
1

Resource Allocation between Persistent and
Transient Flows

Supratim Deb, Ayalvadi Ganesh, and Peter Key

Abstract— The flow control algorithms currently used in the
Internet have been tailored to share available capacity between
users on the basis of the physical characteristics of the network
links they use rather than the characteristics of their applications.
However, real-time applications typically have very different
requirements from file transfer or Web browsing, and treating
them identically can result in a perception of poor quality of
service even when adequate bandwidth is available. This is the
motivation for differentiated services. In this paper, we explore
service differentiation between persistent (fixed duration) and
transient (fixed volume) flows, and also between transient flows
of markedly different sizes; the latter is stimulated by current
discussion on Web mice and elephants. We propose decentralized
bandwidth allocation algorithms that can be implemented by
end-systems without requiring the support of a complex network
architecture, and show that they achieve performance very close
to what is achievable by the optimal centralized scheme.

Keywords: Service differentiation, bandwidth allocation, de-
centralized control, weighted processor sharing, shortest process-
ing time.

I. I NTRODUCTION

Flow control in the Internet is currently performed by TCP.
This protocol performs two important functions: it detects and
responds to congestion, and it aims to achieve afair allocation
of network capacity among users. As TCP is oblivious to
the nature of the application transferring data, it aims to
achieve fairness at a rather fine-grained level of instantaneous
capacity allocation. This has worked well in an environment
consisting of fairly homogeneous applications, with similar
characteristics and requirements. However, as the diversity
of applications on the Internet increases, there is a need for
additional mechanisms to provide a quality of service (QoS)
appropriate to the application and specific to its requirements.
A one-size-fits-all approach can result in applications seeing a
poor QoS even when adequate capacity is available to provide
each application with a good QoS. This motivated service
differentiation efforts such as Diffserv.

In this paper, we consider specifically the problem of shar-
ing network capacity between file transfers and real-time traffic
such as Internet telephony or video conferencing. Real-time
flows are usually long-lived and can be treated as persistent
sources for purposes of analysis, in a way we make precise in
the next section. They have very different quality of service
requirements from file transfers. Whereas what matters for file
transfers is usually the transfer time, or equivalently, average

Supratim Deb is with the Laboratory for Information and Decision Sys-
tems, MIT, Cambridge, MA, USA. email:supratim@mit.edu Ayalvadi
Ganesh and Peter Key are with Microsoft Research, Cambridge, UK. email:
{ajg,peterkey}@microsoft.com

throughput over the entire transfer period, real-time flows
typically care about the rate they receive at each instant in time
(or, more precisely, averages over time periods much shorter
than the lifetime of the connection). The value of capacity
allocated to a user can be described mathematically by a utility
function which captures elements of the quality of service
perceived by the user [24]. The resource allocation problem
can be cast as one of maximizing the aggregate utility of all
users.

We model the utility for a file transfer as the negative of
the time taken to complete the transfer. For real-time traffic,
we assume that the total utility obtained is the integral of
an instantaneous utility over the lifetime of the connection;
the instantaneous utility, in turn, is modeled as an increasing
and concave function of the rate received by the flow at that
instant. This model is popular in the literature, and sources
with such a utility function are termedelastic. There has
been considerable recent work on sharing capacity between
persistent elastic users [15], [19], [17], [21]. However, the
problem of combining such sources with transient sessions
such as file transfers has received little attention. One recent
study [16] suggests that, when the two traffic types share a
network, file transfers should receive priority.

A second, related problem we address is that of sharing
network capacity between file transfers of markedly different
sizes. TCP does not differentiate on the basis of file size.
We ask whether it is possible to improve performance for
small files without significantly degrading it for large files.
This question assumes particular importance in the context
of the finding by a number of researchers that file sizes on
the Web have a heavy-tailed distribution [4]: when file sizes
vary over several orders of magnitude, treating all file transfers
identically may not be appropriate.

The main contributions of this paper are as follows. We
consider a single bottleneck link of capacityNc shared byN
persistent flows, and by transient flows arriving at the points
of a Poisson process of rateNλ. In Section II, we propose an
objective function which takes into account both the utility of
persistent flows and the mean delay of transient flows in the
system. We obtain bounds on the optimal cost in Section III.
In Section IV, we show that certain easy-to-implement sub-
optimal-policies are close to optimal in the largeN regime.
In Section V, motivated by recent work on biasing in favor
of short jobs in a queueing system [2], [10], we propose a
weighted bandwidth sharing policy which favors small file
transfers and study its performance analytically and through
simulations. We conclude in Section VI.

2

II. M ODEL AND PROBLEM FORMULATION

We consider a single link shared by two different kinds
of flow. Flows of the first kind each remain in the system
for a “fixed” duration (the duration may be random, but is
independent of the capacity allocated), while flows of the
second kind each have a fixed volume of data to transfer.
The former typically describe real-time streaming media while
the latter correspond to file transfers. These two kinds of
applications have different quality of service requirements,
which will be reflected in our model. For simplicity, we
shall assume that the number of fixed-duration flows remains
constant; we shall refer to such flows aspersistent, and we
shall refer to fixed-volume flows asshort or transientflows.
Note that it is not important for the validity of this assumption
that individual “persistent” flows be long-lived relative to
individual “short” flows. What is important is that the total
number of persistent flows should remain nearly constant over
the typical lifetime of a short flow.

Consider a single link of capacityNc shared by a fixed
number,N , of persistent flows and a variable number of short-
lived flows. We are typically interested in high-capacity links
multiplexing a large number of flows, i.e., in a largeN regime.
The persistent flows are modeled as belonging to one ofJ
classes, with a proportionαj in classj, and with each flow in
classj having an increasing and strictly concave instantaneous
utility function uj . If Nx is the aggregate rate allocated to the
persistent flows, then the aggregate utility received by these
flows can be modeled asNu(x), where

u(x) = sup
{∑

j=1

αjuj(xj) :
∑

j=1

αjxj = x
}

.

In words, Nu(x) is a sup convolution of the individual
utilities; it is the utility that would be achieved by sharing
the capacityNx optimally among the persistent flows. It can
be shown thatu(·) is also increasing and strictly concave.
Henceforth, we shall simply assume that the aggregate utility
of persistent flows can be modeled asNu(x) for some
increasing and strictly concaveu. The total utility over a time
period is given by the integral of the instantaneous utility over
that period.

Such concave utility functions were introduced by
Shenker [24] to describe elastic users, and have subsequently
been used in [12], [20], [26], [11], for example. Elastic
traffic is normally thought of as delay-insensitive, or data
transfer, whereas here we are characterizingreal-time traffic
as elastic. This is appropriate for real-time traffic which has
adaptive codecs, or which seeks to mimic the behavior of
congestion-controlled data, such as ‘TCP-friendly’ rate control
schemes [22]. Indeed, a simple approximation to TCP is to use
a utility function of the formuj(x) = −1/(T 2

j x) whereTj is
the round-trip time for a classj flow [17].

We also note that it is enough if the utility functions
are concave in some neighborhood of the typical “operating
point”. If concavity does not hold in the region of interest,
then the optimal way to allocate capacity is to perform ad-
mission control and provide adequate capacity to the admitted
sources. This is a separate topic which we do not treat in this

paper. Concavity reflects the diminishing marginal utility of
bandwidth; equivalently, it asserts that a fixed constant rate is
preferable to a fluctuating rate with the same mean. It also
helps to capture the notion of fairness in a utilitarian setting,
wherein we defineoptimality in terms of social welfare; that is,
an optimal allocation is one that maximizes aggregate utility.
To see this, note that concavity implies via Jensen’s inequality
that, in an optimal allocation, all users with the same utility
function will get the same amount of bandwidth.

The assumption that the number of persistent flows is fixed
is not essential. One alternative would be model these flows
as arriving according to a Poisson process of rateNν and re-
maining in the system for a fixed (random) duration with finite
mean,1/µ. If these durations (service times) are independent
and identically distributed, then the number of persistent flows
in the system can be described by anM/G/∞ queue. It
is well known for this queue that, for arbitrary service time
distributions, the number of flows in the system in equilibrium
has a Poisson distribution with meanNν/µ. For largeN , the
distribution concentrates around its mean value, with typical
fluctuations being of order

√
N . This observation provides

some justification for modeling the number of persistent flows
in a large system as constant, irrespective of the duration of a
single flow.

The problem of sharing capacity optimally between per-
sistent sources has been studied in [15], [17], [18], [19], for
example. Therefore, in this paper, we assume that any capacity
share allocated to persistent flows is optimally shared between
them, and concentrate on how to partition the available capac-
ity between persistent and transient flows, as well as how to
share it among the transient flows. To simplify technicalities
in the analysis below, we assume in addition thatu(·) is
differentiable.

Short flows correspond to file transfers. They arrive into
the system at the points of a Poisson process of rateNλ and
leave when the file transfer is complete. The file sizes are
independent and identically distributed (iid) random variables.
We make no assumption about the file size distribution other
than that it has a finite mean,f . Without loss of generality,
we takec = 1 andf = 1 for notational convenience, so that
λ denotes the normalized load offered by the short flows. We
shall assume thatλ < 1; this is necessary to ensure that there
is a policy which makes the system stable, i.e., prevents the
number of backlogged short flows increasing without bound.
There is a unit holding cost per unit time for each short flow
in the system. The goal is to maximize the time average of
Nu(x(t)) − n(t), where n(t) denotes the number of short
flows in the system at timet. To this end, we introduce the
performance objective,

Jπ(n, f) = lim inf
T→∞

1
T

E
[∫ T

0

[Nu(x(t))

− n(t)]dt
∣∣∣ n(0) = n, f1, . . . , fn

]
, (1)

wherefi denotes the residual workload of theith short flow
in the system at time0. We seek a policyπ that maximizes
this objective. A policy specifies, at each timet, the rate
Nx(t) allocated to persistent flows, as well as how to share

3

the remaining capacity,N(1 − x(t)), among the short flows.
We shall restrict attention to stationary policies under which
the stochastic process(x(t), n(t)) is ergodic, so that the limit
exists in the RHS of (1), though it could possibly be−∞. Note
that the restriction to such policies is not empty. For example,
the policy π that allocates a fixed capacityNx to persistent
flows at all timest, for somex ∈ (0, c − λ), and shares the
residual capacity equally among all short flows in the system,
has this property: it is clearly stationary, and ergodicity follows
from well known properties of theM/G/1−PS queue, where
PS stands for processor sharing. Thus,Jπ(n, f) denotes the
long-term average ofNu(x(t))−n(t) under a policyπ when
there are initiallyn short flows in the system, with respective
residual workloadsf1, . . . , fn. Let τk denote the sojourn time
of the kth short flow to enter the system. By Little’s law the
time average ofn(t) is the same asλ times the average value
of τk, where these averages are defined as

n = lim
T→∞

1
T

∫ T

0

n(t)dt, τ = lim
k→∞

1
k

k∑

j=1

τj ,

respectively, along each sample path where the limits exist.
The equalityn = λτ holds for every such sample path. By
the assumed ergodicity ofn(t), these limits exist, and have the
same value, on all but a measure zero subset of sample paths.
Thus, we can view the objective as maximizing the utility
of real-time flows, subject to a bound on the mean sojourn
time of file transfers. The objective function above is precisely
the Lagrangian for this optimization problem, whereλ can be
interpreted as the Lagrange multiplier.

III. B OUNDS ON THE OPTIMAL VALUE FUNCTION

We now derive an upper bound on the value of the objective
functionJπ(n, f) that is achievable by any policyπ, expressed
in Theorem 3.1 below. By comparing this with the value
attained by specific sub-optimal policies, we shall show in
the next section that those policies are close to optimal.

Let A(t) denote the number of short flows arriving during
the time interval[0, t], B(t) = b1 + b2 + . . . + bA(t) the total
work brought in by these flows andW (t) the total work due
to short flows backlogged at timet. SinceA(t) is a Poisson
process and thebi are iid with mean1, independent ofA(t),
we have

lim
t→∞

1
t
A(t) = Nλ a.s., lim

t→∞
1
t
B(t) = Nλ a.s., (2)

wherea.s. stands for “almost surely”. We now characterize
the minimum capacity that has to be allocated to the short
flows.

Lemma 3.1: Suppose that, for some strictly increasing func-
tion h : R+ → R+ satisfyingh(x)/x → ∞ as x → ∞,
we haveE[h(b1)] < +∞. Let (n, f) be an arbitrary initial
condition. Suppose thatπ is a policy which, for someε > 0,
satisfies

lim
T→∞

1
T

∫ T

0

x(t)dt > 1− λ + ε a.s

Then,lim supT→∞ n(T) = +∞, and soJπ(n, f) = −∞.

Remarks:Sinceh(x)/x can go to infinity arbitrarily slowly,
the assumption thatE[h(b1)] < ∞ is only slightly stronger
than requiring thatb1 have a finite mean. For example, it would
suffice if E[b1

1+ε] < ∞ for someε > 0. Alternatively, if the
file size distribution has a Pareto densityf(x) = c(a + x)−α,
then the assumption holds providedα > 2, i.e., the mean file
size is finite; herec anda are positive constants.

The lemma says that any policyπ which allocates capacity
less thanN(λ − ε) on average to short flows will cause
the number of short flows backlogged to grow to infinity.
This is not altogether trivial: we cannot rule out,a priori,
the possibility that the amount of backlogged work grows
to infinity while the number of backlogged flows remains
bounded, in expectation.

Proof: Let W (0) = f1+. . .+fn denote the total residual
work due to short flows initially in the system at time0. For
the policyπ, we have

lim
t→∞

1
t
[W (t)−W (0)] ≥ lim

t→∞
1
t

[
B(t)−

∫ t

0

N(1− x(s))ds
]

> Nε a.s. (3)

The first inequality says that the workW (t) − W (0) back-
logged between times0 and t is at least the total workB(t)
arriving during this time, less the maximum work that could
have been completed, namely, the total capacity

∫ t

0
N(1 −

x(s))ds allocated to short flows during this period.
Observe from (2) and (3) that, for anyα ∈ (0, 1), we have

for T sufficiently large that

P (W (t)−W (0) > Nεt andA(t) < N(λ+ε)t ∀ t ≥ T) > α.
(4)

DenoteE[h(b1)] by m. We have by Markov’s inequality and
the monotonicity ofh that P (b1 > z) = P (h(b1) > h(z)) ≤
m/h(z) for all z > 0. Fix M > 0, arbitrarily large. Now, by
the independence of thebi,

P
(
bi ≤ Nεt

M
∀ i = 1, . . . , bN(λ + ε)tc

)

≥
(
1− m

h(Nεt/M)

)N(λ+ε)t

. (5)

But the RHS goes to 1 ast → ∞ since h(Nεt/M) grows
faster thant, by assumption. Now, if the work backlogged at
time t is no smaller thanNεt, and if no flow contributes more
than Nεt/M , then the number of backlogged flows must be
at leastM . Thus, it is immediate from (4) and (5) that, given
any M > 0 andα ∈ (0, 1), it holds for all t sufficiently large
that

P (n(t) > M) > α. (6)

Therefore, by the Borel-Cantelli lemma,n(t) > M infinitely
often, i.e., lim supt→∞ n(t) ≥ M . Since this holds for
arbitrarily largeM , the first claim of the claim is established.
The second claim follows becauseJπ(n, f) ≤ Nu(1) −
lim supt→∞ n(t), asu(x(t)) ≤ u(1) for all t. This completes
the proof of the lemma.

We now look at the performance of policies which allocate
at leastNλ to the short flows.

4

Lemma 3.2: Let(n, f) be an arbitrary initial condition and
let π be any policy for which

x := lim
T→∞

1
T

∫ T

0

x(t)dt ≤ 1− λ a.s.;

the existence of the limitx is part of the assumption. Then,
Jπ(n, f) ≤ Nu((1− λ)).

Proof: Sinceu was assumed to be concave, we obtain
from Jensen’s inequality and the non-negativity ofn(t) that

1
T

∫ T

0

[Nu(x(t))− n(t)]dt ≤ Nu
(1

T

∫ T

0

x(t)dt
)

,

for every T > 0. Taking expectations and using Jensen’s
inequality once more, we get

E
(1

T

∫ T

0

[Nu(x(t))− n(t)]dt
)
≤ Nu

(
E

[1
T

∫ T

0

x(t)dt
])

.

(7)
Since 1

T

∫ T

0
x(t)dt converges tox almost surely, and since

x(t) ∈ [0, 1] for all t, it follows by dominated convergence
that

E
[1
T

∫ T

0

x(t)dt
]
→ x,

and by the continuity and monotonicity ofu that

u
(
E

[1
T

∫ T

0

x(t)dt
])
→ u(x) ≤ u(1− λ).

Substituting this in (7) yields the claim of the lemma, by the
definition of Jπ.

We can now state the following upper bound on the value
of any ergodic policy, which is immediate from the above two
lemmas.

Theorem 3.1: Suppose the file size distribution satisfies the
assumption in Lemma 3.1. Then, for any initial condition(n, f)
and any ergodic policyπ,

Jπ(n, f) ≤ Nu(1− λ) .
In the next section, we shall consider specific sub-optimal

policies. By comparing them with the upper bound derived
above, we shall show that they are close to optimal, for
arbitrary file size distributions. It is difficult to determine the
optimal policy in the general setting considered so far. When
file sizes are exponentially distributed, [7], [6] show how to
calculate the optimal policy using value iteration, and describe
some structural properties of the optimal policy.

IV. SUB-OPTIMAL POLICIES

In the remainder of the paper, we assume that the utility
function u is strictly concave, increasing and twice contin-
uously differentiable. We describe two simple policies below
and show that they are close to optimal, in an asymptotic sense
asN tends to infinity.

Before we describe the sub-optimal policies, we state our
method of evaluating a sub-optimal policy. The question we
ask is, how much worse than optimal is a given sub-optimal
policy? One way to quantify this is to ask how large a capacity
Nĉ is needed, so that the total utility achieved using the given
sub-optimal policy on a link of capacityN is at least the utility

achieved using the optimal policy on a link of capacityNĉ.
Thus,(1− ĉ) is the additional capacity required per-persistent
flow, for a sub-optimal policy to do as well as the optimal
policy. We show that, with a proper choice of parameters, the
sub-optimal policies described in this section do as well as the
optimal policy for1− ĉ = O(1/

√
N).

A. Static policy

A fixed amount of bandwidthNc is reserved for the per-
sistent sources and the remainder,N(1− c), is shared equally
among the transient flows. We shall denote this policyπS(c),
using the subscriptS to signify that the bandwidth partitioning
is static. This policy involves logically partitioning the link
between persistent and transient flows and using a flow-
control mechanism that shares capacity equally among the
transient flows. The logical partitioning can be implemented,
for example, by maintaining separate buffers for traffic from
persistent and transient sources and serving these buffers at
the specified rates,Nc andN(1−c), using a weighted round-
robin policy. This can be thought of as a rather simple special
case of the Diffserv architecture [3]. With regard to sharing the
allocated capacity equally among flows of the same type, TCP
approximately achieves this if all flows have the same access
bandwidth and round-trip time. Another alternative is to use
the scheme of [9] with all flows of a given type (transient or
persistent) having the same willingness-to-pay parameter.

Now, irrespective of the file size distribution, the number
of short flows in progress evolves like the queue size in an
M/GI/1 − PS queue, with loadρ = λ/(1 − c). The equi-
librium queue length distribution is geometric with parameter
ρ (see [13], for example), and so the mean number of short
flows in progress isEπ[n] = ρ/(1 − ρ). We thus obtain the
following.

Lemma 4.1: Leta > 0 be arbitrary, and letc = 1−λ− a√
N

.
Then,

EπS(c)[Nu(x(n))− n] = Nu(1− λ)−O(
√

N).
Proof: The load in the queue serving short flows is

ρ =
Nλ

N(1− c)
=

λ

λ + (a/
√

N)
,

and so the mean number of short flows in the system is given
by

EπS(c)[n] =
ρ

1− ρ
=

λ

a

√
N. (8)

On the other hand, each persistent flow receives capacityc,
and so the mean utility of persistent flows is given by

EπS(c)[Nu(x)] = Nu(c) = Nu
(
1− λ− a√

N

)

= Nu(1− λ)− a
√

Nu′(y), (9)

for somey in the interval[1 − λ − a√
N

, 1 − λ]. Now, by (8)
and (9),

EπS(c)[Nu(x)− n] = Nu(1− λ)−
[
au′(y) +

λ

a

]√
N.

Since the continuous functionu′ is bounded on the compact
interval [1 − λ − a√

N
, 1 − λ], the claim of the lemma is

established.

5

How much worse than optimal is the static policy? As noted
before, we ask, how large a capacityNĉ is needed, so that
the total utility achieved using the static policy on a link of
capacityN is the same as the utility achieved using the optimal
policy on a link of capacityNĉ. Comparing Lemmas 3.2 and
4.1, it is clear that̂c = 1−O(1/

√
N). In so far asN is large

in the typical operating regime of interest, this shows that the
static policy is close to optimal.

We now discuss the intuition behind the choice of param-
eters in the static policy. Recall thatNλ is the rate at which
work is brought in by short flows, andNλ/ρ is the capacity
allocated to them. The choiceρ = 1 − a/

√
N corresponds

to allocating short flows just a little more than the minimum
required to ensure that all short flows eventually leave the
system. In other words, the queue of short flows operates
in a heavy traffic regime. Nevertheless, in this regime, the
number of short flows present in the system is of order

√
N

on average. Hence, each short flow typically getsO(
√

N)
bandwidth whereas each persistent flow, of which there areN ,
gets onlyO(1) bandwidth. Thus, from the perspective of an
individual short flow, it receives higher priority than persistent
flows, though short flows on aggregate don’t receive higher
priority. The point to note is that, if all short flows are to be
served, then the average service rate allocated to them should
be at least the rate at which they are bringing in work. In a
large system, this rate is large compared to the work brought
in by a single flow. Thus, by serving short flows at this rate,
the number of short flows and their mean sojourn time is
kept small, and consequently they perceive a good quality of
service. At the same time, the aggregate rate allocated to short
flows is close to the minimum possible, so the persistent flows
achieve very nearly the maximum utility they can get in any
stable system.

We shall observe the same qualitative features in the
weighted processor sharing policy we consider in the next
subsection. This, too, is a simple policy that is practicable
in decentralized systems, and can achieve near-optimal per-
formance.

In fact, the near-optimality of the static policy can be
expected to hold even if the arrival process of short flows is not
Poisson, but a general renewal process. Recall that the arrivals
constitute a renewal process if the inter-arrival times are iid,
with arbitrary distribution. The number of short flows in the
system thus evolves like aGI/GI/1− PS queue. Moreover,
this queue is operated in a heavy traffic regime: the service
capacityN(1 − c) is chosen so that the load on the queue,
given byρN = (Nλ)/(N(1− c)) satisfies

ρN = 1− a√
N

, i.e.,
√

N(1− ρN) → a.

We have superscriptedρ by N to make explicit that we are
considering a sequence of systems indexed byN . Let nN (t)
denote the queue size (number of short flows in progress) at
time t in the system indexed byN , and define the scaled
queue size procesŝnN (t) = nN (Nt)/

√
N . It is shown by

Gromoll [8] in this scaling regime that, if the inter-arrival times
have2+ε finite moments and the service times have4+ε finite
moments, for someε > 0, then the scaled queue size process

n̂N (·) converges in distribution (asN → ∞) to a reflected
Brownian motion with negative drift, which we denoteR(·).
Now, for the processR(·), 1

T

∫ T

0
R(t)dt converges almost

surely to a finite limit asT →∞. This leads us to conjecture
that the same holds true for the scaled processn̂N (·), and
hence that, for the unscaled process,

1
T

∫ T

0

nN (t)dt → bN

√
N asT →∞, (10)

wherebN is a sequence of constants converging in turn to a
constantb as N → ∞. Note that Gromoll has established
convergence ofn̂N (·) to R(·) in distribution but not the
convergence of moments, so (10) is indeed a conjecture. If
the conjecture holds, then it follows as in the Poisson case
studied in Lemma 4.1 that the static policy achieves a value
for the objective function that is withinO(

√
N) of Nu(1−λ),

which is an upper bound on the optimal value. Thus, the static
policy is close to optimal.

Implementation of the static policy requires that bandwidth
partitioning be carried out by network routers. It also requires
knowledge of the rate at which work is brought in by short
flows, or a fairly accurate estimate of this rate1. In contrast,
the weighted processor sharing policy discussed next can
be implemented at end systems (although it may require
information from the routers as to the number of persistent
flows in progress,N), and does not require knowledge of the
traffic characteristics of short flows.

B. Weighted processor sharing

Suppose each persistent source has weight1 and each file
transfer in progress has weightw, and that capacity is shared
between users in proportion to their weights. In particular, each
file transfer in progress gets the same share of capacity. We
shall call this the weighted processor sharing or WPS policy,
and denote itπW (w). We will show that, with an appropriate
choice ofw, the total utility achieved using weighted processor
sharing policy on a link of capacityN is the same as the utility
achieved using the optimal policy on a link of capacityNĉ if
1− ĉ = O(1/

√
N).

Now, irrespective of the file size distribution, the number
of file transfers in progress can be modeled by a symmetric
queue, and has the invariant distribution of a birth-death
process with constant birth rateNλ, and state-dependent death
rateNµn = N(1−x(n)) (see [13, Lemma 3.9]). HereNx(n)
is the aggregate capacity allocated to persistent sources when
n short flows are in progress. The invariant distribution for
this process is given by

π(n) = π(0)
λn

µ1 · · ·µn
,

∞∑
n=0

π(n) = 1. (11)

Let K := N/w. Then

x(n) =
N

N + nw
=

K

K + n
and µn = 1−x(n) =

n

K + n
,

1An adaptive scheme that adjusts the bandwidth partitioning based on
measurements of the load due to short flows may be able to achieve
comparable performance. Investigating this is a topic for future research.

6

from which it follows that

π(n) = π(0)λn
n∏

i=1

K + i

i
= π(0)

Γ(K + n + 1)
Γ(K + 1)Γ(n + 1)

λn

(12)
whereπ(0) is determined by the requirement thatπ(n) sums
to one. Here,Γ(·) is the Gamma function, defined on(0,∞)
by Γ(a) =

∫∞
0

xa−1e−xdx; Γ(a) = (a− 1)! if a is a positive
integer. The Gamma function satisfies the recursionΓ(a) =
(a− 1)Γ(a− 1) for all real a > 1. Note that

∞∑
n=0

Γ(K + n + 1)
Γ(K + 1)Γ(n + 1)

λn

=
∞∑

n=0

(−K − 1)(−K − 2) . . . (−K − n)
n!

(−λ)n

=
1

(1− λ)K+1
, (13)

by the generalized binomial expansion of(1−λ)−(K+1). Now,
substituting (13) in (12) and using the fact that

∑
n π(n) = 1,

we obtainπ(0) = (1−λ)K+1. Substituting this in (12) yields

π(n) =
Γ(K + n + 1)

Γ(K + 1)Γ(n + 1)
λn(1− λ)K+1 . (14)

We shall use this to obtain an analogue of Lemma 4.1, showing
that the weighted processor sharing policy is nearly optimal if
w is chosen appropriately. We first need some technical results.

The generating function ofn can be computed from (14) as
follows:

G(z) := E[zn] =
∞∑

n=0

π(n)zn =
(1− λ

1− λz

)K+1

. (15)

The mean number of short flows in the system is given by

EπW (w)[n] = G′(1) = (K + 1)λ
1− λ

(1− λz)2

∣∣∣
z=1

= (K + 1)
λ

1− λ
. (16)

Now, by the recursionΓ(a + 1) = aΓ(a), we have

π(n + 1)
π(n)

=
K + n + 1

n + 1
λ,

so thatπ(n+1) > π(n) if and only if (K +n+a)λ > n+1.
Rearranging terms, the maximum value ofπ(n) is seen to be
attained atn∗ := bKλ/(1−λ)c. The next lemma says that, if
w is chosen so thatK is large, then the probability distribution
π concentrates around its mode,n∗.

Lemma 4.2: Leta > 0 be arbitrary and letw = a
√

N , so
that K =

√
N/a. Let n∗ be the integer part ofKλ/(1− λ).

(The dependence ofw, K and n∗ on N has not been made
explicit in the notation.) For anyδ > 0, there are constants
c1, c2 > 0, not depending onN , such that

∞∑

m=(1+δ)n∗
π(n) ≤ c1e

−c2
√

N ,

(1−δ)n∗∑
m=0

π(n) ≤ c1e
−c2

√
N ,

for all N sufficiently large.
The proof is relegated to the appendix.

Notice that the bandwidth allocated to persistent flows by
the WPS policy decreases to zero as the number of short flows
in the system increases to infinity. Ifu(x) → −∞ asx → 0,
then the contribution toEπW (w)[u(x)] due to such events could
be arbitrarily large and negative. In order to avoid this, we need
the following technical assumption which controls the speed
at whichu(x) → −∞ asx → 0.
Assumption A: Suppose the utility functionu(·) is such that,
for someη > 0 and someδ > 0, we have

∫ ∞

δ

e−ηxu(
1
x

)dx > −∞.

Note that if the above inequality holds for someδ > 0, then
it holds for all δ > 0. Equivalently,lim infx→∞ e−ηxu

(
1
x

)
>

−∞ for someη > 0.
This assumption says that−u(1/x) does not grow super-

exponentially inx as x → 0. It is not terribly restrictive;
for example, it is satisfied by utility functions of the form
u(x) = x1−β/(1− β) for β > 0, and also byu(x) = log(x).
It is also satisfied by any utility function which is bounded
below.

The next lemma establishes the near-optimality of the WPS
policy.

Lemma 4.3: Leta > 0 be arbitrary, and letw = a
√

N be
the relative weight assigned to each short flow. Ifu(·) satisfies
Assumption A, then

EπW (w)[Nu(x(n))− n] = Nu(1− λ)−O(
√

N).
The proof can be found in the appendix.
It is easy to see that the capacityNĉ required for an optimal

policy to outperform weighted processor sharing satisfiesĉ =
1 − O(1/

√
N). This is similar to what we obtained for the

static policy and shows that WPS is asymptotically optimal in
the same sense.

An advantage of the WPS policy over the static policy is
that the optimal choice ofw requires knowledge only ofN
and not of the load offered by short flows,λ. Moreover, the
knowledge ofN can be imperfect: if we have an estimate of
N which is only within a multiplicative constant of its actual
value, the resulting choice of weights is still near-optimal, and
the deviation from optimality is only of order1/

√
N . Thus,

the weighted-PS policy is robust and well-suited to practical
implementation. Finally, it can be implemented by end systems
rather than the network, for example by having end systems
use a weighted analogue of TCP with weights chosen as above.
An alternative implementation would be to use a willingness-
to-pay scheme, as described in [15], with a willingness-to-pay
parameter proportional to the weights above. It is still an open
problem as to how to estimateN from the end systems.

C. Numerical results

The analytical results derived above show that the simple
policies we have proposed for sharing bandwidth between
persistent and transient flows are nearly optimal in large
systems, multiplexing a large number of persistent flows. In
this section, we explore how largeN needs to be for the
analysis to be valid, and find that it applies even at very small
values ofN . In order to obtain numerical results, we need

7

to explicitly specify a utility functionu(·); we takeu(x) =
−1/x, which is the form of utility implicitly maximized by
TCP [17].

-4

-3.5

-3

-2.5

-2

-1.5

-1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ut
ilit

y o
f a

 pe
rsi

ste
nt

flo
w

-->

Normalized load offered by the Mice -------->

Optimal dynamic policy
Optimal static policy

Weighted PS
Equal Sharing

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Me
an

 nu
mb

er
 of

 M
ice

 --

>

Normalized load offered by the Mice -------->

Optimal dynamic policy
Optimal static policy

Weighted PS
Equal Sharing

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7

%
Ca

pa
cit

y O
ve

r-p
ro

vis
ion

ing
 --

-->

Normalized offered load by the Mice -------->

Static Policy
Weighted PS

Fig. 1. The top and the middle panel show average utility of a persistent
flow, and mean number of transient flows for different policies, respectively.
The bottom panel shows the % overprovisioning required for static and WPS
policies to outperform optimal dynamic allocation. System parameters:c = 1,
mean file size=1,u(x) = −1

x
, N = 25.

Recall that the static policy assigns bandwidthc = 1 −
λ− a√

N
to each persistent flow, wherea is a parameter to be

chosen. By (8), the mean number of short flows in the system
is λ

√
N/a. Hence, the value of the objective function for the

static policy is

EπS(c)[Nu(x)− n] =
−N

1− λ− (a/
√

N)
− λ

a

√
N.

It can be verified that the objective is maximized by taking
a =

√
Nλ(1− λ)/(

√
N +

√
λ); correspondingly, we have

EπS
[Nu(x(n))] = −N +

√
Nλ

1− λ
, EπS

[n] =

√
Nλ + λ

1− λ
.

(17)
The WPS policy assigns weightw = a

√
N to each short

flow. Consequently,K = N/w =
√

N/a and, by (16), the
mean number of short flows in the system is(K +1) λ

1−λ . We
now evaluate the mean utility of persistent flows. Recall that,
when there aren short flows in the system, the persistent flows

each receive bandwidthx(n) = K
K+n and hence derive utility

u(x(n)) = −(1+ n
K). Thus, their mean utility is−(1+ E[n]

K).
Using (16), we obtain after simplification that

EπW
[Nu(x(n))− n] =

−N

1− λ
− λ

1− λ

[
a
√

N +
√

N

a
+ 1

]
.

It is clear that the maximum value of the objective function is
attained whena = 1, i.e., each transient flow is given a weight
w =

√
N relative to each persistent flow. Fora = 1, we have

EπW
[Nu(x(n))] = − N +

√
Nλ

1− λ
, EπW

[n] =
√

Nλ + λ

1− λ
.

(18)
In Figure 1, we plot the mean utility of a persistent flow

and the mean number of transient flows in the system for
(i) the static policy, as given by (17), (ii) weighted PS, as
given by (18), (iii) naive PS, which gives an equal share
of bandwidth to each flow, persistent or transient, and (iv)
the optimal policy, obtained numerically using the techniques
described in [7], [6]. If all flows use TCP, then case (iii)
approximates the bandwidth shares they obtain. We chose the
system parametersc = 1, f = 1, N = 25, and varied the
arrival rate,Nλ, of short flows so that the normalized load
offered by short flows,λf/c, spans the interval[0.1, 0.7].

The plots show that both the static and weighted-PS policies
achieve near-optimal performance, both for persistent and
transient flows. In other words, the static and the weighted-
PS policies considered do not just approximate the optimal
policy in terms of total utility, but also in terms of utility
for each class of flows. On the other hand, the policy which
gives equal bandwidth share to all flows has a much larger
mean number of short flows in the system. Indeed, the mean
number of short flows with the static policy and the weighted-
PS policy isO(

√
N) while it is O(N) with a naive processor

sharing policy. The last plot in the figure shows the percentage
capacity overprovisioning required for the static and weighted-
PS policies to do as well as the optimal policy, and confirms
that the deviation from optimality is small.

V. BANDWIDTH SHARING BETWEEN TRANSIENT FLOWS

We continue to work with the optimization problem posed
in Section II. There, we considered how to split capacity
between persistent and transient flows but did not consider
further how the capacity allocated to transient flows should be
shared between them. We now consider how capacity should
be shared between file transfers when the sizes of the files
being transferred might vary over several orders of magnitude.
The objective is to minimize the number of file transfers
in progress (equivalently, the mean holding cost or mean
sojourn time). If file sizes are exponentially distributed and
the allocation decision has to be made without knowing the
sizes of all file transfers in progress, then it not matter how this
allocation is made; any allocation that does not leave capacity
idle achieves the same mean number in system. If file sizes
are not exponentially distributed, then this is no longer true;
for example, if file sizes are heavy-tailed, the first-come-first-
served policy performs worse than processor-sharing. Finally,

8

if the amount remaining to be transferred is known, then a
simple interchange argument shows that the optimal policy is
to give priority to the file with shortest remaining processing
time (SRPT). This policy has been proposed in the context of
Web servers [10], [2]. However, it is not suited to our problem
for a couple of reasons. First, it needs a centralized controller
to assign priority (or a distributed leader election protocol,
which imposes a high overhead). Second, while the concept
is clear for a single bottleneck link or resource, it does not
generalize easily to multiple bottlenecks. This motivates us to
consider a generalization of the weighted PS policy introduced
in the previous section, adapting it to provide a bias towards
the file-transfers with small residual file-sizes.

We now consider a weighted processor sharing policy where
each transient flow chooses its own weight based on its
residual file size. Suppose the weights are chosen according
to

wx = wmin + (wmax − wmin) exp(−ax) , (19)

wherewx denotes the weight assigned to a flow with residual
file sizex, andwmin, wmax anda are system parameters. The
weight assigned to each persistent flow is 1. The link capacity
N is shared between flows in proportion to their weights, i.e.,
flow i receives capacitywiN/W , whereW denotes the sum of
wi over all flows in the system, both persistent and transient. In
practice, (19) would be implemented with the weights chosen
at closely spaced discrete epochs, but we assume an idealized
continuous time implementation for the purpose of analysis.

We shall assume thatW is constant over time. Such an
assumption is plausible in a large system operating in a steady-
state regime. Indeed, we saw in Section IV-B that, when the
weights of all short flows are equal to

√
N irrespective of

their residual file sizes, the distribution of the number of short
flows in the system,π(n), is given by (14). Using Stirling’s
approximation for the Gamma function in (14), it can be
further shown thatπ(n) is approximately Gaussian with mean√

Nλ/(1 − λ) and variance
√

Nλ/(1 − λ)2. Each of the
N persistent flows has weight1. Thus, in this system, the
aggregate weightW is approximately Gaussian with mean
N/(1 − λ) and varianceN3/2λ/(1 − λ)2. For largeN , the
standard deviation, beingO(N3/4), is much smaller than the
mean, which implies thatW is approximately constant. A
precise statement is that the random variableW/N converges
in probability to the constant,1/(1− λ).

Now note that if the total weightW is assumed to be
a constant, then the total weight contributed by short flows
evolves as a Poisson shot noise. A Poisson shot noise is the
response of a linear system to a train of impulses arriving at
the points of a Poisson process [5]. In our case, consider the
arrivals with file-sizes in the interval[x, x+dx) which arrive at
a rateNλdF (x). The evolution of weight of any arrival with
initial file-size x is precisely the impulse response associated
with file sizes in the interval[x, x + dx). Thus, if we can
characterize the evolution of weight for any given file size
(which is a deterministic evolution owing to the constantW
assumption), then, summing up the weights due to all possible
arrivals and all possible file-sizes, and the total weight due
to the persistent flows, gives the total weight at any time.

This should be equal to the total weightW which gives a
fixed point equation forW . From this, one can compute the
various quantities of interest. The detailed analysis is provided
in Appendix C. We simply state the main results under a
constantW assumption in the following.

A. Approximate analysis of the scheme

Our goal is to derive expressions for the sojourn time of a
flow and the mean number of short flows in the system. The
simplifying assumption behind the results of this subsection is
the following.
Assumption B: The total weight W contributed by the
transient flows and the persistent flows remains constant over
time.

We remind the reader that there areN persistent flows, the
capacity of the system isN , the mean file size of the transient
flows is 1, and the arrival rate of transient flows isλ.

Let x denote the initial size of a file, andx(t) its residual
size t time units after its arrival into the system, wheret is
smaller than its sojourn time in the system. We have

x(0) = x ,
d

dt
x(t) = − Nwx(t)

W
, (20)

wherewx(t) is specified in terms ofx(t) via (19). Let

T (x) = inf{t > 0 : x(t) = 0, x(0) = x}
denote the sojourn time of the file with initial sizex. We want
to derive expressions forT (x) and for the mean number of
transient flows in the system. To do that, we need an expression
for W .

Proposition 5.1: Under Assumption B, the total weightW ,
we have

W =
N

1− λ
.

The proof is in Appendix C. The idea of the proof is
as follows. We find an expression forw(x, t), the weight
contributed by a short flow with initial sizex after spending
t units of time in the system. This expression depends on
W . We then obtain the total weight in steady state due to all
arrivals by integrating this expression with respect to the file
size distribution. Adding this to the total weight of persistent
flows should yieldW . This gives a fixed point equation for
W , which we solve.

We now use Proposition 5.1 to computeT (x) and the mean
number of transient flows in the system.

Proposition 5.2: Letγ = wmax/wmin. We have the follow-
ing under Assumption B:

1) The sojourn time of a file with initial sizex, T (x), is
given by

T (x) =
1

awmin(1− λ)
log

[
1 +

eax − 1
γ

]
. (21)

2) The mean number of transient flows in the system,E[n],
is given by

E[n] =
Nλ

awmin(1− λ)
E

[
log

[
γ − 1 + eaX

γ

]]
, (22)

where,X is the random variable from which the file-
sizes of the transient flows are sampled. ¤

9

The proof is in Appendix C.
The (unweighted) processor sharing policy is recovered in

the limit a → 0, in which caseT (x) = x/((1−λ)wmax). The
sojourn time of a file is thus proportional to its size, which
is desirable in terms of fairness but has the disadvantage that
small files see poor performance.

Having quantified the parameters of interest, we next show
that the proposed dynamic weighted processor sharing scheme
has, on the one hand, the desirable near optimality described
in Section IV-B, and on the other hand, also provides a bias
towards short flows by giving them larger throughput.

B. Near optimality of the scheme

Observe that the bandwidth share of the persistent flows
is roughly N/W which is (1 − λ). Thus the utility of the
persistent flows is roughlyNu(1 − λ) in the regime we are
considering. Using the same argument as in Section IV-B,
if we show that the mean number of short flows is roughly
O(
√

N), then the minimum bandwidthNĉ required by an
optimal policy to achieve the same cost as achieved by the
dynamic weighted processor sharing policy will be given by
ĉ = 1−O(1/

√
N). This can be achieved in two ways.

If we set wmin = k1

√
N and wmax = γk1

√
N , it can be

seen from the expression ofE[n] that E[n] = O(
√

N), and
thus

E[Nu(x(n))− n] ≈ Nu(1− λ)−O(
√

N) .

Alternatively, suppose we setwmin = 1 and γ = k
√

N .
This has the interesting interpretation that an infinitely large
transient flow is not distinguished from a persistent flow and
thus gets the same weight as a persistent flow. So far we have
not assumed anything about the file size distribution other than
its finite mean. To show that the above choice of weights yields
near optimality, we further assume that the file size distribution
has a finite moment generating function (this is true if the file
sizes are bounded). To see thatE[n] = O(

√
N), note that we

have

lim
N→∞

E[n]√
N

= lim
N→∞

√
Nλ

awmin(1− λ)
E

[
log

[
k
√

N − 1 + eaX

k
√

N

]]

=
λ

a(1− λ)
E

[
lim

N→∞

√
N log

[
1 +

eaX − 1
k
√

N

]]

=
λ

ak(1− λ)
E

[
eaX − 1

]
< ∞ ,

where the exchange of limit and expectation can be justified
using the monotone convergence theorem sincey log(1+1/y)
is increasing iny. We clearly haveE[n] = O(

√
N) in this

case. Thus we have shown that, if we simply chooseγ =
k
√

N andwmin = 1 (wmax = k
√

N), we can still have near
optimality of the proposed dynamic processor sharing, in the
sense that the additional capacity per persistent flow required
in order to do as well as the optimal allocation isO(1/

√
N).

C. Bias towards short flows

We next show that the proposed scheme is indeed biased
towards short files. In order to quantify the extent to which it
favors short flows, we compute the ratio of sojourn times for
two different files, of sizesf1 andf2. With plain sharing, this
ratio isT (f1)/T (f2) = f1/f2. Denoting the ratiowmax/wmin

by γ, we obtain for the scheme proposed above that

T (f1)
T (f2)

=
log

[
1 + eaf1−1

γ

]

log
[
1 + eaf2−1

γ

] . (23)

We observe that iff1 and f2 are both large relative to1/a
and if, moreover,eafi/γ is much bigger than1 for i = 1, 2,
then T (f1)/T (f2) ≈ f1/f2. In other words, thethroughput,
defined as the ratio of file size to sojourn time, is roughly
constant for large files, meaning that the scheme approximates
processor sharing at large file sizes. Likewise, iff1 andf2 are
both small relative to1/a, then againT (f1)/T (f2) ≈ f1/f2.
Finally, supposef1 is large andf2 is small relative to1/a.
Then, by (23),

T (f1)
T (f2)

≈ af1 − log γ

af2/γ
≈ γf1

f2
=

wmax

wmin

f1

f2
.

In other words, the small files get a throughput approximately
γ times greater, or stretch (defined asT (f)/f) 1/γ =
wmin/wmax smaller than a large file. Loosely speaking, files
much smaller than1/a are “mice”, files much larger than1/a
are “elephants”, all mice are treated roughly equally, as are
all elephants, but mice are favored over elephants. Note that
this is achieved without explicitly splitting files into classes,
but simply by having them choose individual weights based
on their residual file sizes.

The degree to which mice are favored is determined by the
ratio γ = wmax/wmin. It needs to be kept in mind that this is
under the assumption thatW is constant, which is not valid
if there are no persistent flows. A model with no persistent
flows and with an SRPT service discipline has been studied
in [2], where it is shown that the stretch of long flows remains
bounded. The intuition is that there will be epochs when the
long flow is competing with very few or no short flows, at
which times it is not handicapped by its small weight. A
similar intuition applies to our model.

D. Simulation Results with the proposed scheme

We now present simulation results to show that the proposed
dynamic weighted processor sharing scheme can improve
the throughput of the transient flows without penalizing the
persistent flows when compared to systems using weighted
processor sharing with static weights.

We simulate a system with capacityC = 100 carrying
N = 25 persistent flows, each of which has weight1
and has the utility functionu(x) = −1/x. File transfers
arrive at rateλ, and file sizes have the Pareto distribution,
P (file-size > x) = 1/(1 + (x/f))2, x ≥ 0, with mean file
sizef = 100. We takea = 1/f , wmax = 50 andwmin = 10.
Performance measures for processor sharing with the scheme
described above, and processor sharing with constant (file-size

10

independent) weightsw for two different weights, 10 and 50,
are shown in Figure 2. The top panel shows the utility received
by the persistent flows under each policy, while the bottom
panel shows the throughput of transient flows. The simulation
results are based on 12,000 events (file arrivals) with a burn-in
period of 500 time units for the system to reach stationarity,
and, are averaged over multiple runs. Clearly, whenw = 50,
the average throughput of the transient flows goes up but at
the cost of a reduced utility for the persistent flows. When
w = 10, the persistent flows perform better but the average
throughput of the short flows decreases a lot. However, by
using the processor sharing described in this section, wherein
the weights of transient flows are varied dynamically, the
transient flows can achieve a large throughput without starving
the persistent flow much.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ut
ilit

y o
f a

 pe
rsi

ste
nt

flo
w

>

Normalized load offered by the Transient flows ------>

10<w<50
w=10
w=50

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Th
rou

gh
pu

t o
f th

e t
ran

sie
nt

flo
ws

 --

->

Normalized load offered by the Transient flows ------>

10<w<50
w=10
w=50

Fig. 2. Comparison of average utility of a persistent flow (top), and average
throughput of transient flows (bottom) with three schemes: in one the weights
of the short flows are varied between 10 (wmin) and 50 (wmax) according to
the scheme discussed in this section, and the other two are with fixed weights
(w) as 10 and 50 respectively. The parameters are: capacityC = 100, mean
file size f = 100, u(x) = −1

x
, number of persistent flowsN = 25. The

arrival rateλ is varied along thex-axis.

E. A distributed implementation

We assumed above that bandwidth is shared exactly
according to the proposed weighted scheme. We now propose
a mechanism to approximate this by a suitable modification to
the TCP flow control protocol. Recall that TCP is a window
flow control mechanism which operates as follows. In the
slow start phase, each received acknowledgment increases
the window size by one packet, while in the congestion
avoidance phaseW acknowledgments increase the window
size fromW to W + 1. Further each lost packet or negative
acknowledgment reduces the window size by half. We
propose the following modification, which we shall refer to
below as Dynamic-TCP.

Slow start: If the current window size isW and the residual
file size isfr, then a successful acknowledgment updates the
window size as

W ← W + (1 + (
wmax

wmin
− 1) exp (−afr)) .

Congestion avoidance:If the current window size isW and
the residual file size isfr, then a successful acknowledgment
updates the window size as

W ← W +
(1 + (wmax

wmin
− 1) exp (−afr))
bW c .

Window decrease:If the current window size isW and the
residual file size isfr, then a lost or marked packet (in an
ECN compatible system) reduces the window size as

W ← W × (
1
2

+
1
2

exp (−afr))

The main idea is to allow small files to increase their
window size more rapidly and decrease it more slowly. In
the above,wmax, wmin, a are system parameters. We now
present a very preliminary evaluation of this algorithm.

We consider a single link of capacity 800 packets per second
carrying 10 persistent flows. Transient flows arrive as a Poisson
process and have Pareto file sizes with ccdf1/(1 + x/f)2,
where the mean file size isf = 40. The link buffer employs
Random Early Marking [1]: when the number of packets in the
link buffer is q, an arriving packet is marked with probability
(1− exp(−γq)). We takeγ = 0.005. Each persistent flow has
a round trip delay of80 ms and adapts its rate using a standard
ECN compatible TCP. The round trip delays of the transient
flows are uniformly distributed in the interval[60, 200] ms. We
compare the scenarios where the transient flows use Dynamic-
TCP and where they use standard ECN compatible TCP. For
Dynamic-TCP, we usewmax/wmin = 5 and a = 0.02; the
latter choice corresponds to assuming that files smaller than
50 packets are ‘mice’. Figure 3 shows that Dynamic-TCP
achieves significantly better mean throughput for transient
flows at the price of a small reduction in throughput for the
persistent flows. The results presented are very preliminary
and a much more thorough investigation is needed to validate
these findings. It also remains to address the question of what
incentive users have to adopt the proposed weight parameters.
We have not considered this, but assumed that all users
comply. The purpose here has simply been to show that the
proposed scheme can, in principle, be implemented at end
systems. A great deal of further work is required on the
practicalities.

VI. CONCLUDING REMARKS

We considered the problem of optimal bandwidth allocation
in a system consisting of both persistent and transient flows.
Treating all transient flows as identical, we first described
simple algorithms that achieve a nearly optimal partitioning of
the available bandwidth between the persistent and transient
sources. We then studied the problem of how to share the
bandwidth allocated to transient flows among file transfers of
different sizes and described a distributed scheme that is biased
in favor of “mice” over “elephants”.

11

35

40

45

50

55

60

65

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45Av
era

ge
 th

rou
gh

pu
t o

f tr
an

sie
nt

flo
ws

 --

>

Normalized load -------->

Dynamic TCP
TCP

350

400

450

500

550

600

650

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Av
era

ge
 ra

te
of

Pe
rsi

ste
nt

flo
ws

 --

>

Normalized load -------->

Dynamic TCP
TCP

Fig. 3. Plots showing comparison between Dynamic-TCP and Standard-
TCP for average session-throughput seen by the transient flows and the time-
average rate of all the persistent flows. The plots are for Mean file Size =40,
Number of persistent flows =10. Arrival rate is varied along thex− axis

The optimal choice of parameters for the policies described
in Section IV requires knowledge of system parameters, which
is often unrealistic. We believe that comparable performance
can be achieved by adaptive policies that tune their parameters
based on measurements, but this is a topic for future research.
Extending our single-bottleneck analysis to networks is also
an open problem. Finally, a detailed implementation of the
proposed algorithms at end-systems and their evaluation is a
topic for future work.

REFERENCES

[1] S. Athuraliya, D. E. Lapsley, and S. H. Low, “Random early marking for
Internet congestion control,” inProceedings of IEEE GLOBECOM, Rio
de Janeiro, Brazil, 1999, pp. 1747–1752.

[2] N. Bansal and M. Harchol-Balter, “Analysis of SRPT scheduling: inves-
tigating unfairness”,Proc. ACM Sigmetrics, 2001.

[3] S. Blake, M. Carlson, E. Davies, B. Ohlman, D. Verma, Z. Wang and W.
Weiss, “A Framework for Differentiated Services”, Proceedings of the
forty-second Internet engineering task force, 1998

[4] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: Evidence and possible causes”,IEEE/ACM Trans. Networking,
5(6): 835–846, 1997.

[5] D. J. Daley and D. Vere-Jones,An Introduction to the Theory of Point
Processes. New York: Springer-Verlag, 1988.

[6] S. Deb, A. J. Ganesh and P. B. Key, “Resource Allocation with Persistent
and Transient Flows”,Proceedings of Networking 2002.

[7] S. Deb, A. J. Ganesh and P. B. Key, “ Resource Allocation with Persistent
and Transient Flows”Microsoft Research Technical Report, MSR-TR-
2001-114.

[8] C. Gromoll, “Diffusion approximation for a processor sharing queue in
heavy traffic”,Annals of Applied Probability, 14: 555–611, 2004.

[9] R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control”,Automatica, 35: 1969–1985, 1999.

[10] M. Harchol-Balter, B. Schoeder, N. Bansal and M. Agarwal, “Size-
based scheduling to improve Web performance”,ACM Transactions on
Computer Systems, 21, 2003.

[11] P. Hurley, J. Y. le Boudec and P. Thiran, “A note on the fairness of
additive increase and multiplicative decrease”,Proc. ITC–16, 1999.

[12] F. P. Kelly, “Mathematical modelling of the Internet”, inMathematics
Unlimited - 2001 and Beyond, B. Engquist and W. Schmid eds., Berlin:
Springer-Verlag, 2001.

[13] F. P. Kelly,Reversibility and Stochastic Networks, John Wiley and Sons,
New York, 1979.

[14] L. Kleinroch, Queueing Systems, Volume 2: Computer Applications,
Wiley–Interscience, New York, 1975.

[15] F. P. Kelly, A. Maulloo and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability”,J. Oper.
Res. Soc., 49: 237–252, 1998.

[16] P. Key and L. Massoulié “User policies in a network implementing
congestion pricing”, Workshop on Internet Service Quality Economics
(ISQE), 1999.

[17] S. Kunniyur and R. Srikant, “End-to-end congestion control: utility
functions, random losses and ECN marks”,Proceedings of INFOCOM
2000,March, 2000, Tel Aviv, Israel.

[18] R. J. La and V. Anantharam, “Charge-sensitive TCP and rate control in
the Internet”,Proc. Infocom, 2000.

[19] S. H. Low and D.E. Lapsley, “Optimization flow control – I: Basic
algorithm and convergence”,IEEE/ACM Transactions on Networking, 7:
861–875, 1999.

[20] L. Massoulíe and J. Roberts, “Bandwidth sharing: objectives and algo-
rithms”, IEEE/ACM Trans. Networking, 10(3): 320–328, 2002.

[21] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control”, IEEE/ACM Trans. Networking, 8(5): 556–567, 2000.

[22] J. Padhye, J. Kurose, D. Towsley and R. Koodli, “A Model Based
TCP-friendly Rate Control Protocol”, Proc. International Workshop on
Network and Operating System Support for Digital Audio and Video
(NOSSDAV), NJ, June 1999.

[23] S. M. Ross,Introduction to Stochastic Dynamic Programming, New
York: Academic Press, 1983.

[24] S. Shenker, “Fundamental design issues for the future Internet”,IEEE
Journal on Selected Areas of Communications, 13: 1176–1188, 1995.

[25] H. C. Tijms, Stochastic Models: An Algorithmic Approach, Chichester:
John Wiley & Sons, 1994.

[26] M. Vojnovic, J. Y. le Boudec and C. Boutremans, “Global fairness of
additive-increase and multiplicative-decrease with heterogeneous round
trip times”, Proc. IEEE Infocom, 2000.

APPENDIX

A. Proof of Lemma 4.2.

Lemma: Leta > 0 be arbitrary and letw = a
√

N , so that
K =

√
N/a. Let n∗ be the integer part ofKλ/(1− λ). (The

dependence ofw, K andn∗ on N has not been made explicit
in the notation.) For anyδ > 0, there are constantsc1, c2 > 0,
not depending onN , such that

∞∑

m=(1+δ)n∗
π(n) ≤ c1e

−c2
√

N ,

(1−δ)n∗∑
m=0

π(n) ≤ c1e
−c2

√
N ,

for all N sufficiently large.
Proof: For ease of computation, we will treatKλ/(1−λ)

as an integer so thatn∗ = Kλ/(1 − λ). The same argument
goes through whenKλ/(1− λ)− 1 < n∗ ≤ Kλ/(1− λ).

Observe that ifi ≥ δn∗, then

π(n∗ + i + 1)
π(n∗ + i)

=
(
1 +

K

n∗ + i + 1

)
λ ≤

(
1 +

K

(1 + δ)n∗ + 1

)
λ

≤
(
1 +

1− λ

(1 + δ)λ

)
λ =

1 + δλ

1 + δ
,

where we have substitutedn∗ = Kλ/(1 − λ) to obtain the
second inequality. Hence,

∞∑

m=(1+δ)n∗
π(n) ≤ π((1 + δ)n∗)

∞∑
m=0

(1 + δλ

1 + δ

)m

(24)

=
1 + δ

δ(1− λ)
π((1 + δ)n∗). (25)

12

We also have by (14) and Stirling’s formula that

π((1 + δ)n∗) ≤
(K + (1 + δ)n∗

K

)K(K + (1 + δ)n∗

(1 + δ)n∗
)(1+δ)n∗

λ(1+δ)n∗(1− λ)K+1.

Taking logarithms, we get

log π((1+δ)n∗) ≤ −(K+(1+δ)n∗)H
(K

K + (1 + δ)n∗
; 1−λ

)
,

whereH(q; p) := q log q
p +(1−q) log 1−q

1−p denotes the relative
entropy or Kullback-Leibler divergence of the Bernoulli dis-
tribution with parameterq relative to the Bernoulli distribution
with parameterp. Substituting forn∗ yields

log π((1 + δ)n∗) ≤ −K(1 + δλ)
1− λ

H
(1− λ

1 + δλ
; 1− λ

)
.

Now the relative entropyH(q; p) is strictly positive ifq 6= p,
andK =

√
N/a, so we have

π((1 + δ)n∗) ≤ e−c2
√

N ,

for some constantc2 > 0. Combining this with (24) yields
the first claim of the lemma. The proof of the second claim is
similar and is omitted.

B. Proof of Lemma 4.3.

Lemma: Leta > 0 be arbitrary, and letw = a
√

N be the
relative weight assigned to each short flow. Ifu(·) satisfies
Assumption A, then

EπW (w)[Nu(x(n))− n] = Nu(1− λ)−O(
√

N).

Proof: We shall denote byEπ expectations with respect
to the invariant distributionπ induced by the policyπW (w).
We can decomposeEπ[u(x(n))] as

Eπ[u(x(n))] =
βK−1∑

k=0

π(k)u(x(k)) +
∞∑

k=βK

π(k)u(x(k)),

(26)
where β > 0 is an arbitrary constant, andx(k) = K

K+k is
the per-flow bandwidth allocated to each persistent flow when
there arek transient flows in the system. We want to show that
Eπ[u(x(n))] is not much smaller thanu(1− λ), i.e., we seek
a lower bound onEπ[u(x(n))]. Now, if u is non-negative, it
is clear that ignoring the second term in the sum above gives
a lower bound. Hence, we shall only consider the case where
u(x) is negative for small enoughx, and show in this case
that the second term above is negligible.

Observe that

π(k + 1)
π(k)

=
K + k + 1

K + 1
λ ≤ (1 + β)λ

β
∀ k ≥ βK.

Since λ < 1, this ratio is strictly smaller than1 for large
enoughβ. We shall denote its logarithm by−γ, so thatγ > 0.
Proceeding as in the proof of Lemma 4.2, we have

π(βK + m) ≤ e−γmπ(βK) ≤ e−c
√

Ne−γm, (27)

wherec is a positive constant andγ = − log[(1+β)λ)/β] > 0.

Next, observe thatx(k) → 0 as k → ∞ and so, for
β sufficiently large,u(x(k)) < 0 wheneverk ≥ βK. For
sequencesaN , bN , we shall writeaN ³ bN to mean that
the ratio aN/bN is bounded away from zero and infinity,
uniformly in N . Now, by (27),

∞∑

k=βK

π(k)u(x(k)) ≥ e−c
√

N
∞∑

m=0

e−γmu
(K

K + βK + m

)

³ e−c
√

N

∫ ∞

x=0

e−γxu
(K

K + βK + x

)
dx.

Noting thatK = N/w =
√

N/a, and making the change of
variablesy = x/K, we get

∞∑

k=βK

π(k)u(x(k))

≥ c1

√
Ne−c

√
N

∫ ∞

0

e−
γ
√

N
a yu

(1
1 + β + y

)
dy

≥ c1

√
Ne−c

√
N

[∫ 1+β

0

e−
γ
√

N
a yu

(1
1 + β + y

)
dy

+
∫ ∞

1+β

e−
γ
√

N
a yu

(1
2y

)
dy

]
.

Sinceu(1
1+β+y) is bounded on the compact interval[0, 1+β],

the first integral in the last line above goes to zero asN →∞
by dominated convergence. For large enoughN , the second
integrand is bounded above bye−ηyu(1

2y), which is integrable
over [1+β,∞) by Assumption A. Hence, the second integral
also goes to zero by dominated convergence.

We have thus shown that
∑∞

k=βK π(k)u(x(k)) is either

positive or goes to zero faster thane−c
√

N . In either case,
the second term in the sum in (26) can be ignored in de-
riving a lower bound onEπ[u(x(n))]. It remains to evaluate
Eπ[u(x(n))1(n<βK)].

Expandingu(x) in a Taylor series around1− λ, we get

u(x) = u(1−λ)+(x−1+λ)u′(1−λ)+
(x− 1 + λ)2

2
u′′(y(x)),

(28)
for somey(x) lying betweenx and1− λ. Now,

Eπ[u(1− λ)1(n<βK)] = u(1− λ)
[
1−

∞∑

k=βK

π(k)
]

(29)

= u(1− λ)(1−O(e−c
√

N)

for some constantc > 0, by Lemma (4.2). We also have

Eπ[x(n)] = Eπ

[K

K + n

]
=

∞∑

k=0

π(k)
K

K + k
(30)

=
∞∑

k=0

Γ(K + k + 1)
Γ(K + 1)Γ(k + 1)

K

K + k
λk(1− λ)K+1

= (1− λ)K+1
∞∑

k=0

Γ(K + k)
Γ(K)Γ(k + 1)

λk = 1− λ.

(31)

13

We have used the relationΓ(a + 1) = aΓ(a) to obtain the
third equality, and (13) to obtain the last equality. Therefore,

Eπ[(x(n)− 1 + λ)1(n<βK)] (32)

=
∞∑

k=βK

π(k)
(
1− λ− K

K + k

)
= O(e−c

√
N),

by Lemma (4.2), sinceK/(K + k) ≤ 1 for all k.
Now, if k < βK, thenx(k) ≥ 1/(1 + β). The continuous

function u′′(·) is bounded below on the compact set[1
1+β , 1],

say by−κ (u′′ is negative sinceu is concave). Thus,

Eπ[(x(n)− 1 + λ)2u′′(y(x(n))1(n<βK)]

≥ −κEπ

[(K

K + n
− 1 + λ

)21(n<βK)

]
.

Now, analogous to (31), we have

Eπ

[K(K − 1)
(K + n)(K + n− 1)

]
= (1− λ)2.

Moreover,

K2

(K + k)2
− K(K − 1)

(K + k)(K + k − 1)
=

Kk

(K + k)2(K + k − 1)

≤ 1
K2

=
a2

N
∀ k,

soEπ[(K
K+n)2] = (1−λ)2 +O(1

N). Combining this with (31)
yields

Eπ

[(K

K + n
− (1− λ)

)2] = O
(1
N

)
.

Since x(n) = K
K+n is bounded by1, it now follows from

Lemma 4.2 that

Eπ[(x(n)− 1 + λ)2u′′(y(x(n))1(n<βK)] (33)

≥ −κ[O(
1
N

+ O(e−c
√

N)] = O
(1
N

)
.

Now it follows from (28), (29), (32) and (33) that

Eπ[u(x(n))1(n<βK] = u(1− λ)−O
(1
N

)
,

and so, by (26),

Eπ[Nu(x(n))] ≥ Nu(1− λ)−O(1).

We also have by (16) thatEπ[n] = O(K) = O(
√

N). This
establishes the claim of the lemma. ¤

C. Derivations pertaining to Section V-A

Let x denote the initial size of a file, andx(t) its residual
size t time units after its arrival into the system, wheret is
smaller than its sojourn time in the system. We have

x(0) = x ,
d

dt
x(t) = − Nwx(t)

W
, (34)

wherewx(t) is specified in terms ofx(t) via (19). Using (19),
we can rewrite the above as

d

dt
wx(t) =

Na

W
(wx(t) − wmin)wx(t).

The solution of this differential equation is

1− wmin

wx(t)
=

[
1− wmin

wx

]
exp

(Nawmin

W
t
)
. (35)

Let T (x) = inf{t > 0 : x(t) = 0, x(0) = x} denote the
sojourn time of the file. Thus,T (x) = inf{t > 0 : wx(t) =
wmax, x(0) = x} and it satisfies

1− wmin

wmax
=

[
1− wmin

wx

]
exp

(Nawmin

W
T (x)

)

which yields

T (x) =
W

Nawmin
log

[
1 +

wmin

wmax
(eax − 1)

]
. (36)

Recall that, by the sojourn time formula given by (36), a file
transfer of sizex originated at time−t is there in the system
at time zero ifT (x) > t which upon simplification yields
x > g(t), where,

g(t) =
1
a

log
(

1 +
wmax

wmin

[
exp

(Nawmin

W
t
)
− 1

])
. (37)

Let F denote the complementary file size distribution, i.e.,
F (x) = 1−F (x) is the probability that the size of a randomly
chosen file is bigger thanx. Then, the mean number of file
transfers in progress at any time is given by

E[n] = Nλ

∫ ∞

0

∫ ∞

g(t)

dF (x)dt

We are now in a position to prove Proposition 5.1 and
Proposition 5.2. We restate them below for convenience.

Proposition: Under Assumption B, the total weightW ,
which is assumed to be a constant must satisfy

W =
N

1− λ
.

Proof: Let w(x, t) be the weight contributed by a file
initiated at time−t of initial size x. Clearly, the total weight
contributed by all the flows at time0 is the sum of the weight
contributed by the persistent flows and the weight contributed
by the transient flows at time0. We thus have,

W = N + Nλ

∫ ∞

0

∫ ∞

g(t)

w(x, t)dF (x)dt (38)

which provides a fixed point equation forW (since g(t)
depends onW). To prove Proposition 5.1, it is thus enough to
show that the fixed point equation (38) has a unique solution
given by

W =
N

1− λ
.

First note that the condition (37), can be equivalently written
as

t <
W

Nawmin
log

[
γ − 1 + eax

γ

]
,

whereγ = wmax/wmin. Thus, we can change the order of
integration in (38) and write the weight contributed by the

14

short flows as

Nλ

∫ ∞

x=0

∫ W
Nawmint log

[
γ−1+eax

γ

]

t=0

wmin(γ − 1 + eax)

γ − 1 + eax − (γ − 1)e
Nawmin

W t
dt dF (x) .

By observing that
∫

α

α− βeθt
dt = t− log(α− βeθt)

θ
,

we can write the fixed point equation as

W = N + Nλ

∫ ∞

x=0

∫ W
Nawmin

log
[

γ−1+eax

γ

]

t=0

wmin(γ − 1 + eax)

γ − 1 + eax − (γ − 1)e
Nawmin

W t
dt dF (x)

= N + Nλ

∫ ∞

x=0

W

Na

(
log

[
γ − 1 + eax

γ

]

+ ax− log
[
γ − 1 + eax

γ

])
dF (x)

= N + WλEX ,

where EX is the expected file size. But since we assumed
EX = 1, we haveW = N/(1− λ)

Proposition: Letγ = wmax/wmin. We have the following
under Assumption B:

1) The sojourn time of a file with initial sizex, T (x), is
given by

T (x) =
1

awmin(1− λ)
log

[
1 +

eax − 1
γ

]
. (39)

2) The mean number of transient flows in the system,E[n],
is given by

E[n] =
Nλ

awmin(1− λ)
E

[
log

[
γ − 1 + eaX

γ

]]
, (40)

where,X is the random variable from which the file-
sizes of the transient flows are sampled. ¤

Proof: The expression forT (x) follows immediately
from (36) after plugging in the expression forW . Thus, the
mean sojourn time is given byE[T (X)], where X is the
random varibale from which the file sizes are sampled. The
mean number of transient flows can be now obtained using
Little’s formula asE[n] = NλE[T (X)].

As long as theEX < ∞, it is easy to see thatE[T (X)]
exists sincelog

[
γ−1+eax

γ

]
< ax for γ > 1.

