and blocks the admission of new calls. This motivates choosing θ close to 1. On the

other hand, a smaller value of θ reduces the probability that the number of calls in the system will exceed

the threshold, ηε, at which QoS is violated, i.e., calls suffer a packet drop rate in excess of ε. For our

default parameters, we calculated ηε = 966, which corresponds to a capacity utilization of 0.966. We chose

θ to be slightly smaller, at 0.95. This choice was adequate to ensure that the QoS violation probability,

∑k+l>ηε π(k, l), was very small and did not degrade the service objective. A smaller value of θ would share

this property, but achieve correspondingly lower utilization. A larger value of θ runs the risk of violating

the QoS requirement more frequently, which is heavily penalized as the parameter α is set to 100. The

discussion below pertains to θ = 0.95.

As in the previous subsection, we consider call arrival rates λ = 0.11, 0.15 and 0.2. For fixed values

of θ and w, we find the value of r that maximizes the service objective in the worst-case scenario, namely,

λ = 0.2. The results are shown in Figure 6. The same value of r is then used to evaluate all 3 scenarios.

Figure 5 presents the service objective as a function of the number of probe packets, w, for different values
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Figure 5: Service objective for VQ for θ = 0.95 and different values of λ.
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Figure 6: Optimal choice of r for VQ as w is varied, with θ = 0.95 and λ = 0.2.
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of the call arrival rate, λ. The plots show that a small number of probe packets suffice to achieve a very

good service objective, close to what a centralized scheme could achieve. Moreover, the performance of the

scheme is robust to wide variations in the actual call arrival rate, λ. This is similar to REM and contrasts

vividly with the tail marking case.

5 Simulation Results

In this section, we complement the numerical results in the previous section with results from packet sim-

ulations. The conclusions regarding the relative performance of the three marking schemes are similar, so

we only present a representative sample of the simulation results here. The simulations are slotted-time

simulations with each slot equal to 1 sec. and the rest of the parameters are as follows: the capacity of the

link is 200 packets/slot, with B = 20 packets. Each source sends 1 packet in a slot with probability 0.2 and

none with probability 0.8. The holding time of a call is 10,000 slots. The parameter α is chosen to be 100.

These parameters are identical to those chosen in the previous section.
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Figure 7: Service objective for REM as a function of the number of probe packets.

In Figures 7 and 8, the performance of REM and VQ-based marking schemes are shown for three

different values of λ : 0.11, 0.15 and 0.2 calls per slot. The figures plot the service objective as a function of

the number of probe packets. It is clear from the figures that near-optimal performance can be achieved with

as few as two to four probe packets. The corresponding results for tail marking are shown in Figures 9 and

10. The first figure shows the performance for λ = 0.11 and the second figures shows the performance for
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Figure 8: Service objective for VQ as a function of the number of probe packets.
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Figure 9: Service objective for tail marking as a function of the number of probe packets, λ = 0.11
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Figure 10: Service objective for tail marking as a function of the number of probe packets,λ is 0.15 and 0.2.

λ = 0.15 and λ = 0.2. The results for tail marking are shown in two separate figures since the performance

is very different for the different values of λ, thus making it difficult to show the results on the same scale.

From the figures, it is clear that when λ = 0.11, it requires about 300 to 400 probe packets to achieve a service

objective of 0.9. When λ = 0.15 or λ = 0.2, even when 1500 probe packets are used, the service objective is

negative! Thus, the simulation results strongly suggest that some form of active queue management-based

marking is necessary to offer real-time services over the Internet.

5.1 Markovian Sources

All of our simulation results so far deal with sources whose traffic statistics are not correlated over time.

Now, we consider Markovian On-Off sources which exhibit correlation over time and compare the results

for such a model with the heavy-traffic models used earlier. Specifically, each source is now modelled as a

Markov chain ξn on the state space {0,1}, with state 0 denoting Off and 1 denoting On. We denote by

P =





1− p p

q 1−q



 ,

the transition matrix of this Markov chain, and by π its invariant distribution. We assume that the Markov

chain is irreducible and aperiodic, i.e., p,q ∈ (0,1). Now, π = (q/(p+q), p/(p+q)). If the source is On in

some time slot, then it transmits 1 packet in that slot with probability r and no packet with probability 1− r.

If it is Off, it transmits no packets. We assume below that the Markov chain is in stationarity.
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Let Xn denote the number of packets transmitted in time slot n, and let Sn = X1 +X2 + . . .+Xn. We want to

compute E[Sn]/n and Var(Sn)/n to relate it to the Gaussian approximation used earlier. These computations

are well-known, but we provide it below for the reader’s convenience. It is obvious that EX1 = pr/(p+q),

and so
1
n

E[Sn] =
pr

p+q
∀ n = 1,2, . . . (13)

In order to compute Var(Sn), we need to compute the covariances of Xi and X j. By stationarity, this only

depends on |i− j|. Hence, we compute Cov(X0,Xk) for k ≥ 0. Now

E[X0Xk] = P(X0 = 1,Xk = 1) = r2P(ξ0 = 1)P(ξk = 1|ξ0 = 1)

=
pr2

p+q
P(ξk = 1|ξ0 = 1). (14)

But P(ξk = 1|ξ0 = 1) is just the (1,1) entry of the k-step transition probability matrix, Pk. Tedious but

straightforward calculations yield that

Pk =
1

p+q





q+ p(1− p−q)k p− p(1− p−q)k

q−q(1− p−q)k p+q(1− p−q)k



 .

Hence, by (14),

E[X0Xk] =
pr2

(p+q)2 [p+q(1− p−q)k], Cov(X0,Xk) =
pqr2(1− p−q)k

(p+q)2 . (15)

We can now calculate Var(Sn). We have

Var(Sn) =
n

∑
i, j=1

Cov(Xi,X j) =
n

∑
k=0

(n− k)Cov(X0,Xk)

=
pqr2

(p+q)2

n

∑
k=0

(n− k)(1− p−q)k. (16)

We are interested in Var(Sn)/n, for large n. Since p and q are in (0,1) by assumption, 1− p−q lies in

(−1,1). Hence, ∑n
k=0(1− p−q)k and ∑n

k=0 k(1− p−q)k both remain bounded by finite constants for all n.

Thus, by (16),

lim
n→∞

1
n

Var(Sn) =
pqr2

(p+q)2 . (17)

For our earlier analysis, we modelled the packet arrival process as Gaussian with mean λpt and variance

σ2
pt over a time interval of length t. The Markov modulated process described above can be approximated

by such a Gaussian process if we take

λp =
pr

p+q
, σ2

p =
pqr2

(p+q)2 . (18)
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For our numerical results based on the analytical model, we had chosen λp = 0.2 and σ2
p = 0.16. For the

Markov model, we choose p = 0.15, q = 0.225 and r = 0.5 so that it has the same long-term mean λpt and

variance σ2
pt as in the Gaussian model. The simulation results using these parameter choices are shown in

Figures 11, 12, 13 and 14. These figures show that, for tail marking, when the arrival rate is high, even with
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Figure 11: Service objective for tail marking as a function of the number of probe packets with Markovian

traffic sources.

a very large number of probe packets, the service objective remains negative (Figure 12). For low arrival

rates, the service objective can be be made as high as 0.9, but the number of probe packets required is fairly

large. On the other hand, for REM and VQ-based marking, with a very small number of probe packets, we

can achieve service objective values that are close to 1 even for high arrival rates (Figures 13 and 14). These

figures were obtained after tuning them for best performance for the case of λ = 0.2 in the Bernoulli source

case and using the same parameter values for the Markov model. Thus, the figures also show the robustness

of the REM and VQ mechanisms, while the tail marking results show a lack of robustness to arrival rate.

These results are quite similar to the results for the Bernoulli source model indicating the source’s correlation

over time does not play a significant role in the performance of the admission control schemes under the

different marking mechanisms.
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Figure 12: Service objective for tail marking as a function of the number of probe packets with Markovian

traffic sources.
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Figure 13: Service objective for REM as a function of the number of probe packets with Markovian traffic

sources.
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Figure 14: Service objective for VQ as a function of the number of probe packets with Markovian traffic

sources.

6 Conclusions

In this paper, we have presented a framework for studying marking mechanisms to support distributed admis-

sion control for real-time traffic sources that do not adapt their transmission rate in response to congestion.

We used a performance measure that trades off between utilization and QoS to characterize the performance

of a congestion indication mechanisms. We presented a simple analytical framework to compute the perfor-

mance measure.

Using this framework as well as simulations, we analyzed three particular marking strategies: tail drop,

random-early marking and virtual-queue marking. Our conclusions are as follows:

• Tail drop requires a large number of probe packets to approach the performance of a centralized

scheme.

• Random-early marking and virtual-queue marking approach the performance of a centralized scheme

with only very few probe packets.

• Random-early marking and virtual-queue marking are highly robust to the actual load on the system,

whereas the performance of tail drop degrades rapidly in a heavily overloaded system, where call

admission is most needed.
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The results in this paper suggest that both real-queue-based marking (REM) and virtual-queue-based

marking perform equally well for admission control of non-adaptive sources. This is in contrast to the

results in [16] which shows that virtual-queue marking is superior for achieving low queueing delays in

networks with congestion-controlled sources. Evidently, the lack of transmission rate adaptation through

congestion control leads to this difference in the performance of real-queue-based marking schemes. Further,

in simulations not shown, other early marking schemes (such as tail marking at a lower buffer level) also

seem to perform well in the context of distribution admission control. Thus, it appears as though early

marking is more important than the actual mechanism used to implement such a congestion indication

mechanism.
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