
General relativity solution sheet 7

1. Given the fact that the covariant derivative of a vector

Aα;β = Aα,β + ΓαµβA
µ

transforms as a tensor, we find

Aα
′

,β′ + Γα
′

µ′β′Aµ
′
= Λα

′

γ Λδβ′(Aγ,δ + ΓγεδA
ε)

Then on the LHS we write
Aµ

′
= Λµ

′

ε A
ε

which is the vector transformation law, and

Aα
′

,β′ = (Λα
′

γ A
γ),δΛδβ′

which is the chain rule for partial derivatives. The derivatives of ~A cancel, leaving

AγΛα
′

γ,δΛ
δ
β′ + Γα

′

µ′β′Λµ
′

ε A
ε = Λα

′

γ Λδβ′ΓγεδA
ε

Relabeling γ for ε in the first term, and noting that the equation holds for all ~A we
have

Γα
′

µ′β′Λµ
′

ε = Λα
′

γ Λδβ′Γγεδ − Λα
′

ε,δΛ
δ
β′

Finally multiplying both sides by Λεν′ (which is the matrix inverse of the Λµ
′

ε ) we obtain
the result:

Γα
′

ν′β′ = Λα
′

γ Λδβ′Λεν′Γγεδ − Λδβ′Λεν′Λα
′

ε,δ

There are a couple of equivalent forms of this expression, but it should include the
usual tensor transformation law, together with a term containing a derivative of Λ,
with indices matching correctly.

2. We know that gµν,αβ is symmetric on both pairs of indices, but there are no other
relationships. In n dimensions, a pair of symmetric indices has

∑n
i=1 i = n(n + 1)/2

independent components, so both pairs have n2(n+ 1)2/4.

On the other hand, Λαβ′,γ′δ′ is equal to

∂3xα

∂xβ′∂xγ′∂xδ′

which is symmetric on the lower three indices; the upper index is free and takes all
values. In n dimensions, this will lead to

n
n∑
j=1

j∑
i=1

i = n
n∑
j=1

j(j + 1)
2

= n
n(n+ 1)(n+ 2)

6

Substituting values of n:

n gµν,αβ Λαβ′,γ′δ′ curvature
1 1 1 0
2 9 8 1
3 36 30 6
4 100 80 20
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3. (a) Area is ∫ ψ

0

∫ 2π

0

√
|g|dφdθ =

∫ ψ

0

∫ 2π

0

sin θdφdθ = 2π(1− cosψ)

where ψ is the fixed value of θ (also below). (b) Use a parametrisation λ = φ for the
path given by θ = ψ (constant). The parallel transport equation for a vector ~V is

uαV β;α = 0

where uα = dxα/dλ = (0, 1) is the tangent vector. The connection coefficients (see the
solution 5.4) are Γφφθ = Γφθφ = cot θ, Γθφφ = − sin θ cos θ. In full, the parallel transport
equation reads

V θ,φ − sinψ cosψV φ = 0.

V φ,φ + cotψV θ = 0

which gives
V θ,φφ + cos2 ψV θ = 0

with solution
V θ = A sin(φ cosψ) +B cos(φ cosψ)

V φ = Acosecψ cos(φ cosψ)−Bcosecψ sin(φ cosψ)

After one time round the path, φ increases by 2π, so we deduce a rotation of 2π cosψ,
which after a change of orientation, is equivalent to 2π(1− cosψ) from part (a).

Why should these answers be related? It turns out that curvature is additive in two
dimensions, and that the amount of rotation of a parallel transported vector is given
by the amount of curvature enclosed within the curve. Of course a sphere has constant
curvature, so the total curvature is proportional to the area.

4. The line element is given by the solution to 6.1(a):

ds2 = (a+ b cosφ)2dθ2 + b2dφ2

(a) In a similar manner to the sphere (covered in lectures), the value of the Hamiltonian
gµνpµpν/2 is conserved; in terms of the tangent vector (4-velocity in GR) ~u it is

1
2
gµνu

µuν =
1
2
[(a+ b cosφ)2(uθ)2 + b2(uφ)2]

of course we can ignore the half. We can also think of this conservation as normalisation
of the tangent vector.

The other conservation law follows from the fact that the metric does not depend on
θ, hence

pθ = (a+ b cosφ)2uθ

is conserved.
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(b) We have gθθ,φ = −2b sinφ(a+ b cosφ) which leads to

Γθθφ = Γθφθ =
−b sinφ
a+ b cosφ

Γφθθ = sinφ(
a

b
+ cosφ)

so the geodesic equation reads

d2θ

dλ2
− 2b sinφ
a+ b cosφ

dθ

dλ

dφ

dλ
= 0

d2φ

dλ2
+ sinφ(

a

b
+ cosφ)

(
dθ

dλ

)2

= 0

(c) Use the general formula

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓαµγΓ
µ
βδ − ΓαµδΓ

µ
βγ

from which the only contributions come from

Rθφθφ = −Γθφθ,φ − ΓθθφΓ
θ
φθ

which reduces to
Rθφθφ =

b cosφ
a+ b cosφ

Note that this is physically plausible: It is positive on the outside of the torus, and
negative on the inside; it is small for large a since in that limit the torus resembles a
cylinder; it is singular at the centre when a = b.

(d) Since the metric is diagonal, raising and lowering indices is obtained by multiplying
and dividing by a single metric component. We have

Rθφθφ = gθθR
θ
φθφ

Now the Ricci tensor is obtained by contracting the first and third indices,

Rφφ = gµνRµφνφ = gθθRθφθφ = Rθφθφ

Rθφ = Rφθ = 0

Rθθ = gµνRµθνθ = gφφRφθφθ = gφφRθφθφ = gφφgθθR
θ
φθφ

where we have made extensive use of the fact that the Riemann tensor is antisymmetric
with repect to exchange of indices 1 ↔ 2 and 3 ↔ 4. Note that we can summarise
these results in the equation

Rµν = gµνg
φφRθφθφ

The curvature scalar is obtained by contracting on the remaining two indices,

R = gµνRµν = gθθRθθ + gφφRφφ = 2gφφRθφθφ
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Finally the Einstein tensor is

Gµν = Rµν −
1
2
gµνR = 0

since Rµν is proportional to gµν . Einstein’s field equations are not very useful in two
dimensions!

5. (a) Use the comma-to-semicolon rule:

4πJµ = Fµν;ν =
1√
|g|

(
√
|g|Fµν),ν

Fµν = Aν;µ −Aµ;ν = Aν,µ −Aµ,ν

In the first simplication, we need the fact that F is antisymmetric, which follows from
the second equation.
(b) Direct substitution leads to

Aν,µν −Aµ,νν = 4πJµ

which is equivalent to
Aν µ
,ν −Aµ,νν = 4πJµ

however when we convert these to covariant derivatives they no longer commute: the
difference is

Aν;µν −Aν µ
;ν = Rν µ

σν Aσ = R µ
σ Aσ

Substitution of the results of part (a) gives

Aν;µν −Aµ;ν
ν = 4πJµ

which is indeed the correct generalisation.

6.

Gαβ − 1
2
gαβGγγ = Rαβ − 1

2
gαβRγγ −

1
2
gαβ

(
Rγγ −

1
2
gγγR

δ
δ

)
Now gγγ is just summing the diagonal of the unit matrix, so it gives 4, the dimension
of the space. Thus the RHS collapses to simply Rαβ as required. To make this work
in dimension d, put q instead of 1/2 in the above calculation and show that everything
cancels if q = 2/d. The derivation of the Einstein tensor from the Bianchi identities in
the lectures does not involve the dimension of the space, so it is not the trace reverse
of R in dimensions other than four. There are other pathologies with gravity in other
dimensions, for example for d > 4 there are no stable orbits, even in the nonrelativistic
limit. In d = 3 the Einstein tensor determines the curvature, so vacuum solutions are
flat. In d = 2 the Einstein tensor vanishes identically. There are benefits to studying
these, however, for example low dimensional gravity is easier to quantize.
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