General relativity problem sheet 4

1. Show that the dot product of 4-vectors satisfies

Linearity: $\vec{a} \cdot (\alpha \vec{b} + \beta \vec{c}) = \alpha \vec{a} \cdot \vec{b} + \beta \vec{a} \cdot \vec{c}$

Commutativity: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

The product rule: $\partial_t(\vec{a} \cdot \vec{b}) = \partial_t \vec{a} \cdot \vec{b} + \vec{a} \cdot \partial_t \vec{b}$

2. * In Compton scattering, a photon (of zero mass) of energy E strikes a stationary electron (of mass m) and is scattered by an angle θ . The wavelength of a photon is given by $\lambda = hc/E$. Show that the final wavelength λ' is given by

$$\lambda' = \lambda + \frac{h}{mc}(1 - \cos\theta)$$

Hint: we don't want to know about the final velocity of the electron. Put its 4-momentum on one side of the equation and square both sides.

- 3. * If nonzero vectors \vec{u} and \vec{v} are orthogonal $(\vec{u} \cdot \vec{v} = 0)$ and \vec{u} is timelike, show that \vec{v} is spacelike. Give an example to show that the converse does not hold.
- 4. If new basis vectors are given by $\vec{e}_{1'} = \vec{e}_1$, $\vec{e}_{2'} = \vec{e}_1 + \vec{e}_2$, find the new dual basis covectors $\tilde{\omega}^{1'}$ and $\tilde{\omega}^{2'}$ in terms of $\tilde{\omega}^1$ and $\tilde{\omega}^2$.
- 5. * For any (fixed) vector $\vec{x} \in \mathcal{V}$ we can define its dual, the one-form $\tilde{x}: \mathcal{V} \to \mathbb{R}$ by $\tilde{x}(\vec{y}) = g(\vec{x}, \vec{y})$ where g is any $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$ tensor. (g may for instance represent the metric tensor, but this is not necessary). Show for the components x^{μ} of \vec{x} with respect to the basis vectors \vec{e}_{μ} and for the components x_{ν} of \tilde{x} with respect to the dual basis $\tilde{\omega}^{\nu}$ (as defined in lectures) we have: $x^{\mu} = \tilde{\omega}^{\mu}(\vec{x}), \ g(\vec{x}, \vec{y}) = x_{\mu}y^{\mu}$, and $x_{\mu} = g_{\nu\mu}x^{\nu}$. Expand the dual \tilde{e}_{μ} of the basis vector \vec{e}_{μ} in the dual basis $\tilde{\omega}^{\nu}$.
- 6. Show that for any given basis \vec{e}_{μ} of \mathcal{V} , a tensor T of type $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ can be expanded as

 $T = T^{\alpha\beta}_{\gamma\delta\epsilon} \vec{e}_{\alpha} \otimes \vec{e}_{\beta} \otimes \tilde{\omega}^{\gamma} \otimes \tilde{\omega}^{\delta} \otimes \tilde{\omega}^{\epsilon}$

where $\tilde{\omega}^{\nu}$ is the dual basis. How can the components $T^{\alpha\beta}_{\gamma\delta\epsilon}$ be calculated?

7. Show that $\nabla \times \nabla F = 0$ for any 3D scalar field F. Hint: use the antisymmetric tensor ϵ_{ijk} .