Introduction to Queuing Networks

Problem Sheet 3

****** Please hand in solutions to questions 1 and 5 on this sheet. ******

- Suppose people arrive at a bus stop individually (never in groups) according to a Poisson process of rate λ, and that buses arrive according to a Poisson process of rate μ. Buses are infinitely large and there is only one route, so that when a bus arrives, everyone waiting at the bus stop gets on to it.
 - (a) Let X_t denote the number of people waiting at the bus stop at time t. Describe X_t as a continuous time Markov chain (CTMC), i.e., specify all the states and transition rates, either in the form of an arrow diagram or a transition rate matrix.
 - (b) Show that the local balance equations have no solution. (Hence, this Markov chain is not reversible.)
 - (c) Solve the global balance equations to find the invariant distribution of this Markov chain. What conditions on λ and μ do you need for there to be an invariant distribution? Explain this intuitively.
 - (d) Compute the mean number of people waiting at the bus stop, and use Little's law to find out how long a typical customer has to wait for a bus. Is there a more direct way to reach the same answer?
- 2. Let $\{N_t, t \ge 0\}$ be a Poisson arrival process with rate λ , and let A be the number of arrival events in a random interval of length W, where W has Exponential (μ) distribution and is independent of the process N_t . For example, A could represent the number of arrivals to an M/M/1 queue (with arrival rate λ and service rate μ) during a random service period.

By conditioning on the value of W, show that

$$P(A = k) = \frac{\mu}{\lambda + \mu} \left(\frac{\lambda}{\lambda + \mu}\right)^k, \quad k = 0, 1, 2, \dots,$$

so that A has a Geometric distribution on the integers 0, 1, 2, ... with parameter $\mu/(\mu + \lambda)$.

3. M/M/1 queue with balking Sometimes customers arriving to a system may be discouraged from joining by the sight of a long queue and may balk, i.e., decide not to join the system. Consider an M/M/1 queue where arrivals form a Poisson process of rate λ , where service times are iid $Exp(\mu)$ random variables independent of the arrival process, and where there is a single server and infinite waiting room.

For i = 0, 1, 2, ..., suppose that any job that arrives and finds *i* jobs already in the system ahead of it (including any being served) has probability 1/(1 + i) of actually joining the queue, and probability i/(1 + i) of leaving the system right away.

- (a) Write down the transition rates q_{ij} and the jump probabilities p_{ij} for the CTMC describing the number of jobs in the system. Use the transition rates to find the invariant distribution of this CTMC.
- (b) Use Bayes' formula to compute the distribution of the number of customers already present in the system, as seen by a typical arrival who (i) decides to join the queue, and (ii) decides not to join the queue.
- 4. Consider the equilibrium behaviour of an M/M/2 queue with 2 servers, where the service times for both servers are independent Exp(μ) random variables and where there is infinite waiting room. Assume jobs arrive at rate λ when the system is not empty and arrive at a different rate α ≠ λ when the system is empty. Thus the times between the arrival of successive jobs are always independent Exponential random variables, but the parameter of the Exponential distribution is λ when the system is not empty and α when the system is empty.
 - (a) Using the fact that the system is a birth and death process, write down an expression for the stationary probabilities $\{\pi_j; j \in S\}$ in terms of π_0, α, λ and μ and hence show that $\pi_0 = (2\mu \lambda)/(2\mu + 2\alpha \lambda)$.
 - (b) Now let X_A denote the number of jobs in the system as seen by a random arrival. For j = 0, 1, 2, ..., find $P(X_A = j)$ in terms of π_0, α, λ and μ . Hence show that in equilibrium, the number of jobs in the system as seen by a random arrival does not have the same distribution as the stationary distribution for this system.
- 5. Consider a single server M/M/1 queue with $\text{Exp}(\mu)$ service distribution. Assume jobs arrive as a Poisson process with rate $\lambda < \mu$, and let $\rho = \lambda/\mu$.
 - (a) From your notes, write down the stationary distribution π for the system.
 - (b) Now assume the system is in equilibrium. Let t > 0 be a fixed time and let C^* denote the first job to arrive after t. Show that the probability C^* finds j jobs already in the system is given by

$$(1-\rho)(1+\rho)$$
 for $j=0$
 $(1-\rho)\rho^{j+1}$ for $j=1,2,3,...$

Hence show that in equilibrium, the distribution of the number of jobs in the system as seen by C^* is not the same as the stationary distribution.