
General relativity solution sheet 5

1. (a) We have Aα′ = Λγ
α′Aγ and Cβ′

= Λβ′

δ C
δ from the known transforma-

tion properties of A and C. Thus we compute:

Bα′β′Cβ′
= Aα′ = Λγ

α′Aγ = Λγ
α′BγδC

δ = Λγ
α′BγδΛδ

β′Cβ′

so
Bα′β′ = Λγ

α′Λδ
β′Bγδ

(b) We have
Dα′β′

γ′ = Λα′

λ Λβ′

µ Λν
γ′Dλµ

ν

so
Dα′β′

α′ = Λα′

λ Λβ′

µ Λν
α′Dλµ

ν = δν
λΛβ′

µ D
λµ

ν = Λβ′

µ D
λµ

λ

using the fact that Λα′

λ and Λν
α′ are matrix inverses (since they transform

a vector from the unprimed frame to the primed frame and back again).

2. We have
Vα,γ =

(
gαβV

β
)
,γ

= gαβ,γV
β + gαβV

β
,γ

but the first term is zero since the metric is constant in SR. In arbitrary
coordinates and GR the metric coefficients will depend on position, but
the same will hold with the comma replaced by a semicolon (“covariant
derivative”).

3. (a) The energy density is ρ, and the force acting is tension (a “negative”
pressure −F/A) along the rod. Otherwise there are no forces or energy
fluxes. Thus

T = ρ~e0 ⊗ ~e0 −
F

A
~e1 ⊗ ~e1

assuming the rod is in the x direction.

In the reference frame of an observer with 4-velocity ~u, we have

T 00 = Tµνuµuν = γ2ρ− γ2u2
x

F

A

which is most likely to be negative if ux ≈ 1, ie to an observer moving with
nearly the speed of light along the rod. Thus the weak energy condition
implies ρ > F/A.

(b) A gas of noninteracting particles with zero velocity has

T = ρ~e0 ⊗ ~e0 = ρ~u⊗ ~u

where ρ is the mass density in the rest frame (not yet calculated). However,
the expression in terms of the 4-velocity ~u is a valid tensor equation, so it
is valid in all frames.
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We have particles moving in all directions, so the full stress-energy must
be

T = ρ

∫
~u⊗ ~udΩ

where the integral is over all directions. While apparently a separate
integral for each component, symmetry requirements dictate that the off-
diagonal terms vanish and the spatial diagonal terms are equal. Thus we
find

T 00 = 4πργ2

T 33 = ργ2

∫
u2

zdΩ = ργ2

∫ 2π

0

dφ

∫ π

0

sin θdθ(u2 cos2 θ) = ργ2u2 4π
3

Now we know that the energy density is given by γnm, thus we have
γnm = 4πργ2 and finally

T = γnm diag(1, u2/3, u2/3, u2/3)

This is the stress-energy of a perfect fluid, with pressure related to the
energy density by p = T 00u2/3.

4. We have ~eµ′ = Λν
µ′~eν with Λν

µ′ = ∂xν/∂xµ′ .

~er = sin θ cosφ~ex + sin θ sinφ~ey + cos θ~ez

~eθ = r cos θ cosφ~ex + r cos θ sinφ~ey − r sin θ~ez

~eφ = −r sin θ sinφ~ex + r sin θ cosφ~ey

Now we have gµν = ~eµ · ~eν ; the calculation is the same as for the kinetic
energy in problem 2.1(a), leading to

gµν =

 1 0 0
0 r2 0
0 0 r2 sin2 θ


The proper volume element involves g = det(gµν) = r4 sin2 θ:√

|g|drdθdφ = r2 sin θdrdθdφ

which should look familiar.

5. As above we find ~er = (cos θ, sin θ) and ~eθ = (−r sin θ, r cos θ) in Cartesian
coordinates. Thus ~er̂ = ~er and ~eθ̂ = ~eθ/r. We have for the commutator,

(~er̂~eθ̂ − ~eθ̂~er̂)f =
∂

∂r

(
1
r

∂

∂θ

)
f −

(
1
r

∂

∂θ

)
∂

∂r
f = − 1

r2
∂f

∂θ

Notice that the commutator is itself a vector (not a second order operator
as might be expected).
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6. The permutation group has no continuous structure, so it cannot be a
manifold. The double pendulum has a metric derived (as in the spherical
case) simply from the kinetic energy:

gµν =
(

2 cos(α− β)
cos(α− β) 1

)
The subset of IR2 consists of a circle together with the two axes. It has
singular points wherever these parts cross, in particular, (−1, 0), (0,−1),
(0, 0), (0, 1) and (1, 0). Along the axes, the metric is given simply by
the coordinate, ie ds2 = dx2 along the x-axis. On the circle, distance is
given by ds2 = dx2 + dy2 constrained to the circle, ie dθ2 with (x, y) =
(cos θ, sin θ).

First we must devise coordinates for this class of 4-momenta (the “mass
shell”), one possibility being p1, p2 and p3 so that

pµ = (
√

(p1)2 + (p2)2 + (p3)2 +m2, p1, p2, p3)

The natural metric is that induced by the ordinary SR metric diag(1,-1,-
1,-1), ie (dp0)2 − (dp1)2 − (dp2)2 − (dp3)2 with

dp0 =
1√

p2 +m2
(p1dp1 + p2dp2 + p3dp3)

Thus we find
gij = −δij +

pipj

m2 + p2

Spherical coordinates (p, θ, φ) are also possible, leading to

gij =

 − m2

p2+m2 0 0
0 −p2 0
0 0 −p2 sin2 θ


A change of sign convention would be natural here.

7. The chart ψ maps an open subset O of the manifold (represented by
(x, y, z)) to an open subset U of IR2 (represented by (θ, φ). Now the
usual coordinate ranges U = {(θ, φ) : θ ∈ (0, π), φ ∈ [0, 2π)}, while
excluding the bad points at the poles, do not correspond to an open
set. For example, we could have U = {(θ, φ) : θ ∈ (0, π), φ ∈ (0, 2π)}
for which O = S2 − {(

√
1− z2, 0, z) : z ∈ [−1, 1]}. Since the map

ψ converts (x, y, z) to (θ, φ) we need to use the inverse transformation
(θ = arctan(

√
x2 + y2/z), φ = arctan y/x) where as usual, the appropri-

ate branches of the arctan function are chosen, corresponding to the signs
of x and z, and interpolated when x = 0 or z = 0.
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