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Some statistical properties related to the diffusion in energy for an ensemble of classical particles in
a bouncing ball model are studied. The particles are confined to bounce between two rigid walls. One
of them is fixed while the other oscillates. The dynamics is described by a two dimensional nonlinear
map for the velocity of the particle and time at the instant of the collision. Two different types of
change of momentum are considered: (i) periodic due to a sine function and; (ii) stochastic. For
elastic collisions case (i) leads to finite diffusion in energy while (ii) produces unlimited diffusion.
On the other hand, inelastic collisions yield either (i) and (ii) to have limited diffusion. Scaling
arguments are used to investigate some properties of the transport coefficient in the chaotic low
energy region. Scaling exponents are also obtained for both conservative and dissipative case for
cases (i) and (ii). We show that the parameter space has complicated structures either in Lyapunov
as well as period coordinates. When stochasticity is introduced in the dynamics, we observed the
destruction of the parameter space structures.

PACS numbers: 05.45.-a, 05.45.Pq, 05.45.Tp

I. INTRODUCTION

Unlimited diffusion in energy of a classical particle due
to collisions with an infinitely heavy and moving wall was
called as Fermi acceleration [1]. The original idea was
proposed by Enrico Fermi in 1949 as an attempt to ex-
plain a possible origin of the high energy of the cosmic
rays. Fermi claimed that the unlimited diffusion in en-
ergy (which leads to the Fermi acceleration phenomena)
was due to interactions of the charged particles with the
time varying magnetic fields present in the space. After
his original idea was launched, several systems were pro-
posed in the literature trying to model and describe the
unlimited diffusion [2–14]. Among several models, one
that we discuss in this paper is often called the Fermi-
Ulam model (FUM). It consists of a classical particle, or
then an ensemble of non interacting particles, confined
to move between two rigid walls [15–27]. One of them
is moving in time therefore corresponding to the time-
varying magnetic fields and the other one is fixed. The
functionality of the second one is just to produce a re-
turning mechanism for a further collision with the moving
wall.

A modification of the Fermi-Ulam model was suggested
some years ago, it was called as the bouncer ball model
[28, 29]. It considers a particle falling down, in a con-
stant gravitational field, on a moving platform. Different
approaches to the bouncer model have been studied theo-
retically and experimentally [8, 30–32]. One example can
be cited, which considers a propagating surface wave that
travels on the surface of the platform, while the platform
remains motionless [32]. This model can be used to de-
scribe the transport of particles by propagating surface

waves, which is an important problem with numerous ap-
plications including powder transport by piezoelectrically
excited ultrasonic surface wave [33] and manipulation of
bioparticles using traveling wave electrophoresis [32, 34].

For a sufficiently smooth and periodic movement of
the moving wall in the FUM, the dynamics of the par-
ticle leads to three different types of behaviour (see for
instance [9]): (i) regular - characterized by period mo-
tion; (ii) quasi-periodic - leading the invariant spanning
curves or even curves circling periodic fixed points and;
(iii) chaotic dynamics yielding in an unpredictability of
the dynamics. The dynamics is often described by a
two dimensional, nonlinear and area preserving mapping
for the variables velocity of the particle and instant of
the collisions with the moving wall. The chaotic sea is
not allowed to diffuse with unbounded energy due to the
existence of a set of infinitely many invariant spanning
curves in the phase space [9]. Indeed, the position of
the lowest one defines the law of the behaviour of sev-
eral observables along the chaotic sea, including average
velocity [16], deviation around the average velocity and
many others. It is then concluded from the literature
that a periodic perturbation of the moving wall leads to
a failure to generate unlimited diffusion. This is basi-
cally connected to the fact the high energy of a bouncing
particle leads to correlation between two successive colli-
sions therefore producing regularity in the dynamics. For
stochastic perturbation of the moving wall, the energy of
the particle undergoes unlimited diffusion. Such diffu-
sion is however limited when a fractional loss of energy is
introduced upon collision with the moving wall [10] via
introduction of a restitution coefficient. Other types of
dissipation also prevent the unlimited diffusion including
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a viscous drag force [35, 36].
In this paper we revisit the Fermi-Ulam model seeking

to understand and describe some of its dynamical prop-
erties considering three regimes of external perturbation:
(i) entirely stochastic; (ii) totally periodic and; (iii) low
stochasticity. For case (i) we confirm the unlimited dif-
fusion in energy is taking place for elastic collisions but
is suppressed when a fractional loss of energy upon col-
lisions is introduced. Then we explore some properties
around the steady state particularly focusing on the char-
acterization of the diffusion coefficient. Our results show
it is indeed scaling invariant with respect either to the
number of collisions as well as the restitution coefficient.
For case (ii) we discuss some of the dynamical properties
present in the parameter space of the model including the
so called shrimp-like structures obtained as a function of
the Lyapunov exponent as well as the period. Finally for
case (iii) we explore the influences of the stochasticity in
the periodic structures present in the parameter space
and how they change as the stochastic parameter rises.
The organization of this paper is as follows. In Sec. II

we discuss the model and the map. Section III is devoted
to discuss the stochastic model focusing particularly on
the diffusion coefficient and its scaling invariance. The
deterministic model and parameter space is left for Sec.
IV while the influences of a partially stochastic dynamics
is discussed in Sec. V. Conclusions and final remarks are
presented in Sec. VI.

II. THE MODEL AND THE MAP

The model we consider in this paper is a simplified ver-
sion of the Fermi-Ulam model [9]. It consists of a classi-
cal particle - or an ensemble of non-interacting particles
- confined to bounce between two rigid walls. Because
of the simplification both walls are assumed to be fixed.
However when the particle collides with one of them, say
the one in the left, it suffers an exchange of energy and
momentum due to the collision as if the wall were moving.
The other wall is introduced as a returning mechanism
for the particle to collide again with the wall responsible
for the exchange of energy. This simplification was very
convenient in earlier years to speed up numerical simu-
lations when computers were far slower. Such version is
still very useful nowadays because it facilitates the ana-
lytical treatment enormously. It also retains many prop-
erties of the complete model in the limit of high energy
and smaller oscillations. Two types of exchange of energy
are considered: (i) smooth due to a sine periodic function
and; (ii) abrupt due to an uncorrelated random function.
The dynamics of the particle is given by a two dimen-
sional nonlinear map for the velocity of the particle and
time immediately after the collision with the wall. Con-
sidering dimensionless variables (see [10]), the mapping
that describes the dynamics of the particle is written as

T :

{

φn+1 = [φn + 2
vn

+ 2πδZ] mod(2π)

vn+1 = |αvn − (1 + α)ǫ sin(φn+1)|
, (1)

where α ∈ [0, 1] denotes the restitution coefficient, ǫ ∈
[0, 1] corresponds to amplitude of the maximum veloc-
ity of the moving wall and δ ∈ [0, 1] corresponds to the
strength of the stochastic perturbation. Let us discuss
more on the stochastic perturbation. Indeed in a real
experiment, the position of the moving wall is given by
an external engine with limited power. Of course the
stochastic perturbation could be interpreted as due to
imperfections of the system. As for example the engine
suffering influences of external noise, like electric fluctu-
ations, therefore causing disturbs to the motion of the
moving wall. Additionally, one may think the particle,
which in an experiment could be a sphere, has also im-
perfections in the shape. Most likely such imperfections
could lead the particle to rotate, transferring transla-
tional energy to rotational. All of these terms can be
modelled by a stochastic perturbations. For α = 1 there
is no dissipation and collisions are elastic. For the case
of α < 1 the particle experiences a fractional loss of en-
ergy upon collision. The parameter ǫ is responsible for
controlling the non-linearity of the system. For ǫ = 0
and considering the conservative case and deterministic
dynamics, the system is integrable because the energy is
a constant of motion. Therefore only periodic and quasi-
periodic motion is observed in the phase space. On the
other hand for ǫ 6= 0 the system is non integrable and
chaos may be observed in the dynamics. Then ǫ plays an
important role in the dynamics particularly controlling
a transition from integrability to non-integrability. The
parameter δ determines a transition from deterministic
for δ = 0 to stochastic dynamics when δ 6= 0. The term
Z ∈ [0, 1) is a uniform random number obtained by using
a generator RAN2 in Fortran code and can be found in
numerical recipes libraries [37]. Because we are using a
simplified version, the modulus function used in second
equation of mapping (1) is introduced to avoid the parti-
cle having negative velocity after a collision with the wall
in the left. In the complete version, negative velocities
are allowed and indeed observed. However in the sim-
plified version they are forbidden and can be interpreted
as the particle moving beyond the walls. In such a situ-
ation, the modulus function is used just to re-inject the
particle back to the inner region of the walls with the
same velocity.

The possible types of motion of the particle depend
on the combination of α, ǫ and δ. Let us start with
δ = 0 leading the dynamics to be deterministic. Then
two possibilities arise for ǫ = 0: (i) for α = 1 the sys-
tem is integrable due to the energy preservation. Only
periodic and quasi-periodic dynamics are observed in the
phase space. (ii) For α 6= 1, the particle has a frac-
tional loss of energy and stationary state is given by the
null energy leading the particle to reach the state of rest.
The decay of velocity is given by vn = αnv0 where v0
is the initial velocity. For ǫ 6= 0, the integrability is de-
stroyed and again two possibilities arise: (i) for α = 1,
the phase space is mixed and exhibits a set of periodic
islands surrounded by a chaotic sea that is limited by a
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set of infinite invariant spanning curves. They prevent
the particle to diffuse to unbounded velocities then sup-
pressing Fermi acceleration. The chaotic sea scales with
the control parameter ǫ leading to several observables of
the phase space to be scaling invariant with respect to ǫ.
The scenario changes substantially for α 6= 0 then; (ii) the
mixed structure of the phase space is entirely destroyed
by the presence of dissipation. Elliptic fixed points may
turn into sinks and depending on the basin of attraction
may lead the asymptotic dynamics to be attracted to the
sinks and stay there forever characterizing then a steady
state. The invariant spanning curves are all destroyed
and for α ∼= 1 but still less than 1, multiple periodic at-
tractors are observed [38, 39] while for large dissipation,
typically α < 0.5, boundary crisis can be characterized
as well as route to chaos via period doubling is often ob-
served [40]. At the regime of strong dissipation, periodic
structures in the phase space called shrimps [41–43] can
be observed too [44]. For δ 6= 0 the stochastic dynamics
dominates. Of course for ǫ = 0 nothing happens then
let us pose the possibilities for ǫ 6= 0. The first case is
α = 1 i.e., the non dissipative case. The mixed structure
is again destroyed, particularly the invariant spanning
curves. However due to the fact the variable φ is now
random, the sine function also becomes random leading
to a diffusion in the velocity. On the other hand for α < 1
the unlimited diffusion is suppressed leading the dynam-
ics of the particle to be confined in a finite region of the
phase space. Such confinement can be described by us-
ing scaling formalism. In what follows we discuss the
different situations namely, δ = 1, δ = 0 and 0 < δ < 1.

III. RESULTS FOR δ = 1

In this section we discuss the completely stochastic
case δ = 1. As discussed above, for α = 1 unlimited
diffusion in velocity should be observed. Results for dif-
ferent values of δ shall be shown later in the paper.
Considering the second equation of the map (1), we

can show after an ensemble average that

v2n+1 = α2v2n +
(1 + α)

2

2
ǫ2, (2)

where v2 corresponds to the average of v2.
In the conservative case α = 1 the average (RMS) ve-

locity grows with an exponent 1 with respect to ǫ and
1/2 with respect to n:

vrms =
√

v2 =
√

v20 + 2ǫ2n , (3)

for large n, or small v0. This scaling was previously dis-
cussed in [10].
The analytical finding is confirmed by numerical sim-

ulations, as shown in Fig. 1 for different values of ǫ. The
simulations were made as follows. First we set an ini-
tial velocity v0 = ǫ. Then we evolved an ensemble of
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FIG. 1: (Colour online) Plot of: (a) vrms as a function of ǫ
for three different values of the maximum number of iterations
nmax namely (nmax = 104, nmax = 106 and nmax = 108). (b)
Rescale of the vertical axis for the curves shown in (a) after
the transformation v̄ → v̄/n0.514

max . The analytical results are
shown as blue straight lines.
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FIG. 2: (Colour online) Plot of ω vs n for three different values
of ǫ and α. The slope of growth is β ∼= 0.5 obtained after a
power law fit. The saturation and crossover are indicated in
the figure.

500 different initial phases φ0 ∈ [0, 2π] calculating the

velocity vrms =
∑500

j=1 vn(j)/500 at different number of
collisions, denoted as nmax and considering different val-
ues of the parameter ǫ, as shown in Fig. 1(a). After
doing a power law fitting we obtained that all curves
have slope approximately 1, as shown in the figure and
confirming the analytical finding. As one sees the greater
nmax the greater vrms maximum is obtained for a partic-
ular value of ǫ. The behaviour of vrms confirms previous
result obtained in Ref. [10] since for ǫ = 10−5 we ob-
tained vrms

∼= n0.514(1). Using this result to rescale the
vertical axis of Fig 1(a), i.e. doing vrms → vrms/n

0.514
max ,

we show all curves generated for different values of nmax

overlap each other onto a single and universal plot, as
expected. Figure 1(b) shows such overlap of curves. The
blue straight lines in Figs. 1(a,b) were obtained using
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Eq. (3). As one can see the numerical result fits well
with the analytical prediction.
Now we consider the case of α < 1. Subtracting v2n in

both sides of the Eq. (2) we have

v2n+1 − v2n =
v2n+1 − v2n
(n+ 1)− n

=
(1 + α)2

2
ǫ2 + v2n

(

α2 − 1
)

,

(4)
where

v2n+1 − v2n
(n+ 1)− n

∼= dv2

dn
. (5)

We now rearrange the terms in this equation and con-
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sider v2 = E, which implies that dv2 = dE, as result we
obtained

dE

E(α2 − 1) + (1+α)2

2 ǫ2
= dn . (6)

Considering u = E(α2−1)+ (1+α)2

2 ǫ2 and du = dE(α2−
1) yields

∫ u

u0

du

u
= (α2 − 1)

∫ n

0

dn . (7)

Therewith we find

u = u0e
(α2

−1)n . (8)

Returning to the variable v2 we obtain

v2 =
ǫ2

2

(

1 + α

1− α

)

[

1− e(α
2
−1)n

]

+ v20e
(α2

−1)n . (9)
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For n → ∞ we find

vrms = vsat =
√

(1 + α)/2(1− α)−1/2ǫ . (10)

In terms of the scaling discussed in Ref. [10], vsat ∝
ǫα1(1 − α)

α2 we thus have α1 = 1 and α2 = −0.5.
Considering small values of v0 in the Eq. (3) and equat-

ing to Eq. (10), we find the crossover nx given by the
followin equation

nx =

(

1 + α

4

)

(1− α)−1 . (11)

The crossover nx scales as (1 − α)−1 independent of ǫ.
In terms of the scaling discussed in Ref. [10], nxǫ

2 ∝
ǫz1(1− α)

z2 we thus have z1 = 2 and z2 = −1.

The RMS velocity gives only a single measure of the
distribution. We propose that the above exponents apply
more generally, and test this by considering the deviation
around of the average velocity defined as

ω(n, ǫ, α) =
1

M

M
∑

k=1

√

vk2(n, ǫ, α)− vk
2(n, ǫ, α). (12)

Here M denotes an ensemble of different initial condi-
tions. Figure 2 shows three curves of ω for different
values of α and ǫ. Our simulations were made consid-
ering and ensemble of M = 500 different initial condi-
tions. Starting the ensemble with v0 = ǫ and varying
φ0 ∈ [0, 2π], one sees that for short n all curves grow to
start with an slope of β ∼= 0.5. After a crossover nx they
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bend towards a regime of saturation (ωsat). After doing
the corresponding simulations we obtain α1 = 1.0011(2),
α2 = −0.5002(1), z1 = 2.001(2) and z2 = −1.018(2), in
good agreement with those above and obtained in Ref.
[10].

For a further test, and to lead onto the discussions for
the case of δ = 1 we concentrate now on some transport
properties along the phase space. Specifically, we con-
sider the number of collisions given by a particle over the
chaotic region until reaching a certain velocity h in the
phase space [45]. We define h as a fraction of vrms given
by Eq. (3). To run the simulations we considered a large
ensemble of 107 different initial conditions with v0 = ǫ
and different φ0 ∈ [0, 2π) randomly chosen. If along the
dynamics the velocity of the particle is larger or equal to
h, we collect the number of iterations n until that time
and a new initial condition is started. A histogram of fre-
quency for the number of particles that reach h in a time
n is shown in Fig. 3(a). The vertical axis was rescaled
to 1 for visual purposes.

When we look at the histograms we see that for small
n the number of particles that reach h is practically
zero. It rises to a maximum when the number of col-
lisions is np. After this point, the histogram has a be-
haviour marked by an exponential decay. In Fig. 4(a)
we have the corresponding values of np for the histogram
as a function of (1 − α). The slope obtained is equal to
z∗2 = −0.954(5). We emphasize this slope is quite close
to the numerical value obtained for z2 and previously
obtained in [10] for nx vs (1 − α), i.e. z2 = −1.018(2).
Varying then the parameter ǫ, we obtained z∗1 = 1.996(3)
as shown in Fig. 4(b). Using the results obtained for
the histogram of frequency we can rescale the horizon-
tal axis of Fig. 3(a) by doing a transformation of the
type n → nǫ2/[ǫz

∗

1 (1− α)z
∗

2 ]. The result is shown in Fig.
3(b) and confirms a scaling invariance of the histogram
of frequency with respect of α.

The result obtained from the histogram of frequency
can be extended to study the diffusion coefficient D. In-
deed if we proceed similarly as made recently in Ref. [46]
we end up with a decay of the histogram after reaching
the peak at np described by H ∝ exp[−Dnπ2/h2]. Here
D is the diffusion coefficient. Indeed D can be written as
D = 4h2µ/π2, where µ = (1− α)z2 .

Figure 5(a) shows a plot of D vs h for different val-
ues of α and ǫ. We see that D is almost constant for
a large range of h for different α and ǫ. However when
h reaches the region around the stationary state given
by (1 + α)ǫ/

√
2 it suffers a marked decrease. Because

α < 1 the particle has a limited region to visit then this
decrease is expected since the velocity of the particle can
not diffuse unlimited.

Different rescales can be considered for the character-
ization of D. For low values of h the vertical axis of Fig.
5(a) can be rescaled as D → D/[ǫ2(1 + α)2] while the
horizontal axis is transformed by h → h/ǫ. The results
are shown in Fig. 5(b). For high values of h the rescale
in the vertical axis is the same, but in the horizontal axis

is done by h → h/[ǫα1(1 − α)α2 ]. Indeed if we consider
the mapping (1) for α < 1 and the expression obtained
in the Eq. (2) we can write that

v2n+1 − v2n =
〈

∆2
〉

= v2n(α
2 − 1) +

(1 + α)
2

2
ǫ2.

In the limit of α ∼= 1 but still less than 1, the diffusion
coefficient is then given by D ∼=

〈

∆2
〉

/2. We conclude

in the limit of α ∼= 1 that D/[(1 + α)2ǫ2] ∼= 1/4 for the
initial velocity v0 → 0. The limit D = 1/4 is shown in
Figs. 5(b,c) as dashed lines.

IV. PARAMETER SPACE FOR δ = 0

In this section we discuss the case δ = 0, i.e., the deter-
ministic case. Two possible situations can be discussed
for ǫ 6= 0, which include: (i) α = 1 leading to the non-
dissipative case and; (ii) α < 1 yielding in a dissipative
dynamics. For the conservative case the phase space is
mixed exhibiting a set of periodic islands surrounded by
low energy chaotic sea limited by an infinite set of in-
variant spanning curves[9]. The situation for α < 1 is

FIG. 7: (Colour online) Plot of a bifurcation diagram for
the variable velocity as function of ǫ where α is given by the
following expressions: (a) Eq. (14); (b) Eq. (15); (c) Eq.
(16). We have considered fixed initial conditions of v0 = 0.1
and φ0 = 6.
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FIG. 8: (Colour online) Plot of the parameter space coloured by the Lyapunov exponent considering the same range of
parameters as shown in Fig. 6(c). We considered different values of δ: (a) δ = 0.00484; (b) δ = 0.00024; (c) δ = 0.01.

remarkably different in the sense attractors are present
in the dynamics [35, 38, 39]. Our goal in this section is
to investigate the dynamics of the particle looking at the
parameter space α vs ǫ. Figure 6(a) shows a plot of α vs ǫ
where the colour scheme represents the maximum Lya-
punov exponent. The degrade of red to yellow denotes
regular dynamics marked by periodic behaviour. Green
to blue characterize chaos. As well known in the litera-
ture [47], the Lyapunov exponent is extensively used to
characterize unpredictability in nonlinear systems. They
can be obtained from

λj = lim
n→∞

1

n
ln |Λj

(n)|, j = 1, 2 (13)

where Λj
(n) are the eigenvalues of the matrix M̃ =

∏n
i Ji(vi, φi) and Ji is the Jacobian matrix evaluated

along the orbit (vi, φi). If at least one of the λj is posi-
tive, then the system is said to have chaotic components.
The procedure used to construct Fig. 6(a) was to di-

vide both axis of ǫ ∈ [0.0001, 1] and α ∈ [0, 1] into win-
dows of 1000 parts each. This leads to a plot of a fine grid
containing 106 different cells in the parameter space. For
each cell we consider an initial condition and evolve it in
time for a very long run. For all simulations of param-
eter space we have considered a fixed initial condition
of v0 = 0.1 and φ0 = 6. We considered a transient of
105 collisions of the particle with the wall and the Lya-
punov exponent was computed after this transient for a
total of next 105 collisions. The exponents were coded
with a continuous colour scale ranging from red-yellow
(negative exponents - regular dynamics) to green-blue
(positive exponents - chaotic dynamics), as one can see
in Fig. 6(a). The period of the regular regions in the pa-
rameter space of Fig. 6(a) is written in the figure. The
left upper part of the figure has periodic regions with
period 1, 2, 3, . . .. The lower part of the figure shows a
chain of periodic regions with period 2, 3, 4. Figure 6(b)
shows the parameter space however instead of consider
the Lyapunov exponent to define the colour scheme we
used the period. For period larger than 6 we painted as
white colour. Figures 6(c,d) show a magnification of the
region C in Fig. 6(a) where the colour represents the
maximum Lyapunov exponent and the period, respec-
tively. As expected, we see a remarkably reproduction

of the structures either considering the Lyapunov expo-
nent or period. As observed in Fig. 6(d) we have a large
region with period 3 followed by a duplication of period
as marked by yellow colour with period 6. Furthermore
a second duplication of period occurs as observed in the
blue region with period 12. Figures 6(e,f) show another
magnification but now in the region E of Fig. 6(c). We
see there are sequences of period that are multiple of 3
(for example, we highlighted the periods 15, 18, 21 and
24). It happens because the structures tend to follow the
period of the larger period 3 region shown in Fig. 6(c).
Similar behaviour happens for the period 2 region shown
in the lower part of Fig. 6(a). Figure 6(g) shows an en-
largement of box G in Fig. 6(a) where periods found here
are multiple of 2 leading to 6, 8, 10, 12 and 16. Finally
Fig. 6(h) shows a magnification of the H box in Fig. 6(a)
where we see that periods here are multiple of 1 leading
to 8, 9, 10 and 11.
The periodic regions represented in Figs. 6(e,g,h) can

be described by using a linear equation in the parameter
space. Therefore the position of the periodic regions are
given by: (i) for Fig. 6(e)

α(ǫ) = 0.069(2) + 0.295(3)ǫ; (14)

(ii) for Fig. 6(g)

α(ǫ) = 0.305(3) + 0.346(4)ǫ; (15)

and finally (iii) for Fig. 6(h)

α(ǫ) = 4.09(5) + 11.7(1)ǫ. (16)

Considering the organization of the periodic regions
are described by the three equations above, we can use
such relations to obtain the bifurcation diagrams for the
variable velocity as a function of ǫ, as shown in Figs.
7(a,b,c) and using respectively Eqs. (14), (15) and (16).

V. RESULTS FOR 0 < δ < 1

In this section we discuss the case of 0 < δ < 1. The
results obtained in previous sections include δ = 1 and
δ = 0. The influences of different values of δ in some
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dynamical variables are discussed now. Figures 8(a,b,c)
show plots of parameter space coloured by Lyapunov ex-
ponent. Each plot was constructed by using different
values of δ namely: (a) δ = 0.00484; (b) δ = 0.0024
and; (c) δ = 0.01. As one can see for δ = 0.00484 some
smaller and thinner periodic regions are destroyed. After
increasing a little bit more the control parameter δ, for
example, for δ = 0.0024 or δ = 0.01, the large period 3
region is basically the only one that still remains visible
and survive the perturbation. It happens because such
region has a basin of attraction greater than the other
periods larger than 3. Increasing the value of δ leads
to increase the perturbation of φ in the first equation of
the mapping (1). This makes easier the orbit to leave
a sink region and its corresponding basin of attraction.
For δ → 1 the periodic regions are no longer visible. De-
pending on the value of δ one can study how hard is to
an orbit to leave the vicinity of a sink. It can be done
observing the behaviour of ω for different values of δ, as
shown in Fig. 9. As we can see for δ = 1 the deviation of
the average velocity is described by a power law showing
a growth with slope approximately 1/2. For δ < 1 we see
the curves exhibit an intermittent behaviour before start
growing unbounded with slope 1/2. If δ → 0 the curve of
ω approaches a saturation and unlimited diffusion in ve-
locity is no longer observed. The intermittent behaviour
mentioned is due to the time in which an orbit gets stuck
near the vicinity of a sink.

Let us now obtain the behaviour of the average velocity
V along an ensemble using a variation of ǫ for fixed val-
ues of δ and considering the conservative case of α = 1.

V is defined as V = 1
n

∑n
i=1

1
M

∑M
j=1 vij . The curves of

average velocity are obtained for an ensemble ofM = 500
different initial conditions with v0 = ǫ and φ0 ∈ [0, 2π)
randomly chosen. We calculate the average velocity V as
a function of n as shown in Fig. 10(a), for δ = 0.006.

To prove a scaling invariance of the curves we have
considered a straight line with V = 5.7841 (other values
lead to similar results) and we calculated the number of
collisions n that intercept with the different curves. As
a result we obtained that the slope after a power law
fit is equal to −2.06(1) ∼= −2. Therefore it is possible
to rescale properly the horizontal axis of the Fig. 10(a)
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FIG. 9: (Colour online) Plot of ω vs n considering different
values of δ.

considering n → n/ǫ−2 (see Fig. 10(b)). Figures 10(a,b)
were obtained for the parameter δ = 0.006. We consid-
ered a larger value of δ = 0.1 to obtain Figs. 10(c,d) while
Figs. 10(e,f) were constructed for δ = 0.5. The trans-
formation n → n/ǫ−2 is applied to Figs. 10(b,d,f) and a
better overlap of the curves are observed for a larger δ,
as shown in Fig. 10(f).

VI. SUMMARY AND CONCLUSIONS

As a short summary, we studied some dynamical prop-
erties of an ensemble of classical particles confined to
bounce between to rigid walls. The model is described
by a two dimensional and nonlinear mapping for the vari-
ables velocity of the particle and time at the instant of
the collision. We considered the dynamics for periodic
and stochastic oscillations. The first leads to limited dif-
fusion for conservative dynamics while the second pro-
duces unlimited diffusion (Fermi acceleration). When in-
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FIG. 10: (Colour online) Plot of V vs n for different values
of ǫ and considering: (a) δ = 0.006; (c) δ = 0.1; (d) δ = 0.5.
In (b), (d) and (f) we have the same curves shown in (a), (c)
and (e) but now a rescale in the horizontal axis was applied
(n → n/ǫ−2). For all curves we have considered α = 1 and an
ensemble of 500 different initial conditions were chosen with
v0 = ǫ and φ0 ∈ (0, 2π].
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elastic collisions were introduced, unlimited diffusion of
the energy was suppressed. We have used scaling argu-
ments to investigate the system, and scaling exponents
were obtained for both dissipative and conservative cases.
We have shown the diffusion coefficient is scaling invari-
ant with respect to the control parameters as well as the
number of collisions. The parameter space has compli-
cated structures present either in Lyapunov as well as
period coordinates. When stochasticity is introduced in
the dynamics, we observed that some periodic regions in
the parameter space are destroyed. In this sense, some
orbits which are in the vicinity of a sink can escape from
this region. It influences the behaviour of the deviation of

the average velocity, and can delay the diffusion process.
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