
On the connectivity and diameter of small-world
networks

Ayalvadi Ganesh∗ Feng Xue†

October 15, 2007

Abstract

We consider two different models of small-world graphs on nodes whose locations
are modelled by a stochastic point process. In the first model, each node is connected
to a fixed number of its nearest neighbours, while in the second, it is connected to
all nodes located within some fixed distance. In both models, nodes are additionally
connected via shortcuts to other nodes chosen uniformly at random. We obtain suf-
ficient conditions for connectivity in the first model, and necessary conditions in the
second. Thereby, we show that connectivity is achieved at a smaller value of total
degree (nearest neighbours + shortcuts) in the first model. We also obtain bounds on
the diameter of the graph in this model.

Keywords: Random graphs, small-world models, connectivity.
Subject classification: 05C80

1 Introduction

A classical random graph model introduced by Erdős and Rényi [5] consists of n nodes, with
the edge between each pair of nodes being present with probability pn, independent of all
other edges. This model, which is known as the Bernoulli random graph model, has been
extensively studied, and many of its properties are well understood. For instance, Erdős
and Rényi showed that this random graph model exhibits a sharp threshold for connectivity
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at pn = log n/n. Precisely, if npn − log n → c as n → ∞, for some constant c, then the
probability that the graph is connected goes to exp(− exp(−c)). Note that (n− 1)pn is the
expected node degree, so the result says that there is a sharp threshold for connectivity at
an expected node degree of log n. A number of variants of the above model, such as random
regular graphs, have also been studied extensively. A feature common to these models is
that the nodes are exchangeable.

Recently, there has been considerable interest in a different class of models, namely spatial
or geometric random graphs; see, for example, [9, 11]. Here, the nodes are associated with
co-ordinates in a Euclidean space, and the probability of an edge between a pair of nodes is
typically some function of the distance between them (or, more generally, of their spatial co-
ordinates). The node positions are also the realisation of some random process. One example
is obtained by placing n nodes uniformly on the unit square and putting an edge between
any pair of nodes if the distance between them is smaller than a threshold rn. It was shown
by Penrose [10] that the probability of connectivity goes to zero if πnr2

n − log n → −∞, and
goes to 1 if πnr2

n− log n → +∞. Similar results were also obtained by Gupta and Kumar [6]
in the context of a model of wireless networks.

Since πnr2
n is the expected degree of each node (except near the edges of the square), we

see that there is a threshold for connectivity at a mean degree of log n, which is the same
as in the Bernoulli random graph. A somewhat different model was studied in Xue and
Kumar [13]. Here, each node is connected to its mn nearest neighbours; more precisely, the
edge between u and v is present if either u is one of the mn nodes closest to v or v is one of the
mn nodes closest to u. The authors show for this model that the probability of connectivity
goes to 1 if mn > 5.1774 log n and to 0 if mn < 0.074 log n. These results were improved by
Balister et al. [1] who showed that mn ≥ 0.3043 log n is necessary and mn > 0.5139 log n is
sufficient for connectivity (with probability going to 1 as n →∞). It is not known whether
there is a threshold for connectivity at c log n for some constant c. We remark that in the
above models, the same results hold if we consider a Poisson point process of intensity n
instead of n points uniformly distributed on the unit square.

One of the motivations for interest in spatial random graphs is their applicability to
wireless communication networks [6, 13]. Spatial random graphs on high-dimensional spaces
might offer good models for social networks, which are poorly described by Bernoulli random
graphs. Another class of models that has attracted attention in the latter context are so-
called “small world networks”. One commonly used way to model such networks is to
consider nodes as located at the points of a (finite or infinite) d-dimensional lattice, and to
augment the lattice with shortcuts, which are additional edges between pairs of nodes. The
shortcut between a pair of nodes is present with a probability that is typically some function
of the distance between them. Since the lattice is already connected, interest in these models
has focused on how the diameter is reduced by the presence of shortcuts (see, for example,
[2, 4, 12]), and also on whether efficient decentralised routing is possible [7].
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In this paper, we consider two variants of the above small world model. We model node
locations by a stochastic point process, e.g., iid uniform on a square. Nodes are connected
by nearest neighbour links, either to a fixed number of nodes closest to them, or to all
nodes within a fixed distance. In addition, nodes are joined by shortcuts to other nodes
chosen uniformly at random. We are interested in how connectivity depends on the number
of nearest neighbours and the number of shortcuts. In the next section, we address this
question after providing a precise definition of the models. We also obtain bounds on the
graph diameter of the small-world network in the connected regime.

2 Main Results

We consider two different models of a small-world network, denoted Model A and Model B.
In each case, we consider a sequence of random networks indexed by a parameter n ∈ IN,
which we call the size of the network. We say that a property Q holds with high probability
(whp) if the probability that a random network of size n possesses the property Q goes to 1
as n tends to infinity. In all cases, we consider undirected graphs.

Model A: There are n nodes, and each node chooses mn other nodes to connect to, called
its nearest neighbours. In addition, a shortcut is present between each pair of nodes with
probability pn, independently of all other edges. (If two nodes are connected by both a
nearest neighbour edge and a shortcut, we replace the multiple edge by a simple one.)

Note that the “nearest neighbour” relation need not be symmetric. An edge is present
between nodes x and y if either y is one of the mn nearest neighbours of x or x is one of the
mn nearest neighbours of y or there is a shortcut between them. The model is parametrised
by the sequences mn and pn, and shortcuts are the only source of randomness in this model.
The terminology of “nearest neighbour” may be misleading: as far as our results below are
concerned, it only matters that each node connects to mn other nodes, chosen arbitrarily.
However, we have chosen to use this term for concreteness, and because it was motivated by
applications.

Example: Suppose that the nodes are located uniformly at random on the unit square.
In this case, Model A incorporates elements of both Bernoulli random graphs and the Xue-
Kumar model, and our results, stated in Theorem 1 below, apply to every realisation of the
node locations.

Model B: There are n nodes, located uniformly at random on the torus obtained by identi-
fying the opposite sides of the square [−

√
n/2,

√
n/2]2 of area n centred at the origin. Each

node is connected to all nodes within a radius rn and, in addition, shortcuts are present
between each pair of nodes with probability pn, independent of all other edges.

The model is parametrised by the sequences rn and pn. It combines elements of Bernoulli
and spatial random graphs. Observe that the shortcut distribution is the same in Models A

3



and B. The main difference between the models is thus that the number of nearest neighbours
is random in Model B but deterministically bounded below in Model A. We shall see that
this greatly improves connectivity in Model A.

We consider a sequence of random graphs indexed by n. We denote by Cn the event that
the nth random graph is connected, We denote by Dn the diameter of the graph, namely the
maximum over all node pairs of the length of the shortest path between them, in terms of
number of edges. We take Dn = ∞ if the graph is not connected.

Theorem 1 Suppose that the sequences mn and pn are such that

mn

n
→ 0 as n →∞, and (mn + 1)npn > 2(1 + δ) log

n

mn + 1
(1)

for some δ > 0 and all n sufficiently large. Then, for the random graph described in Model
A above with parameters mn and pn, we have

lim
n→∞

P (Cn) = 1, lim
n→∞

P
(
Dn ≤ 7

(
log

n

mn + 1
+ 1

))
= 1, (2)

Conversely, if

mn

n
→ 0 as n →∞, and (mn + 1)npn < (1− δ)

(mn + 1

mn + 2

)2
log

n

mn + 1
(3)

for some δ > 0 and infinitely many n, then there is a sequence of node locations such that
liminf

n→∞
P (Cn) = 0.

Remarks:

1. If mn = 0, then Model A reduces to the classical Bernoulli model of Erdős and Rényi.
In this case, our upper bound on the required node degree is conservative by a factor
of 2, and the lower bound by a factor of 4.

2. If mn →∞ as n →∞, then the upper and lower bounds differ by essentially a factor
of 2.

3. Note that mn is the number of neighbours a node has in terms of the spatial graph,
and (n− 1)pn the number of neighbours it has via shortcuts. Thus, the conditions of
the theorem say that the product of these quantities must be roughly log n in order
to ensure connectivity. For example, it suffices if mn = (1 + δ)

√
2 log n and npn =

(1 + δ)
√

2 log n.
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Theorem 2 Suppose that the sequences rn and pn are such that

πr2
n + npn = log n + cn, and lim

n→∞
cn = c. (4)

Then, the number of isolated nodes in the random graph generated by Model B with para-
meters rn and pn converges in distribution to a Poisson random variable with mean e−c.
Moreover, if limn→∞ cn = −∞, then the random graph generated by Model B is disconnected
with high probability.

Remarks:

1. Observe that πr2
n +npn is the mean node degree, so the theorem says that the graph is

disconnected if the mean node degree is much smaller than log n, as is the case for both
Bernoulli and spatial random graphs. Thus, in this model, there is no synergy between
nearest neighbour and shortcut links, at least as far as connectivity as concerned.

2. We recover the necessary condition for connectivity in spatial random graphs by setting
pn = 0, and in Bernoulli random graphs by setting rn = 0.

3. The second claim of the theorem, that the random graph is disconnected whp if cn →
−∞, can be proved directly using the second moment method. Specifically, if W
denotes the number of isolated nodes in this random graph, we can use the inequality
P (W = 0) ≤ Var(W)/(EW )2, which follows from Chebyshev’s inequality, to show that
P (W = 0) → 0. (The variance of W can be bounded by bounding the probability that
pairs of nodes are isolated.) It then follows that there is at least one isolated node, and
hence the graph is disconnected whp. Instead, we shall obtain the result as a corollary
of the first claim, which provides more detailed information regarding the number of
isolated nodes. In particular, it shows that if cn → c, then the probability of being
connected is asymptotically bounded by e−e−c

.

3 Proofs

Proof of Theorem 1: Observe that under Model A, each node belongs to a connected
component with at least mn + 1 nodes, since it is connected to mn nearest neighbours. The
intuition behind the proof is that, for the graph to fail to be connected, there must be an
isolated component of at least this size. The proof will proceed by reducing the small world
graph to a Bernoulli graph between clusters of size approximately mn.

Given a graph G, we divide the nodes into disjoint groups as follows:

1. For each node x, let Cx consist of x and its mn nearest neighbours. We call Cx the
disc centred at x. Initially, the discs Cx are coloured black.
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2. Considering the n black discs in (any) sequence, colour each disc red if it does not
intersect a disc already coloured red. If a disc Cx gets coloured red, we shall refer to it
as the red disc centred at x.

3. Pick the red discs in any sequence. Say the red disc centred at x is chosen. Consider
the nodes in all black discs overlapping it, if any. Group these nodes into disjoint sets
of size mn +1 and a residual set with mn or fewer nodes. Call each group of size mn +1
a green disc, and absorb the mn or fewer residual nodes into the red disc. With some
abuse of terminology, we shall refer to the (possibly) enlarged red disc and related
green discs as all being centred at x.

The procedure terminates with nodes being grouped into disjoint discs Ak, k = 1, 2, · · · , Kn,
each of which is coloured either red or green. All green discs are of size mn + 1 and all red
discs are of size between mn + 1 and 2mn + 1.

Observe that any two nodes u and v in the red disc centred at x either come from the
black disc that was centred at x or they come from black discs that were centred at y and
z and overlapped the black disc centred at x. (Possibly, y = z or y = x or z = x). In the
former case, the graph distance (number of edges along a shortest path) between nodes u
and v in G is at most 2; in the latter case, it is at most 6 (since, if the discs centred at x
and y intersect, there is a node a which is a neighbour of both x and y; thus, there is a path
u → y → a → x → b → z → v for some nodes a and b). Either way, all nodes in the same
red disc belong to the same connected component in G, considering only nearest-neighbour
edges.

Likewise, any two nodes u and v belonging to the same green disc centred at x come from
black discs centred at y and z (possibly, y = z) which overlapped the black disc centred at
x. Hence, these nodes belong to the same connected component in G and are at most graph
distance 6 apart (there is a path u → y → a → x → b → z → v for some nodes a and b).

In order to show that G is connected, it now suffices to show that the red and green
discs form a connected graph when considering only shortcut edges. We shall do this by
defining a Bernoulli graph G̃, as follows. Recall that each red disc has between mn + 1 and
2mn + 1 nodes. We first construct a subgraph G1 of G by deleting all but mn + 1 nodes in
each red disc. (It doesn’t matter which mn + 1 nodes are retained, so long as the choice is
independent of the presence of edges in G. We can think of the edges of G1 as being realised
after the nodes are chosen.) In G1, each disc, red or green, has exactly mn + 1 nodes, and if
G1 is connected, then clearly so is G. Next, construct G̃ by replacing each disc Ak in G1 by
a single node k, and putting an edge between nodes j and k if there is at least one shortcut
edge between a node in Aj and a node in Ak, in G1. Clearly, G1 is connected if G̃ is. But G̃
is a Bernoulli random graph on Kn nodes, with edge probability

p̃n = 1− (1− pn)(mn+1)2
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≥ 1− e−(mn+1)2pn

≥ 1− exp
(
−2(1 + δ)

mn + 1

n
log

n

mn + 1

)
, (5)

where the last inequality follows if (1) is assumed to hold. Moreover, Kn, the number of
nodes in G̃, lies between n/(2mn + 1) and n/(mn + 1). Hence, it follows from (5) that

p̃n ≥ 1− e−(1+δ) log Kn/Kn . (6)

Now, Kn → ∞ as n → ∞ by the assumption that mn/n → 0. Hence, we obtain from (6)
that

p̃n ≥ (1 + δ′)
log Kn

Kn

, (7)

for any δ′ ∈ (0, δ) and all n sufficiently large. But p̃n is the edge probability in G̃, which
is a Bernoulli random graph on Kn nodes. Hence, by the results of Erdős and Rényi [5],
P (Cn) → 1 as n →∞. This establishes the first claim in (2).

Moreover, it follows from [3, Theorem 10.17] that the Bernoulli random graph G̃ on Kn

vertices satisfies

P
(

diameter(G̃) ≤ log Kn + 6

log log Kn

+ 4
)
→ 1,

as Kn →∞. Since Kn ≤ n
mn+1

, and Kn →∞ as n →∞, it follows that

P
(

diameter(G̃) ≤ log
n

mn + 1

)
→ 1 as n →∞.

Recall that each node in G̃ corresponds to a connected cluster in G, and the diameter of this
cluster is at most 6. Thus, diameter(G) ≤ 7 diameter(G̃) + 6, and the second claim in (2)
follows.

Conversely, consider a sequence nk, k ∈ IN such that (3) is satisfed along the sequence
nk, mnk

, pnk
, for some δ > 0. First, we argue that nk nodes can be partitioned into sets of

size either m̃nk
+ 1 or m̃nk

+ 2, where the m̃nk
are such that (m̃nk

+ 1)/(mnk
+ 1) → 1 as

k →∞. To see this, write

nk = q(mnk
+ 1) + r, where 0 ≤ r ≤ mnk

, (8)

and q and r are integers. Now define s = br/qc to be the integer part of r/q, and let
b = r − qs and a = q − b. Then a and b are integers, 0 ≤ b < q and a > 0. Moreover,
r = qs + b = as + b(s + 1). Hence, we can rewrite (8) as

nk = a(mnk
+ s + 1) + b(mnk

+ s + 2), where a + b = q.

Defining m̃nk
= mnk

+ s, we see that nk nodes can be partitioned into q sets, each of size
m̃nk

+ 1 or m̃nk
+ 2.
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Moreover, observe from (8) that

q ≥ nk

mnk
+ 1

− 1, and so s ≤ mnk
(mnk

+ 1)

nk −mnk
− 1

.

Hence, by (3), s
mnk

+1
tends to zero as k tends to infinity; consequently,

m̃nk
+1

mnk
+1

tends to 1, as

claimed above.

We now consider the following deterministic sequence of node configurations. The con-
figuration on nk nodes consists of clusters of size m̃nk

+1 or m̃nk
+2, where m̃nk

is defined as
above. The nodes within each cluster are within Euclidean distance εnk

of each other, and
any two nodes in distinct clusters are more than εnk

apart, for some positive constant εnk
.

It is clear that such an εnk
and node configuration can be found.

Denote the clusters by A1, A2, . . . , Aqk
. There are clearly no nearest neighbour edges

between clusters, only shortcuts. Let G1 denote the graph on qk nodes obtained by replacing
each cluster Ai by a single node i, and putting an edge between nodes i and j only if there is
a shortcut in G between clusters Ai and Aj. Clearly, G is connected only if G1 is (though the
converse may not be true as the clusters Ai may not be connected). Now, conditional on the
cluster sizes, there is a shortcut (at least one) between clusters Ai and Aj with probability

1− (1− pnk
)|Ai|·|Aj | ≤ p̃nk

:= 1− (1− pnk
)(m̃nk

+2)2 . (9)

The presence of shortcuts between clusters are not independent events because the existence
of one shortcut biases the conditional distribution of the size of the cluster, and thereby the
probability of other shortcuts from that cluster. Hence, G1 is not a Bernoulli random graph.
However, this problem is easily circumvented, as follows.

First, we augment each cluster of size m̃nk
+ 1 in G by adding a pseudo-node which

is within distance εnk
of all nodes in this cluster. Shortcuts are present between pseudo-

nodes and other nodes with the same probability pnk
as for ordinary nodes, independent of

the presence of other shortcuts. Call the augmented graph G̃. Now construct G̃1 from G̃
analogous to how G1 was constructed from G: replace each cluster Ai by a single node i,
and put an edge between i and j in G̃1 only if there is a shortcut between the (augmented)
clusters Ai and Aj in G̃. It is clear from this construction that G̃1 is a Bernoulli random
graph on qk nodes with edge probability p̃nk

given by (9). Moreover, G1 is a subgraph of G̃1.
Now G is connected only if G1 is, which in turn requires that G̃1 be connected. We shall
now use the result of Erdős and Rényi [5] to show that, with high probability, G̃ fails to be
connected.

Observe that pnk
→ 0 as k → ∞ by the assumption that mnk

and pnk
satisfy (3), i.e.,

that nk(mnk
+ 1)pnk

< log nk. Hence, for any ε > 0, we have for all k sufficiently large that
the probability of a shortcut between two clusters is bounded by

p̃nk
≤ 1− e−(1+ε)(m̃nk

+2)2pnk ≤ (1 + ε)(m̃nk
+ 2)2pnk

.
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Since the number of clusters qk lies in [ nk

m̃nk
+2

, nk

m̃nk
+1

], we obtain using (3) that

qkp̃nk
≤ (1 + ε)

(m̃nk
+ 2)2

(m̃nk
+ 1)(mnk

+ 1)
(mnk

+ 1)nkpnk

≤ (1 + ε)(1− δ)
(m̃nk

+ 2)2(mnk
+ 1)

(m̃nk
+ 1)(mnk

+ 2)2
log

nk

mnk
+ 1

. (10)

Now,

log
nk

mnk
+ 1

= log
nk

m̃nk
+ 2

+ log
m̃nk

+ 2

mnk
+ 1

≤ (1 + ε) log qk

for all k sufficiently large, because qk tends to infinity whereas
m̃nk

+1

mnk
+1

tends to 1, so that
m̃nk

+2

mnk
+1

remains bounded as k tends to infinity. Since ε > 0 can be chosen arbitrarily small in

(10) and
m̃nk

+1

mnk
+1

tends to 1, it follows that

qkp̃nk
≤ (1− δ′) log qk,

for any δ′ ∈ (0, δ) and all k sufficiently large. Moreover, qk → ∞ as k → ∞ by the
assumption that mn/n → 0. Hence, using the results in [5] on the connectivity of Bernoulli
random graphs, we obtain that P (G̃1 is connected) → 0 as k →∞. But G is connected only
if G̃1 is. Therefore, P (Cnk

) → 0 as k →∞. This completes the proof of the theorem.

Proof of Theorem 2: Let W denote the number of isolated nodes in the graph
generated by Model B with parameters n, rn and pn. We do not make the dependence of
W on the parameters explicit in the notation. Let Z denote a Poisson random variable with
mean EW . We use the Stein-Chen method to show that W is close to Z in total variation
distance.

Let U1 have the distribution of the number of isolated nodes, and let 1 + V1 have the
distribution of the number of isolated nodes conditional on node 1 being isolated. We shall
construct U1 and V1 on the same probability space and show that E|U1−V1| is small. Then,
we shall use [8, Chapter II, Theorem 24.3] to deduce that the total variation distance between
W and Z is small.

The random variables U1 and V1 are constructed on the same probability space as follows.
First, nodes 1 through n are placed uniformly at random on the square [−

√
n/2,

√
n/2]2, and

nearest neighbour and shortcut links are generated according to Model B. Next, all nodes
located within distance rn of node 1 (including node 1) are coloured red, while all other
nodes are coloured green. Now, for each red node other than node 1, we place an associated
blue node uniformly at random in the portion of the square [−

√
n/2,

√
n/2]2 which excludes

the circle of radius rn centred at node 1. (With some abuse of notation, we will use the same
node label to refer to such associated nodes, distinguishing them by their colour.) The blue
nodes carry the same shortcuts as the red nodes with which they are associated. In other
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words, if there is a shortcut between red nodes i and j (not equal to 1), then there is one
between blue nodes i and j, and likewise if there is a shortcut between red node i and green
node j. Finally, we put down nearest neighbour links between blue nodes and other blue or
green nodes if they are within distance rn of each other. Now, we define U1 as the number
of isolated nodes in the subgraph induced by red and green nodes, and V1 as the number
of isolated nodes in the subgraph induced by blue and green nodes. It is obvious that U1

has the same distribution as W , the number of isolated nodes. To see that 1 + V1 has the
distribution of the number of isolated nodes conditional on node 1 being isolated, observe
that, conditional on this event, the remaining nodes are uniformly distributed outside the
circle of radius rn around node 1, and that the shortcut distribution between these nodes is
unchanged, while there are no shortcuts to node 1. This is precisely the law of the subgraph
on the blue and green nodes, and hence the number of isolated nodes in this subgraph has
the same distribution as V1.

Let U1 and V1 denote the set of isolated nodes in the red-green and blue-green subgraphs
respectively. Let R, B and G denote the set of red, blue and green nodes, with respective
cardinalities R, B and G. In particular, R = B ∪ {1} and R and G partition the node set.
Now,

EW = EU1 =
n∑

i=1

P (i ∈ U1) = n
(
1− πr2

n

n

)n−1
(1− pn)n−1 ∼ e−cn , (11)

where the last equivalence follows from (4). Moreover,

E[|U1 − V1|] ≤
n∑

i=2

P (i ∈ U1, i /∈ V1) +
n∑

i=2

P (i /∈ U1, i ∈ V1). (12)

If i is one of the green nodes, then conditional on the event {i ∈ U1}, the event {i /∈
V1} can only occur if one of the blue nodes happens to fall within distance rn of i; this
happens independently for each blue node, with probability at most πr2

n/(n−πr2
n). Moreover,

conditional on {i ∈ U1}, the number of blue nodes is binomially distributed with parameters
n− 2 and πr2

n/(n− πr2
n) if nodes 1 and i are more than distance 2rn apart; if they are less

than 2rn apart, the number of blue nodes is stochastically dominated by such a binomial
random variable. Hence,

P (i /∈ V1|i ∈ U1 ∩ G) ≤ 1−
(
1− π2r4

n

(n− πr2
n)2

)n−2
≤ (log n + cn)2

n
(1 + o(1)). (13)

We have used (4) to obtain the last inequality. On the other hand, if i 6= 1 is one of the red
nodes, then the event {i ∈ U1} can’t occur (as all red nodes are neighbours of node 1, by
definition). Thus, for i 6= 1, we have

P (i ∈ U1, i /∈ V1) = P (i ∈ U1 ∩ G)P (i /∈ V1|i ∈ U1 ∩ G)

≤ P (i ∈ U1)P (i /∈ V1|i ∈ U1 ∩ G) ≤ (log n + cn)2

n2
e−cn(1 + o(1)), (14)
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where the last inequality is obtained using (11) and (13).

Next, if i is a green node and i ∈ V1, then a necessary condition for the event i /∈ U1 to
occur is that node i either has a shortcut to node 1, or node i is at distance between rn and
2rn from node 1 (so that it has a neighbour in the red-green subgraph, which is absent in
the blue-green subgraph). Thus, we have for each green node i that

P (i /∈ U1, i ∈ V1 ∩ G) ≤ P ({i ∈ V1 ∩ G} ∩ A) + P ({i ∈ V1 ∩ G} ∩B), (15)

where A is the event that there is a shortcut between node i and node 1 and B the event
that node i is at distance between rn and 2rn from node 1.

Any node i 6= 1 is isolated in the blue-green subgraph if it has no shortcuts to other blue
or green nodes, and if there is no other node within distance rn of it. Now, node i is located
at least distance rn away from node 1. Hence, at least half of the circle of radius rn centred
around it lies outside the circle of radius rn centred around node 1, from which all nodes are
moved out. Hence, the probability that a given node j lies within distance rn of node i is at
least πr2

n/2(n− πr2
n). Thus, we see that

P (i ∈ V1|A) = P (i ∈ V1) ≤ (1− pn)n−2
(
1− πr2

n

2(n− πr2
n)

)n−2
. (16)

Hence,

P ({i ∈ V1 ∩ G} ∩ A) ≤ P (A)P (i ∈ V1|A)

≤ pn(1− pn)n−2
(
1− πr2

n

2(n− πr2
n)

)n−2

≤ pne
−cn/2

√
n

[1 + o(1)] ≤ e−cn/2n−3/2 log n[1 + o(1)]. (17)

The last two inequalities follow from (4). Likewise, we have

P ({i ∈ V1 ∩ G} ∩B) ≤ P (B)P (i ∈ V1|B)

≤ 3πr2
n

n− πr2
n

(1− pn)n−2
(
1− πr2

n

2(n− πr2
n)

)n−2

≤ 3πr2
n

n

e−cn/2

√
n

[1 + o(1)] ≤ 3e−cn/2n−3/2 log n[1 + o(1)]. (18)

Combining (15), (17) and (18), we obtain that

P (i /∈ U1, i ∈ V1 ∩ G) ≤ 4e−cn/2n−3/2 log n[1 + o(1)]. (19)

On the other hand, if i 6= 1 is a red node, then automatically i is not isolated (in the
red-green subgraph), so that

P (i /∈ U1, i ∈ V1 ∩R) = P (i ∈ V1 ∩R) = P (i ∈ R)P (i ∈ V1).
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Using (16), we obtain that

P (i /∈ U1, i ∈ V1∩R) ≤ πr2
n

n

(
1− πr2

n

2(n− πr2
n)

)n−2
(1−pn)n−2 ≤ log n + cn

n2
e−cn [1+o(1)]. (20)

Combining (19) and (20), we get

P (i /∈ U1, i ∈ V1) ≤ 4e−cn/2n−3/2 log n[1 + o(1)]. (21)

Finally, substituting (14) and (21) in (12) yields

E[|U1 − V1|] ≤
4 log n√

n
e−cn/2 [1 + o(1)]. (22)

Recall that the number of isolated nodes, W , is the sum of Bernoulli random variables
corresponding to the indicators that individual nodes are isolated, and that Z is a Poisson
random variable with the same mean as W . (The dependence of W and Z on n has been
suppressed in the notation.) Hence, by (11), (22) and [8, Chapter II, Theorem 24.3],

dTV (W, Z) ≤ 2(1 ∧ [EW ]−1) · EW · E[|U1 − V1|] ≤
8 log(n)e−cn/2

√
n

[1 + o(1)], (23)

where dTV (W, Z) denotes the total variation distance between the random variables W and
Z. Suppose cn → c and let Y denote a Poisson random variable with mean e−c. Since
EZ = EW ∼ e−cn , it is easy to see that dTV (Z, Y ) tends to zero. By the triange inequality,
so does dTV (W, Y ). In other words, W converges in distribution to a Poisson random variable
with mean e−c as n tends to ∞. This establishes the first claim of the theorem.

To establish the second claim, first note that

P (W = 0) ≤ P (Z = 0) + dTV (W, Z) = e−EW + dTV (W, Z),

so that, by (11) and (23),

P (W = 0) ≤
(
exp(−e−cn) +

8 log(n)e−cn/2

√
n

)
[1 + o(1)].

In particular, if cn is fixed at c, then P (W = 0) → e−e−c
. Now, if cn → −∞, then for

arbitrarily large negative c, we have cn ≤ c for all n large enough. Moreover, if we augment
the nth graph with additional random shortcuts so that πrn + npn = log n + c, then this
does not reduce the number of isolated nodes. Hence, P (W = 0) ≤ 2e−e−c

say, for all n
sufficiently large. Since −c can be chosen arbitrarily large, P (W = 0) → 0 as n → ∞. In
other words, there is at least one isolated node, and so the graph is disconnected, whp. This
completes the proof of the theorem.
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4 Conclusions and open problems

We obtained a sufficient condition for connectivity in Model A and showed that this condition
was necessary for a worst-case node configuration. It would be interesting to know whether
the condition is tight (up to constants) for some random node configurations, such as the
Poisson point process on a square. We have obtained necessary conditions for connectivity
in Model B. While it is tempting to conjecture that there is a threshold for connectivity
in this model at a mean degree of log n, we do not have a proof of this result. Finally,
the results here are obtained for a uniform shortcut distribution. The extension to random
connection models where the probability of a shortcut between two nodes is some function
of the Euclidean distance between them is an open problem.
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