Resource Allocation between Persistent and
Transient Flows

Supratim Deb, Ayalvadi Ganesh, and Peter Key

Abstract—The flow control algorithms currently used in the throughput over the entire transfer period, real-time flows
Internet have been tailored to share available capacity between typically care about the rate they receive at each instant in time
users on the basis of the physical characteristics of the network (or, more precisely, averages over time periods much shorter
links they use rather than the characteristics of their applications. ' L ’ . .
However, real-time applications typically have very different than the lifetime of the conne(?tlon). The valge of Capac!ty
requirements from file transfer or Web browsing, and treating @llocated to a user can be described mathematically by a utility
them identically can result in a perception of poor quality of function which captures elements of the quality of service
service even when adequate bandwidth is available. This is the perceived by the user [24]. The resource allocation problem

motivation for differentiated services. In this paper, we explore i ot
) k S ; i P e can be cast as one of maximizing the aggregate utility of all
service differentiation between persistent (fixed duration) and USErs 9 9greg y

transient (fixed volume) flows, and also between transient flows
of markedly different sizes; the latter is stimulated by current We model the utility for a file transfer as the negative of
discussion on Web mice and elephants. We propose decentralizedyhg ime taken to complete the transfer. For real-time traffic,

bandwidth allocation algorithms that can be implemented by . ) . .
end-systems without requiring the support of a complex network W& assume that the total utility obtained is the integral of

architecture, and show that they achieve performance very close an instantaneous utility over the lifetime of the connection;
to what is achievable by the optimal centralized scheme. the instantaneous utility, in turn, is modeled as an increasing
Keywords: Service differentiation, bandwidth allocation, de- and concave function of the rate received by the flow at that
_centtr_ahzed control, weighted processor sharing, shortest process- jnstant, This model is popular in the literature, and sources

ing time. with such a utility function are termeelastic There has

been considerable recent work on sharing capacity between

l. INTRODUCTION persistent elastic users [15], [19], [17], [21]. However, the
) ) I:problem of combining such sources with transient sessions
Flow control in the Internet is currently performed by TCFg oy a5 file transfers has received little attention. One recent

This protocol performs two important functions: it detects a”&udy [16] suggests that, when the two traffic types share a
responds to congestion, and it aims to achief@raallocation anwork. file transfers should receive priority.

of network capacity among users. As TCP is oblivious to , )
the nature of the application transferring data, it aims to” Sécond, related problem we address is that of sharing

achieve fairness at a rather fine-grained level of instantaneS{§Work capacity between file transfers of markedly different

capacity allocation. This has worked well in an environmerf{zes: TCP does not differentiate on the basis of file size.
consisting of fairly homogeneous applications, with similaf/¢ ask whether it is possible to improve performance for
all files without significantly degrading it for large files.

characteristics and requirements. However, as the diversity. . icular i i th
of applications on the Internet increases, there is a need fgHS duestion assumes particular importance in the context

additional mechanisms to provide a quality of service (Q0§f the finding by a number of researchers that file sizes on

appropriate to the application and specific to its requirementd® Web have a heavy-tailed distribution [4]: when file sizes

A one-size-fits-all approach can result in applications seeind’%ry over several orders of magnitude, treating all file transfers

poor QoS even when adequate capacity is available to provifgntically may not be appropriate.
each application with a good QoS. This motivated service The main contributions of this paper are as follows. We
differentiation efforts such as Diffserv. consider a single bottleneck link of capaci¥e shared byNV
In this paper, we consider specifically the problem of shapersistent flows, and by transient flows arriving at the points
ing network capacity between file transfers and real-time traffi¢ a Poisson process of rafé\. In Section Il, we propose an
such as Internet telephony or video conferencing. Real-timbjective function which takes into account both the utility of
flows are usually long-lived and can be treated as persistgearsistent flows and the mean delay of transient flows in the
sources for purposes of analysis, in a way we make precisesirstem. We obtain bounds on the optimal cost in Section IlI.
the next section. They have very different quality of service Section IV, we show that certain easy-to-implement sub-
requirements from file transfers. Whereas what matters for fidptimal-policies are close to optimal in the largé regime.
transfers is usually the transfer time, or equivalently, averaffe Section V, motivated by recent work on biasing in favor
of short jobs in a queueing system [2], [10], we propose a
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[I. MODEL AND PROBLEM FORMULATION paper. Concavity reflects the diminishing marginal utility of
We consider a single link shared by two different klndQandmdth, equwalently,_ it asserts _that a fixed constant rate is
. ) S referable to a fluctuating rate with the same mean. It also
of flow. Flows of the first kind each remain in the syste . . . o )
s . ) .helps to capture the notion of fairness in a utilitarian setting,
for a “fixed” duration (the duration may be random, but is . ) L . i .
wherein we defineptimalityin terms of social welfare; that is,

independent of the capacity allocated), while flows of thgn optimal allocation is one that maximizes aggregate utility.

second kind each have a fixed volume of data to transf% see this, note that concavity implies via Jensen’s inequalit
The former typically describe real-time streaming media whil . T -avity imp . quanty
X . t?}at, in an optimal allocation, all users with the same utility
the latter correspond to file transfers. These two kinds . . .
unction will get the same amount of bandwidth.

applications have different quality of service requirements, : . -
which will be reflected in our model. For simplicity, we. The assumption that the nu_mber of persistent flows is fixed

. . iis_not essential. One alternative would be model these flows
shall assume that the number of fixed-duration flows remains

constant; we shall refer to such flows persistent and we as arriving according to a Poisson process of réteand re-

shall refer to fixed-volume flows ashort or transientflows. maining in the system for a fixed (random) duration with finite

Note that it is not important for the validity of this assumptiorﬁ: ne dair:j’é{] ﬁée?lIthdeii,?ri?)tjizgo?ﬁeﬁster:\élcr:li%?:fé?rzrggfepni?%w;
that individual “persistent” flows be long-lived relative to. y T P
S o h T ) in the system can be described by ah/G /oo queue. It
individual “short” flows. What is important is that the total. X ) S

. : is well known for this queue that, for arbitrary service time
number of persistent flows should remain nearly constant oy |£tributions the number of flows in the system in equilibrium
the typical lifetime of a short flow. ' Y 9

) . . . , has a Poisson distribution with me&fv /.. For largeN, the
Consider a single link of capacityc shared by a fixed . .. ; . .
! . istribution concentrates around its mean value, with typical
number,N, of persistent flows and a variable number of shorf; . . : . .
. . . R .. Tluctuations being of ordek/N. This observation provides
lived flows. We are typically interested in high-capacity links S . .
. . A . some justification for modeling the number of persistent flows
multiplexing a large number of flows, i.e., in a largeregime. . . : .
. . in a large system as constant, irrespective of the duration of a
The persistent flows are modeled as belonging to ond of

. . . . . . single flow.
classes, with a proportiom; in classj, and with each flow in . . .
. . . . " . The problem of sharing capacity optimally between per-
classj having an increasing and strictly concave instantaneous L
- . g SiStent sources has been studied in [15], [17], [18], [19], for
utility function u;. If Nz is the aggregate rate allocated to thé C _
4 . . example. Therefore, in this paper, we assume that any capacity
persistent flows, then the aggregate utility received by thesﬁz . : )
Share allocated to persistent flows is optimally shared between
flows can be modeled a¥u(x), where S .
them, and concentrate on how to partition the available capac-
u(z) = Sup{zajuj(xj) : Zajfﬂj _ J;} |t% between per3|hstent an_d tra]\CInS|ent flows, alls Wellhas_ h(l)_v_v to
= = share it among the transient flows. To simplify technicalities
in the analysis below, we assume in addition thdt) is
In words, Nu(x) is a sup convolution of the individual differentiable.
utilities; it is the utility that would be achieved by sharing Short flows correspond to file transfers. They arrive into
the capacityNVx optimally among the persistent flows. It carthe system at the points of a Poisson process of Xateand
be shown thatu(-) is also increasing and strictly concaveleave when the file transfer is complete. The file sizes are
Henceforth, we shall simply assume that the aggregate utilindependent and identically distributed (iid) random variables.
of persistent flows can be modeled @u(x) for some We make no assumption about the file size distribution other
increasing and strictly concave The total utility over a time than that it has a finite mearf, Without loss of generality,
period is given by the integral of the instantaneous utility oveye takec = 1 and f = 1 for notational convenience, so that
that period. A denotes the normalized load offered by the short flows. We
Such concave utility functions were introduced bghall assume that < 1; this is necessary to ensure that there
Shenker [24] to describe elastic users, and have subsequeitls policy which makes the system stable, i.e., prevents the
been used in [12], [20], [26], [11], for example. Elastiqumber of backlogged short flows increasing without bound.
traffic is normally thought of as delay-insensitive, or dat@ihere is a unit holding cost per unit time for each short flow
transfer, whereas here we are characterizes-time traffic  in the system. The goal is to maximize the time average of
as elastic. This is appropriate for real-time traffic which ha§w(z(t)) — n(t), where n(t) denotes the number of short
adaptive codecs, or which seeks to mimic the behavior féws in the system at time. To this end, we introduce the
congestion-controlled data, such as ‘TCP-friendly’ rate contrpkrformance objective,
schemes [22]. Indeed, a simple approximation to TCP is to use

T
a utility function of the formu;(z) = —1/(T7z) whereT; is Jx(n, f) = lim inf lE[/ [Nu(z(t))
the round-trip time for a clasg flow [17]. T—oo T 0
We also note that it is enough if the utility functions — n(t))dt ‘n(o) =n, f17~-~,fn}, (1)

are concave in some neighborhood of the typical “operating

point”. If concavity does not hold in the region of interestwhere f; denotes the residual workload of tti& short flow
then the optimal way to allocate capacity is to perform adia the system at timé®. We seek a policyr that maximizes
mission control and provide adequate capacity to the admittidis objective. A policy specifies, at each tinig the rate
sources. This is a separate topic which we do not treat in thii&z(¢) allocated to persistent flows, as well as how to share



the remaining capacityV(1 — z(¢)), among the short flows. RemarksSinceh(z)/x can go to infinity arbitrarily slowly,
We shall restrict attention to stationary policies under whidie assumption thak[h(b;)] < oo is only slightly stronger
the stochastic procegs(t), n(t)) is ergodic, so that the limit than requiring thak; have a finite mean. For example, it would
exists in the RHS of (1), though it could possibly bec. Note suffice if E[bl“e} < oo for somee > 0. Alternatively, if the
that the restriction to such policies is not empty. For exampliile size distribution has a Pareto densjtix) = c(a + 2) ™,
the policy = that allocates a fixed capacityx to persistent then the assumption holds provided> 2, i.e., the mean file
flows at all timest, for somex € (0,c — A), and shares the size is finite; herec anda are positive constants.

residual capacity equally among all short flows in the system,The lemma says that any polieywhich allocates capacity
has this property: it is clearly stationary, and ergodicity followless than N(A — ¢) on average to short flows will cause
from well known properties of thé//G/1— PS queue, where the number of short flows backlogged to grow to infinity.
PS stands for processor sharing. Thug,(n, f) denotes the This is not altogether trivial: we cannot rule ouwt, priori,
long-term average oNu(x(t)) — n(t) under a policyr when the possibility that the amount of backlogged work grows
there are initiallyn short flows in the system, with respectiveo infinity while the number of backlogged flows remains
residual workloads, .. ., f,. Let 7, denote the sojourn time bounded, in expectation.

of the ™ short flow to enter the system. By Little’s law the  Proof: Let W (0) = f1+. ..+ f,, denote the total residual
time average ofi(t) is the same ag times the average valuework due to short flows initially in the system at tinde For

of 7, where these averages are defined as the policy =, we have
n Th_I)r;o 7, n(t)dt, T khi& z ;Tj, tlg(r)lo ; (W (t) —W(0)] > tli>rro10 ; [B(t) /0 N(1 x(s))ds}
! > Nea.s. 3

respectively, along each sample path where the limits exist.

The equalitym = A7 holds for every such sample path. ByThe first inequality says that the woil (¢t) — W (0) back-

the assumed ergodicity of(¢), these limits exist, and have thelogged between time8 and+¢ is at least the total worlB3(t)

same value, on all but a measure zero subset of sample patingving during this time, less the maximum work that could

Thus, we can view the objective as maximizing the utilithave been completed, namely, the total capagfb’iy\f(l —

of real-time flows, subject to a bound on the mean sojourris))ds allocated to short flows during this period.

time of file transfers. The objective function above is precisely Observe from (2) and (3) that, for amy< (0,1), we have

the Lagrangian for this optimization problem, wherean be for T sufficiently large that

interpreted as the Lagrange multiplier.

P(W(t)—W(0) > Net and A(t) < NA+e)tVit>T) > a.

4

DenoteE[h(by)] by m. We have by Markov's inequality and
We now derive an upper bound on the value of the objectiiee monotonicity ofh that P(b; > 2) = P(h(b1) > h(z)) <

function J, (n, f) that is achievable by any poliey, expressed m/h(z) for all z > 0. Fix M > 0, arbitrarily large. Now, by

in Theorem 3.1 below. By comparing this with the valughe independence of thg,

attained by specific sub-optimal policies, we shall show in

Ill. BOUNDS ON THE OPTIMAL VALUE FUNCTION

the next section that those policies are close to optimal. P(bi < Net Vi=1,..., [N\ + e)tJ)

Let A(t) denote the number of short flows arriving during M No)t
the time intervall0, ], B(t) = by + by + ...+ ba(y the total > (1 _ L) )
work brought in by these flows arid (¢) the total work due h(Net/M)

to short flows backlogged at time Since A(t) is a Poisson gt the RHS goes to 1 as— oo since h(Net/M) grows
process and the; are iid with meant, independent ofA(¢),  taster thary, by assumption. Now, if the work backlogged at
we have time t is no smaller thariVet, and if no flow contributes more
1 _ 1 _ than Net/M, then the number of backlogged flows must be
S ?A(t) =Nias, lim ?B(t) =Nras, (2 i jeasth. Thus, it is immediate from (4) and (5) that, given

where a.s. stands for “almost surely”. We now characteriz&Y M >0 anda < (0,1), it holds for all# sufficiently large

the minimum capacity that has to be allocated to the shéfet

flows. P(n(t) > M) > «. (6)
Lemma 3.1: Suppose that, for some strictly increasing func- ) o

tion i : R, — R, satisfyingh(z)/z — oo asz — oo, Therefore, by the Borel-Cantelli lemma(t) > M infinitely

we haveE[h(b)] < +oo. Let (n,f) be an arbitrary initial ©Oft€N. i.€., limsup, o, n(t) > M. Since this holds for
condition. Suppose that is a policy which, for some > 0, arbitrarily largeM, the first claim of the claim is established.
satisfies The second claim follows becausg (n,f) < Nu(l) —

1 /T lim sup,_, . n(t), asu(x(t)) < u(1) for all t. This completes
lim —/ x(t)dt >1—X+eas the proof of the lemma. [ |

0 We now look at the performance of policies which allocate
Then,limsupy_, ., n(T) = 400, and soJ;(n,f) = —oo. at leastNV ) to the short flows.



Lemma 3.2: Lefn,f) be an arbitrary initial condition and achieved using the optimal policy on a link of capaci¥i¢.

let 7 be any policy for which Thus, (1 —¢) is the additional capacity required per-persistent
1 T flow, for a sub-optimal policy to do as well as the optimal

T := lim 7/ x(t)dt <1 - \a.s; policy. We show that, with a proper choice of parameters, the

T=eo 0 sub-optimal policies described in this section do as well as the

the existence of the limit is part of the assumption. Then,optimal policy for1 — ¢ = O(1/v/'N).
Jre(n, £) < Nu((1 = N)).
Proof: Sincew was assumed to be concave, we obtaiA. Static policy

from Jensen’s inequality and the non-negativityngt) that A fixed amount of bandwidthVc is reserved for the per-
1 [T 1 (T sistent sources and the remaind¥i(1 — ¢), is shared equally
T/ [Nu(z(t)) — n(t)]dt < N“(f/ x(t)dt) ; among the transient flows. We shall denote this potigyc),
0 0

using the subscripf to signify that the bandwidth partitioning
for every T > 0. Taking expectations and using Jensenig static. This policy involves logically partitioning the link
inequality once more, we get between persistent and transient flows and using a flow-
1 (7 1 (7 control mechanism that shares capacity equally among the
E(T/ [Nu(z(t)) — n(t)}dt) < NU<E{T/ :v(t)dtD. transient flows. The logical partitioning can be implemented,
0 0 @ for example, by maintaining separate buffers for traffic from
Since L foT z(t)dt converges taz almost surely, and since persister}t' and transient sources anq serving these buffers at
x(t) € [0,1] for all t, it follows by dominated convergencethe specified ratesyc and N (1 —c), using a weighted round-

that robin policy. This can be thought of as a rather simple special
1 /T B case of the Diffserv architecture [3]. With regard to sharing the
E {f /0 x(t)dt} - allocated capacity equally among flows of the same type, TCP

approximately achieves this if all flows have the same access
bandwidth and round-trip time. Another alternative is to use
1 [T - the scheme of [9] with all flows of a given type (transient or
“(E[f/ x(t)dtD — uw(T) <u(l=A). persistent) having the same willingness-to-pay parameter.
o . i ) Now, irrespective of the file size distribution, the number
Substituting this in (7) yields the claim of the lemma, by thg¢ st flows in progress evolves like the queue size in an
definition of Jr. _ B M/GI/1— PS queue, with loadp = A/(1 — c). The equi-
We can now St&_lte the_ follpwlng upper bound on the Valqﬁ)rium gueue length distribution is geometric with parameter
of any ergodic policy, which is immediate from the above twg (see [13], for example), and so the mean number of short

lemmas. o o . flows in progress iz [n] = p/(1 — p). We thus obtain the
Theorem 3.1: Suppose the file size distribution satisfies %‘ﬁowing.

assumption in Lemma 3.1. Then, for any initial conditjenf) Lemma 4.1: Let > 0 be arbitrary, and letz = 1—\— 9.
and any ergodic policyr, Then ' ) v

and by the continuity and monotonicity af that

Jr(n,f) < Nu(l=2) . Ero(o[Nu(z(n)) —n] = Nu(1 - \) — O(VN).

In the next section, we shall consider specific sub-optimal  proof: The load in the queue serving short flows is
policies. By comparing them with the upper bound derived N\ A\
above, we shall show that they are close to optimal, for p= = ,
arbitrary file size distributions. It is difficult to determine the Nd=¢ A+ (a/VN)
optimal policy in the general setting considered so far. Whemd so the mean number of short flows in the system is given
file sizes are exponentially distributed, [7], [6] show how tby
calculate the optimal policy using value iteration, and describe Epyoln] = P ém 8)
some structural properties of the optimal policy. et I—p a

On the other hand, each persistent flow receives capacity
V. SUB-OPTIMAL POLICIES and so the mean utility of persistent flows is given by

In the remainder of the paper, we assume that the utility Ery(o[Nu(z)] = Nu(c) = Nu(l S L)
function v is strictly concave, increasing and twice contin- N VN

uously differentiable. We describe two simple policies below = Nu(l - \) — aV'Nu'(y), 9)
and show that .thgy.are close to optimal, in an asymptotic sel?gg somey in the interval[1 —  — -1 — A]. Now, by (8)
as N tends to infinity. VN

Before we describe the sub-optimal policies, we state oﬂpd ©),

metr_lod of evaluating a sub-optim'al pqlicy. The question. we Ery(o[Nu(z) —n] = Nu(1 — )) — [au’(y) + ﬁ} V'N.
ask is, how much worse than optimal is a given sub-optimal . a

policy? One way to quantify this is to ask how large a capacifyince the continuous functioa’ is bounded on the compact
N¢é is needed, so that the total utility achieved using the giventerval [1 — )\ — ﬁ,l — ], the claim of the lemma is
sub-optimal policy on a link of capacity is at least the utility established. [ ]



How much worse than optimal is the static policy? As noted" (-) converges in distribution (a& — o) to a reflected
before, we ask, how large a capacity¢ is needed, so that Brownian motion with negative drift, which we denol¥-).
the total utility achieved using the static policy on a link oNow, for the processR(-), %fOT R(t)dt converges almost
capacityV is the same as the utility achieved using the optimglrely to a finite limit asl" — co. This leads us to conjecture
policy on a link of capacityVé. Comparing Lemmas 3.2 andthat the same holds true for the scaled proce¥s-), and
4.1, it is clear that = 1 — O(1/v/N). In so far asN is large hence that, for the unscaled process,
in the typical operating regime of interest, this shows that the T
static policy is close to optimal. l/ nN(t)dt —byVN asT — oo, (10)

We now discuss the intuition behind the choice of param- T Jo
eters in the static policy. Recall that) is the rate at which whereby is a sequence of constants converging in turn to a
work is brought in by short flows, anty\/p is the capacity constanth as N — oo. Note that Gromoll has established
allocated to them. The choice = 1 — a/v'N corresponds convergence ofi¥(-) to R(-) in distribution but not the
to allocating short flows just a little more than the minimungonvergence of moments, so (10) is indeed a conjecture. If
required to ensure that all short flows eventually leave thige conjecture holds, then it follows as in the Poisson case
system. In other words, the queue of short flows operateidied in Lemma 4.1 that the static policy achieves a value
in a heavy traffic regime. Nevertheless, in this regime, tier the objective function that is withi®(v/N) of Nu(1—\),
number of short flows present in the system is of ord€¥  which is an upper bound on the optimal value. Thus, the static
on average. Hence, each short flow typically géexs/N) policy is close to optimal.
bandwidth whereas each persistent flow, of which there\are  Implementation of the static policy requires that bandwidth
gets onlyO(1) bandwidth. Thus, from the perspective of apartitioning be carried out by network routers. It also requires
individual short flow, it receives higher priority than persisterknowledge of the rate at which work is brought in by short
flows, though short flows on aggregate don't receive high@géws, or a fairly accurate estimate of this ratén contrast,
priority. The point to note is that, if all short flows are to behe weighted processor sharing policy discussed next can
served, then the average service rate allocated to them shayddimplemented at end systems (although it may require
be at least the rate at which they are bringing in work. In jaformation from the routers as to the number of persistent
large system, this rate is large compared to the work brougfgws in progress)V), and does not require knowledge of the
in by a single flow. Thus, by serving short flows at this ratesaffic characteristics of short flows.
the number of short flows and their mean sojourn time is
kept small, and consequently they perceive a good quality gf
service. At the same time, the aggregate rate allocated to shor
flows is close to the minimum possible, so the persistent flowsSuppose each persistent source has weighnd each file
achieve very nearly the maximum utility they can get in anffansfer in progress has weight and that capacity is shared
stable system. between users in proportion to their weights. In particular, each

We shall observe the same qualitative features in tffje transfer in progress gets the same share of capacity. We
weighted processor sharing policy we consider in the nexall call this the weighted processor sharing or WPS policy,
subsection. This, too, is a simple policy that is practicabfd denote itry (w). We will show that, with an appropriate
in decentralized systems, and can achieve near-optimal p“éqoice ofw, the total utility achieved using weighted processor
formance. sharing policy on a link of capacity is the same as the utility

In fact, the near-optimality of the static policy can béchieved using the optimal policy on a link of capachy: if
expected to hold even if the arrival process of short flows is nbt~ ¢ = O(1/VN).
Poisson, but a general renewal process. Recall that the arrivalyOw, irrespective of the file size distribution, the number
constitute a renewal process if the inter-arrival times are iifif file transfers in progress can be modeled by a symmetric
with arbitrary distribution. The number of short flows in thélueue, and has the invariant distribution of a birth-death
system thus evolves like @I/GI/1 — PS queue. Moreover, Process with constant birth rafé), and state-dependent death
this queue is operated in a heavy traffic regime: the servitdeNun = N(1—z(n)) (see [13, Lemma 3.9]). Her®¥z(n)

capacity N(1 — ¢) is chosen so that the load on the queués the aggregate capacity allocated to persistent sources when
given by p™¥ = (NX)/(N(1 — ¢)) satisfies n short flows are in progress. The invariant distribution for

this process is given by

tWeighted processor sharing

pNzl—\/—N, ie., VN(1—pV) = a. \" oo
w(n) = m(0)———, m(n) = 1. (11)

We have superscripted by N to make explicit that we are H1e Bn n=0
considering a sequence of systems indexedvbyLet n™ (¢) Let K := N/w. Then
denote the queue size (number of short flows in progress) at
time ¢ in the system indexed bw, and define the scaledx(n) _ N _ K and g, = 1—a(n) = n
queue size process™ (t) = nV(Nt)/v/N. It is shown by N+nw K+n K+n
Gromoll [8] in this scaling regime that, if the inter-arrival times | _ , , -

o . . .. An adaptive scheme that adjusts the bandwidth partitioning based on
have2 +¢ finite moments and the service times ha\ﬁ_ef finit®  measurements of the load due to short flows may be able to achieve
moments, for some > 0, then the scaled queue size processmparable performance. Investigating this is a topic for future research.




from which it follows that Notice that the bandwidth allocated to persistent flows by
LI T(K +n+1) Fhe WPS policy decreases tp zero as the number of short flows
w(n) = m(0)A" H — =7(0) " in the system increases to infinity. 4fz) — —oco asz — 0,
-1 ! DK+ 10 (n +1) then the contribution t&. , (.,)[u(z)] due to such events could
be arbitrarily large and negative. In order to avoid this, we need
the following technical assumption which controls the speed
at whichu(x) — —oco asx — 0.
Assumption A: Suppose the utility functiom(-) is such that,
for somen > 0 and some) > 0, we have

12
where(0) is determined by the requirement thatn) sums
to one. HereI'(-) is the Gamma function, defined df, co)
by I'(a) = [;° 2 ‘e "dx; T'(a) = (a — 1)! if a is a positive
integer. The Gamma function satisfies the recurdiga) =
(a —1)I'(a—1) for all reala > 1. Note that

o0 . 1
S PILETES I /5 e Tl )de > —eo.
(K +1)(n+1)

n=0 Note that if the above inequality holds for sorie> 0, then
X (K —1)(-K —-2)...(-K —n) . it holds for all § > 0. Equivalently,lim inf, o e " u (1) >
- Z (=) —oo for somen > 0.
This assumption says thatu(1/x) does not grow super-
= ——ET (13) exponentially inz asx — 0. It is not terribly restrictive;
(1=2) for example, it is satisfied by utility functions of the form
by the generalized binomial expansion(af-))~ <+ Now, u(z)=z""7/(1 — ) for § > 0, and also byu(z) = log().
substituting (13) in (12) and using the fact that, w(n) = 1, It is also satisfied by any utility function which is bounded
we obtain(0) = (1 — X)X +1. Substituting this in (12) yields below.
(K ) The next lemma establishes the near-optimality of the WPS
(KAntl) yuq_ K+ (1) policy.
K+ 1I'(n+1) Lemma 4.3: Let > 0 be arbitrary, and letw = av/N be
We shall use this to obtain an analogue of Lemma 4.1, showiti relative weight assigned to each short flow: () satisfies
that the weighted processor sharing policy is nearly optimalAssumption A, then
w $hchosen ath.pronyrlat?Iy. Vo\lie flrstt?eed somte;efchnlcildfresults. Erpy () [Nu(z(n)) — 1] = Nu(l — A) — O(VN).
€ generating function of can be computed from (14) as The proof can be found in the appendix.

n!
n=0

m(n) = T

follows: It is easy to see that the capaciti¢ required for an optimal
. n = n (L= ANEHL policy to outperform weighted processor sharing satisfies
G(z) = E["] = ) _m(n)e" = (1 _ Az) - (18 5 O(1/+/N). This is similar to what we obtained for the

n=0

] o static policy and shows that WPS is asymptotically optimal in
The mean number of short flows in the system is given by the same sense.

, 1—2\ An advantage of the WPS policy over the static policy is
Eryn] =G (1) = (K + 1)/\m - that the optimal choice ofy requires knowledge only o
\ and not of the load offered by short flows, Moreover, the
=K+ (16) knowledge ofN can be imperfect: if we have an estimate of
) N which is only within a multiplicative constant of its actual
Now, by the recursiofi’(a + 1) = al'(a), we have value, the resulting choice of weights is still near-optimal, and
mn+1) K+n+1 the deviation from optimality is only of order/+/N. Thus,
mn)  n+l ) the weighted-PS policy is robust and well-suited to practical

] . implementation. Finally, it can be implemented by end systems
so thatr(n+1) > m(n) if and only if (K +n+a)A>n+1.  rather than the network, for example by having end systems
Rearranging terms, the maximum valuerdf) is seen to be e 5 weighted analogue of TCP with weights chosen as above.
attained at” := [KA/(1—A)]. The next lemma says that, if An alternative implementation would be to use a willingness-
w is chosen so thak is Igrge, then the probability distributionto_pay scheme, as described in [15], with a willingness-to-pay
7 concentrates around its mode,. parameter proportional to the weights above. It is still an open

Lemma 4.2: Let > 0 be arbitrary and letw = av/N, SO proplem as to how to estimat¥ from the end systems.
that K = v/N/a. Letn* be the integer part ofx\/(1 — \).

(The dependence af, K andn* on N has not been made

explicit in the notation.) For any > 0, there are constants C. Numerical results

c1,c2 > 0, not depending orV, such that The analytical results derived above show that the simple
(1—6)n* policies we have proposed for sharing bandwidth between
o —o)n . . . .
e /N _..v~ bersistent and transient flows are nearly optimal in large
(Zé) m(n) < cre” =V, ZO m(n) < cre” =V, systems, multiplexing a large number of persistent flows. In
m=(14+0)n* m=

this section, we explore how larg®& needs to be for the
for all N sufficiently large. analysis to be valid, and find that it applies even at very small
The proof is relegated to the appendix. values of N. In order to obtain numerical results, we need



to explicitly specify a utility functionu(-); we takeu(z) = each receive bandwidth(n) = KLM and hence derive utility
—1/x, which is the form of utility implicitly maximized by ,(x(n)) = —(1+ ). Thus, their mean utility is-(1+ %).
TCP [17]. Using (16), we obtain after simplification that

Erw [Nu(z(n)) —n]

>

=
% 25 TR It is clear that the maximum value of the objective function is
= Ll Optimal dynamic policy attained whem = 1, i.e., each transient flow is given a weight
%i ae | Op"mz\z\%ﬁg;ﬁgg% w = v/ N relative to each persistent flow. For= 1, we have
=
. N+ VN VNA+ A
o1 0.2 0.3 0.4 0.5 0.6 0.7 E:, [Nu(z(n))] = - —————, Ern[n] = ——.
Normalized load offered by the Mice -----—--- > 1 - >\ 1 - %‘18)
-0 ‘ _ - In Figure 1, we plot the mean utility of a persistent flow
RSO cse A— | and the mean number of transient flows in the system for
N 60 Weighted PS - . . . . .. .
P o Equal Sharing -a- (i) the static policy, as given by (17), (ii) weighted PS, as

given by (18), (iii) naive PS, which gives an equal share
of bandwidth to each flow, persistent or transient, and (iv)
the optimal policy, obtained numerically using the techniques
described in [7], [6]. If all flows use TCP, then case (iii)
i approximates the bandwidth shares they obtain. We chose the
0.1 0.2 0.3 0.4 0.5 0.6 0.7 system parameters = 1, f = 1, N = 25, and varied the
Mormalized load offered by the Mice = - arrival rate, N\, of short flows so that the normalized load
‘ ‘ ‘ offered by short flowsA f/c, spans the intervgD.1,0.7].
— Weightea PE - The plots show that both the static and weighted-PS policies
— achieve near-optimal performance, both for persistent and
transient flows. In other words, the static and the weighted-
15 PS policies considered do not just approximate the optimal
policy in terms of total utility, but also in terms of utility
for each class of flows. On the other hand, the policy which
- gives equal bandwidth share to all flows has a much larger
01 0.2 0.3 0.4 0.5 0.6 0.7 mean number of short flows in the system. Indeed, the mean
normalized offered load by the Mice == g number of short flows with the static policy and the weighted-
PS policy isO(v/N) while it is O(N) with a naive processor

Fig. 1. The top and the middle panel show average utility of a persiste . - . .
flow, and mean number of transient flows for different policies, respectiveéﬁarmg pOIICy' The last p|0t in the flgure shows the percentage

The bottom panel shows the % overprovisioning required for static and Wiggpacity overprovisioning required for the static and weighted-
policies to outperform optinfal dynamic allocation. System parametersl, PS policies to do as well as the optimal policy, and confirms
mean file size=lu(z) = ==, N = 25. that the deviation from optimality is small.
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Recall that the static policy assigns bandwidth= 1 —  \/ BANDWIDTH SHARING BETWEEN TRANSIENT FLOWS

A — - to each persistent flow, wheteis a parameter to be We continue to work with the optimization problem posed
chosen. By (8), the mean number of short flows in the system inu WOrK wi ptimization p P

is \V/N /a. Hence, the value of the objective function for th('%n Section II._There, we con§|dered how to'spht capac_|ty
static policy is etween persistent and transient flows but did not consider

further how the capacity allocated to transient flows should be
N B —-N A shared between them. We now consider how capacity should
ErsNu(z) —n] = 1-X—(a/VN) E\/N' be shared between file transfers when the sizes of the files
geing transferred might vary over several orders of magnitude.
i ; he objective is to minimize the number of file transfers
a = VN1 =A)/(VN +v); correspondingly, we have in progress (equivalently, the mean holding cost or mean
N ++VNX VN4 A sojourn time). If file sizes are exponentially distributed and
T s [n] = 1o\ the allocation decision has to be made without knowing the
(17) sizes of all file transfers in progress, then it not matter how this
The WPS policy assigns weight = a\/N to each short allocation is made; any allocation that does not leave capacity
flow. ConsequentlyX = N/w = +/N/a and, by (16), the idle achieves the same mean number in system. If file sizes
mean number of short flows in the systen(IéJrl)ﬁ. We are not exponentially distributed, then this is no longer true;
now evaluate the mean utility of persistent flows. Recall thdgr example, if file sizes are heavy-tailed, the first-come-first-
when there are short flows in the system, the persistent flowserved policy performs worse than processor-sharing. Finally,

It can be verified that the objective is maximized by takin

Ers[Nu(z(n))] =



if the amount remaining to be transferred is known, then &his should be equal to the total weight which gives a
simple interchange argument shows that the optimal policyfiged point equation fodV. From this, one can compute the
to give priority to the file with shortest remaining processingarious quantities of interest. The detailed analysis is provided
time (SRPT). This policy has been proposed in the context iof Appendix C. We simply state the main results under a
Web servers [10], [2]. However, it is not suited to our problernonstanti’’ assumption in the following.

for a couple of reasons. First, it needs a centralized controller

to assign priority (or a distributed leader election protocoh, Approximate analysis of the scheme

which imposes a high overhead). Second, while the conceptyr g is to derive expressions for the sojourn time of a

is clear for a single bottleneck link or resource, it does NAbw and the mean number of short flows in the system. The
generalize easily to multiple bottlenecks. This motivates us g itving assumption behind the results of this subsection is
consider a generalization of the weighted PS policy introducggl, foliowing

in the previous section, adapting it to provide a bias towar?&%sumption B: The total weight'W contributed by the

the file-transfers with small residual file-sizes. , transient flows and the persistent flows remains constant over
We now consider a weighted processor sharing policy whegg, o
each transient flow chooses its own weight based on itS\ye remind the reader that there avepersistent flows, the
residual file size. Suppose the weights are chosen accord&r&%acity of the system &/, the mean file size of the transient
to flows is 1, and the arrival rate of transient flowsls
Wy = Wmin + (Wmaz — Winin) exp(—az) , (19) Let x denotg the init_ial siz_e of.a file, anel(t) its residu_al
sizet time units after its arrival into the system, wherds

wherew, denotes the weight assigned to a flow with residug@lyajier than its sojourn time in the system. We have
file sizex, andw,,in, wma: anda are system parameters. The J N
Wa(t)

weight assigned to each persistent flow is 1. The link capacity 2(0) =z, —x(t) = — 7

N is shared between flows in proportion to their weights, i.e., dt w

flow i receives capacity; N/W, wherelW denotes the sum of Wherew,, is specified in terms of(t) via (19). Let

w; over all flows in the system, both persistent and transient. In . ) . .

practice, (19) would be implemented with the weights chosen T(w) = inf{t > 0: 2(t) = 0,2(0) = =}

at closely spaced discrete epochs, but we assume an idealid@aote the sojourn time of the file with initial size We want

continuous time implementation for the purpose of analysigo derive expressions fdf'(x) and for the mean number of
We shall assume thdl/ is constant over time. Such antransient flows in the system. To do that, we need an expression

assumption is plausible in a large system operating in a steatiy- .

state regime. Indeed, we saw in Section IV-B that, when theProposition 5.1: Under Assumption B, the total weigt

weights of all short flows are equal t¢'N irrespective of we have N

their residual file sizes, the distribution of the number of short W= ——".

flows in the systemr(n), is given by (14). Using Stirling's  The proof is in Appendi>1< _Cf\ The idea of the proof is

approximation for the Gamma function in (14), it can bgg follows. We find an expression fao(z,t), the weight

further shown thatr(n) is approximately Gaussian with meancontributed by a short flow with initial size after spending

VNA/(1 = X) and variancev’N)/(1 — A)>. Each of the 4 ynits of time in the system. This expression depends on

N persistent flows has weight Thus, in this system, the 117 e then obtain the total weight in steady state due to all

aggregate weightV is approximately Gaussian with mearyyrivals by integrating this expression with respect to the file

N/(1 — X) and varianceN*/?A/(1 — X)%. For largeN, the  gjze distribution. Adding this to the total weight of persistent

standard deviation, bein@(N°/*), is much smaller than the fiows should yieldi. This gives a fixed point equation for

mean, which implies thatV’ is approximately constant. A i \which we solve.

precise statement is that the random varidbleV converges e now use Proposition 5.1 to comptéz) and the mean

in probability to the constant,/(1 — A). number of transient flows in the system.

Now note that if the total weightV is assumed to be  pyoposition 5.2: Lety = wynaz /Wmin. We have the follow-
a constant, then the total weight contributed by short flowigg under Assumption B:

evolves as a Poisson shot noise. A Poisson shot noise is thg) The sojourn time of a file with initial size, T(x), is
response of a linear system to a train of impulses arriving at ' '

(20)

: ; ) given by
the points of a Poisson process [5]. In our case, consider the
arrivals with file-sizes in the intervat, z+dx) which arrive at T(z) = log [1 N eaT _ 1] e
a rate NAdF(x). The evolution of weight of any arrival with AWmin (1 — A) Y
initial file-size x is precisely the impulse response associatedz) The mean number of transient flows in the syst&fn),
with file sizes in the intervalz, z + dz). Thus, if we can is given by
characterize the evolution of weight for any given file size aX
(which is a deterministic evolution owing to the constafit E[n] = LE {1og [WH . (22)
assumption), then, summing up the weights due to all possible AWpin(1 = A) v

arrivals and all possible file-sizes, and the total weight due  where, X is the random variable from which the file-
to the persistent flows, gives the total weight at any time.  sizes of the transient flows are sampled. O



The proof is in Appendix C. C. Bias towards short flows

The (unweighted) processor sharing policy is recovered inwe next show that the proposed scheme is indeed biased
the limit o — 0, in which casel'(z) = 2/((1—A)wmaz). The  towards short files. In order to quantify the extent to which it
sojourn time of a file is thus proportional to its size, Whichayors short flows, we compute the ratio of sojourn times for
is desirable in terms of fairness but has the disadvantage th@$ different files, of sized; and f,. With plain sharing, this
small files see poor performance. (atio IST( f1)/T(fa) = f1/ fo. Denoting the ratian,mes /wmm

Having quantified the parameters of interest, we next Sthy ~, we obtain for the scheme proposed above that
that the proposed dynamic weighted processor sharing scheme

has, on the one hand, the desirable near optimality described T(f1) log [1 + #]
in Section IV-B, and on the other hand, also provides a bias T(f2) = el (23)
towards short flows by giving them larger throughput. 08 [ TS }

We observe that iff; and f, are both large relative td/a

and if, moreoverg®fi /~ is much bigger thari for i = 1,2,
thenT'(f1)/T(f2) =~ fi/f2. In other words, thehroughput

Observe that the bandwidth share of the persistent flowsfined as the ratio of file size to sojourn time, is roughly

is roughly N/W which is (1 — \). Thus the utility of the constant for large files, meaning that the scheme approximates
persistent flows is roughlyVu(1 — )) in the regime we are processor sharing at large file sizes. Likewisef,ifand f, are
considering. Using the same argument as in Section IV-Both small relative td /a, then agairl'(f1)/T(f2) = f1/ f-

if we show that the mean number of short flows is roughliyinally, supposef; is large andf, is small relative tol/a.
O(v/'N), then the minimum bandwidttv¢ required by an Then, by (23),

B. Near optimality of the scheme

optimal policy to achieve the same cost as achieved by the T(f)  afi —logy  Afi  Wmaes fi
dynamic weighted processor sharing policy will be given by T(fs) ~ fa) ~ JT = o JT .
¢=1-0(1/y/N). This can be achieved in two ways. 2 2/ 2 min J2

If we Setwmin = k1vVN and wyae = vk1v/N, it can be In other words, the small files get a throughput approximately

seen from the expression @[n] that E[n] = O(v/N), and 7 fimes greater, or stretch (defined aXf)/f) 1/y =
thus Winin/Wmae SMaller than a large file. Loosely speaking, files

much smaller than /a are “mice”, files much larger thah/a
E[Nu(x(n)) —n] ~ Nu(l — A) — O(V'N) . are “elephants”, all mice are treated roughly equally, as are
all elephants, but mice are favored over elephants. Note that
Alternatively, suppose we set,,;, = 1 andy = kv/N. this is achieved without explicitly splitting files into classes,
This has the interesting interpretation that an infinitely largeut simply by having them choose individual weights based
transient flow is not distinguished from a persistent flow ar@n their residual file sizes.
thus gets the same weight as a persistent flow. So far we havéhe degree to which mice are favored is determined by the
not assumed anything about the file size distribution other th&atio ¥ = Wrmax /Wmin- It NEeds to be kept in mind that this is
its finite mean. To show that the above choice of weights yieltkder the assumption that” is constant, which is not valid
near optimality, we further assume that the file size distributidhthere are no persistent flows. A model with no persistent
has a finite moment generating function (this is true if the fildlows and with an SRPT service discipline has been studied
sizes are bounded). To see th&ltn] = O(v/N), note that we in [2], where it is shown that the stretch of long flows remains
have bounded. The intuition is that there will be epochs when the
long flow is competing with very few or no short flows, at

lim % which times it is not handicapped by its small weight. A
N—oo /N similar intuition applies to our model.
, VN EVN — 14 e®X
= lim ——— F |log| —————— ) . .
N—00 aWmin(1 — ) kv N D. Simulation Results with the proposed scheme
_ A Bl lim VNl |1 e*X —1 We now present simulation results to show that the proposed
~a(l - )) NS og |1+ kvVN dynamic weighted processor sharing scheme can improve
A the throughput of the transient flows without penalizing the

= mE [GGX - 1] <00, persistent flows when compared to systems using weighted
processor sharing with static weights.

where the exchange of limit and expectation can be justifiedWe simulate a system with capacity = 100 carrying
using the monotone convergence theorem sinleg(1+1/y) N = 25 persistent flows, each of which has weight
is increasing iny. We clearly haveE[n] = O(v/N) in this and has the utility functionu(z) = —1/x. File transfers
case. Thus we have shown that, if we simply chogse- arrive at rate), and file sizes have the Pareto distribution,
kv N andwpin = 1 (Wimae = kvV/N), we can still have near P(file-size > z) = 1/(1 + (x/f))?, = > 0, with mean file
optimality of the proposed dynamic processor sharing, in tlséze f = 100. We takea = 1/ f, wa. = 50 andw,,;, = 10.
sense that the additional capacity per persistent flow requitédrformance measures for processor sharing with the scheme
in order to do as well as the optimal allocation($1/+/N). described above, and processor sharing with constant (file-size
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independent) weight® for two different weights, 10 and 50, Slow start: If the current window size i3V and the residual
are shown in Figure 2. The top panel shows the utility receivéite size is f,., then a successful acknowledgment updates the
by the persistent flows under each policy, while the bottomindow size as

panel shows the throughput of transient flows. The simulation W e W (1 4 (Wmaz _

results are based on 12,000 events (file arrivals) with a burn-in W+ min Jexp (=afy)) -

period of 500 time units for the system to reach Statio”a”%ongestion avoidanceif the current window size 8V and

and, are averaged over multiple runs. Clearly, wher: 50,  he residual file size i, then a successful acknowledgment
the average throughput of the transient flows goes up but gfysies the window size as

the cost of a reduced utility for the persistent flows. When w
w = 10, the persistent flows perform better but the average W e W+ (1+ (gmee — D exp (—afy))
throughput of the short flows decreases a lot. However, by |[W]

using the processor sharing described in this section, wher@iihdow decrease:If the current window size i$V and the
the weights of transient flows are varied dynamically, thsidual file size isf., then a lost or marked packet (in an

transient flows can achieve a large throughput without starviggoN compatible system) reduces the window size as
the persistent flow much.

W — W x (1 + 1exp(—afr))

° 10<w<50 — L. . 2 2 . . .
Y s TTTEEE— w=10 e | The main idea is to allow small files to increase their
_é P \\ window size more rapidly and decrease it more slowly. In
= - the above,w,qzy Wmin, a are system parameters. We now
% s present a very preliminary evaluation of this algorithm.
E . We consider a single link of capacity 800 packets per second
Z s carrying 10 persistent flows. Transient flows arrive as a Poisson
- = process and have Pareto file sizes with ctdfl + =/f)?,
R log:oﬁer‘;‘by S el O0® where the mean file size i = 40. The link buffer employs
Random Early Marking [1]: when the number of packets in the
A 60 R link buffer is ¢, an arriving packet is marked with probability
b o ey W=10 - | (1 —exp(—vq)). We takey = 0.005. Each persistent flow has
§ T a round trip delay o80 ms and adapts its rate using a standard
g . ECN compatible TCP. The round trip delays of the transient
§ oL —_ flows are uniformly distributed in the intervgl0, 200] ms. We
B 20 e T . compare the scenarios where the transient flows use Dynamic-
£ B TCP and where they use standard ECN compatible TCP. For
g . Dynamic-TCP, wWe US&,,,/Wmin = 5 anda = 0.02; the
6t 02 03 04 05 06 07 08 latter choice corresponds to assuming that files smaller than
Normalized load offered by the Transient flows ------ >

50 packets are ‘mice’. Figure 3 shows that Dynamic-TCP

Fig. 2. Comparison of average utility of a persistent flow (top), and averaacm(:"veS significantly better mean throughput for transient

e . o
throughput of transient flows (bottom) with three schemes: in one the weigﬁl@ws at the price of a small reduction in throughput for the

of the short flows are varied between 10,(;,) and 50 {va.) accordingto persistent flows. The results presented are very preliminary
the scheme discussed in this section, and the other two are with fixed weig&ﬁd a much more thorough investigation is needed to validate

w) as 10 and 50 respectively. The parameters are: cap@city100, mean . . .
§i|e) size f = 100, u(f) = =1 numi’,er of persistent ﬂ(ﬁg@: o5. The these findings. It also remains to address the question of what

arrival rate) is varied alo_ng ‘ther-axis. incentive users have to adopt the proposed weight parameters.
We have not considered this, but assumed that all users
comply. The purpose here has simply been to show that the

E. A distributed implementation proposed scheme can, in principle, be implemented at end

We assumed above that bandwidth is shared exacg)l(,ste_ms._ _A great deal of further work is required on the
according to the proposed weighted scheme. We now prop&égcticalities.
a mechanism to approximate this by a suitable modification to
the TCP flow control protocol. Recall that TCP is a window VI. CONCLUDING REMARKS
flow control mechanism which operates as follows. In the We considered the problem of optimal bandwidth allocation
slow start phase, each received acknowledgment increasesa system consisting of both persistent and transient flows.
the window size by one packet, while in the congestiofireating all transient flows as identical, we first described
avoidance phas&V acknowledgments increase the windoveimple algorithms that achieve a nearly optimal partitioning of
size fromW to W + 1. Further each lost packet or negativehe available bandwidth between the persistent and transient
acknowledgment reduces the window size by half. Wsources. We then studied the problem of how to share the
propose the following modification, which we shall refer tdbandwidth allocated to transient flows among file transfers of
below as Dynamic-TCP. different sizes and described a distributed scheme that is biased

in favor of “mice” over “elephants”.
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We also have by (14) and Stirling’s formula that

m((1+ 5)n*) §<K+ (1I(+ 5)n*)K(K'(_|i :};;szn*yl_,_(;)"*

)\(1+5)n*(1 _ )\)K+1.

Taking logarithms, we get

K

logm((14+8)n") < ~(K+(1+8)n ) H (g’

whereH (¢; p) := qlog £+ (1—q)log }%g denotes the relative

1-1),
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Next, observe thate(k) — 0 ask — oo and so, for
3 sufficiently large,u(x(k)) < 0 wheneverk > GK. For
sequencesiy, by, we shall writeay =< by to mean that
the ratio ay /by is bounded away from zero and infinity,
uniformly in N. Now, by (27),

= Y, o K
k;}(w(/ﬂ)u(m(k))Ze mgoe U3

~ [~ K
- —cV —yz
=e /£=06 u<7K+ﬂK+z)dx

entropy or Kullback-Leibler divergence of the Bernoulli dis-
tribution with parametey relative to the Bernoulli distribution Noting that X = N/w = +/N/a, and making the change of

with parametemp. Substituting forn* yields
K(1+0X) I—A
1—A 1+ 6X

Now the relative entropyd (g¢; p) is strictly positive ifq # p,
and K = v/N/a, so we have

logm((146)n*) < —

H( 1- ).

m((1+6)n*) < ee2VN,

for some constant, > 0. Combining this with (24) yields
the first claim of the lemma. The proof of the second claim is

similar and is omitted. [ |

B. Proof of Lemma 4.3.

Lemma: Leta > 0 be arbitrary, and letw = av/N be the
relative weight assigned to each short flow.uf-) satisfies

Assumption A, then

Eryy () [Nu(z(n)) — 0] = Nu(1 = X) - O(VN).

variablesy = =/ K, we get

> VN [ ()
c e (& a U\ T
za ; 1+8+y Y

R 1
>c \/Ne_“/ﬁ[/ e a Yu(——)d
ZC . (1+6+y) Yy

RN 1
+ (o) dyl.
/1+ﬁe u(2y) Y

Sinceu(y357;) is bounded on the compact interj@l 1+ 3],
the first integral in the last line above goes to zeraVas> oo
by dominated convergence. For large enoughthe second
integrand is bounded above by"yu(%), which is integrable
over[1+ 3, 00) by Assumption A. Hence, the second integral
also goes to zero by dominated convergence.

We have thus shown thaZ;":ﬁK w(k)u(xz(k)) is either

Proof: We shall denote byz,. expectations with respectpositive or goes to zero faster tharmcvV™. In either case,

to the invariant distributionr induced by the policyry (w).
We can decomposg; [u(z(n))] as

BK—1 %)
Exlu(z(n))] = Y w(kyul(k)+ D w(k)ule(k)),
k=0 k=BK
(26)
where 3 > 0 is an arbitrary constant, and(k) = K{ik is

the per-flow bandwidth allocated to each persistent flow wh
there aré; transient flows in the system. We want to show th
E:[u(xz(n))] is not much smaller than(1 — X), i.e., we seek

a lower bound onE;[u(z(n))]. Now, if u is non-negative, it

is clear that ignoring the second term in the sum above gives
a lower bound. Hence, we shall only consider the case where
u(zx) is negative for small enough, and show in this case

that the second term above is negligible.
Observe that
m(k+1) K+k+1/\< (1+8)A
k)  K+1 "~ B
Since A < 1, this ratio is strictly smaller thai for large

enoughs. We shall denote its logarithm by, so thaty > 0.
Proceeding as in the proof of Lemma 4.2, we have

Vk>pBK.

m(BK +m) <e "x(BK) < emeVNeg=ym, (27)
wherec is a positive constant and= — log[(1+3)))/3] > 0.

the second term in the sum in (26) can be ignored in de-
riving a lower bound onE, [u(z(n))]. It remains to evaluate
Erlu(z(n))ln<pr))-

Expandingu(z) in a Taylor series arountl — A, we get

LAy ),
(28)

w(x) = u(1=N)+(z—14+X)u' (1-N)+

i{)]r somey(z) lying betweenz and1 — A. Now,

Eefu(l = Mlgegro] =u(l = N[1= 3 (k)] (29)
k=BK

=u(l—A\)(1-0@ )

for some constant > 0, by Lemma (4.2). We also have

K = K
E.[z(n)] = Ex = wk)—— (30)
[KJrn] I;J K+Ek
~— DK+k+1) K L
_I;F(K+1)F(k+1)l(+k>\k(1_)\)K+
= T(K+k
:(1_)\)K+1];)F(K()F(k+)l))\k =1-x
(31)
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We have used the relatiofi(a + 1) = aI'(a) to obtain the The solution of this differential equation is
third equality, and (13) to obtain the last equality. Therefore,
w

_ i (01— A= =Ky Z o(eevm), Let T(z) = inf{t > 0 : «(t) = 0,2(0) = «} denote the
W K+k sojourn time of the file. ThusT'(z) = inf{t > 0 : wyu) =
) Wmaz,(0) =z} and it satisfies
by Lemma (4.2), sincés/(K + k) < 1 for all k.
Now, if £ < 8K, thenz(k) > 1/(1 + 3). The continuous 1 Wmin _ [1 _ wmini| exp(NawmmT(m))
function«”(-) is bounded below on the compact $et, 1], Wmax Wy W
say by—« (u” is negative since: is concave). Thus, which yields
Ex[(x(n) — 1+ A% (y(z(n) 1
| © n<s10) T(r) = o — log {1 4 Lmin (gox _ 1)] . (38)
> < [(g — 1+ ) o). Wi L s
Recall that, by the sojourn time formula given by (36), a file
Now, analogous to (31), we have transfer of sizer originated at time—t is there in the system
K(K —1) ) at time zero ifT'(z) > ¢ which upon simplification yields
I ETmE ey N > g(t), where,
Moreover, o(6) = Llog (1 | Wmas {exp(NaIz/Iu/mm t) B 1D @)
K? K(K —1) 3 Kk “ Wmin
(K+k)? (K+k)(K+k-1) (K+k?2K+k—1) LetF denote the complementary file size distribution, i.e.,
o a? v i F(z) = 1— F(z) is the probability that the size of a randomly
= K2 N ’ chosen file is bigger tham. Then, the mean number of file
S0 E,|( K+n) | = (1=A)2+0(%). Combining this with (31) transfers in progress at any time is given by
yields E[n] N)\/OO /OC dF (z)dt
K 1 n| = x
B (o~ (- 2)] = 0(+) 0 Jat

K+n N’
K

Sincez(n) = 7, is bounded byl, it now follows from
Lemma 4.2 that

We are now in a position to prove Proposition 5.1 and
Proposition 5.2. We restate them below for convenience.
Proposition: Under Assumption B, the total weight,

Er(z(n) —1+ A)2u//(y($(n))1(71,<ﬁK)] (33) Which is assumed to be a constant must satisfy
1 —cV N 1 N

> — — =0(=). —

> —k[0(5; +0(e™¥M)] = 0(5) e

Now it follows from (28), (29), (32) and (33) that Proof: Let w(z,t) be the weight contributed by a file

B 1 initiated at time—t of initial size . Clearly, the total weight
Ex[u(@(m)lnepr] = u(l = A) = O(N)’ contributed by all the flows at time is the sum of the weight
and so, by (26), contributed by the persistent flows and the weight contributed

by the transient flows at time. We thus have,
Ex[Nu(z(n))] = Nu(l —A) — O(1).

We also have by (16) thaE,[n] = O(K) = O(v/N). This W=n +N)\/ / w(z, t)dF (z)dt (38)
establishes the claim of the lemma. O ] . ] ] . ) )
which provides a fixed point equation fdV (since g(t)

depends o). To prove Proposition 5.1, it is thus enough to

C. Derivations pertaining to Section V-A show that the fixed point equation (38) has a unique solution
Let = denote the initial size of a file, and(t) its residual given by

sizet time units after its arrival into the system, wherés W= N
smaller than its sojourn time in the system. We have 1-X7

d Nwgy First note that the condition (37), can be equivalently written

20 =2, —at) = - =2, (34 4
dt W 1 4 eo@
— (&
wherew,, is specified in terms of(t) via (19). Using (19), t< Naw log [7 ] )
we can rewrite the above as e 7
d Na wherey = wpaz/Wmin. Thus, we can change the order of

gt V) = W(wx(t) — Wrnin )Wy (t)- integration in (38) and write the weight contributed by the



short flows as

> Nﬂr“"/:/nmt log[
NA
=0 Jt=0

wmzn('y -1 + eaa:)
Nawpin
y—1+ew —(y—1)ew !
By observing that
/ e oy logla—pe)
o — Beft 0
we can write the fixed point equation as

y—14e?”
>

dt dF (x) .

w y—14e%T
oo Naw, 3 log[ B

W =N+ N\ / -
=0 Jt=0
wmin('}/ -1+ eaz)

7—1+e““—(7—1)e%t

~ W — 1o
=N+N)\/ 7(10g [W}
m:ONa Y

V- 1; e“’”]) IF(2)

dt dF(x)

+ ax — log [
=N+ WIEX |
where EX is the expected file size. But since we assumed

EX =1, we havelW = N/(1 — \) |

Proposition: Lety = wpaz/wWmin. We have the following
under Assumption B:

1) The sojourn time of a file with initial size, T'(z), is

given by
1 e —1
T(x)=——log |1+ ——| .
@)= e 1 | e
2) The mean number of transient flows in the systéfn),
is given by
NA v —14 X
Enl=———"7"—-F]|l _— 4
) aWin (1 — A) |:Og [ Y ” » (40)
where, X is the random variable from which the file-
sizes of the transient flows are sampled. O

Proof: The expression fofl'(x) follows immediately
from (36) after plugging in the expression fol. Thus, the
mean sojourn time is given by[T(X)], where X is the
random varibale from which the file sizes are sampled. The
mean number of transient flows can be now obtained using
Little’s formula asE[n]| = NAE[T(X)].

As long as theEX < oo, it is easy to see thab[T'(X)]
exists sincdog [%} < az for v > 1. [ ]
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