General relativity solution sheet 7

1. Given the fact that the covariant derivative of a vector
Afp = A% + A"
transforms as a tensor, we find
’ 7 7 ’ 6
Aoj/g/ + FZ‘/[}/AH == A?Yé Aﬂ/ (A’Y,é + FZ(SAE)
Then on the LHS we write
AF = AP A
which is the vector transformation law, and
’ ’7 6
AO/L[}/ - (A?Yé A’Y)v(sA ’
which is the chain rule for partial derivatives. The derivatives of A cancel, leaving
’ 5 7 ’ ’ 5
ATAS sAG + T A A= A5 Aﬂ/F36A6

Relabeling ~« for € in the first term, and noting that the equation holds for all A we
have
’ ’ ’ 6 ’ 6
Fg/ﬁIAg = A,(;é Aﬁ/].—‘zé - A?y(SAﬁ/
Finally multiplying both sides by A¢, (which is the matrix inverse of the Ag’) we obtain
the result:
! "AS A€ § A€ !
FS/B’ - A$ Aﬁ/AV/F;Yé - AﬂIAlI' 26
There are a couple of equivalent forms of this expression, but it should include the

usual tensor transformation law, together with a term containing a derivative of A,
with indices matching correctly.

2. We know that g,,,qg is symmetric on both pairs of indices, but there are no other
relationships. In n dimensions, a pair of symmetric indices has Y. ;i = n(n + 1)/2
independent components, so both pairs have n?(n + 1)2/4.

On the other hand, Af, /s is equal to
831.01
OxP 9z Oxd’

which is symmetric on the lower three indices; the upper index is free and takes all
values. In n dimensions, this will lead to

L &R+ nm+D(n+2)
HZZZ—TL; 2 =N 6

j=1i=1

n | Yuap Aj 5  curvature

1 1 1 0
Substituting values of n: | 2 9 8 1

3 36 30 6

4 100 80 20




3. (a) Area is

/ow /ozﬂ V0gldpdo = /f /0% sin d¢d = 27 (1 — cos )

where 1 is the fixed value of 6 (also below). (b) Use a parametrisation A = ¢ for the
path given by 6 = 1) (constant). The parallel transport equation for a vector V is

u“Vﬁ;a =0

where u® = dz®/dX = (0, 1) is the tangent vector. The connection coefficients (see the
solution 5.4) are 1"29 = I‘?(ﬁ = cot 0, Pgﬁqﬁ = —sinfcosf. In full, the parallel transport

equation reads
Ve,d, —sintp cos YV = 0.
Ve, +cotypV? =0
which gives
V97¢¢ +cos? V¥ =0
with solution
V% = Asin(¢costp) + B cos(é cos )
V® = Acosect) cos(¢ cos 1)) — Beosect) sin(¢ cos 1))
After one time round the path, ¢ increases by 27, so we deduce a rotation of 2x cos ),
which after a change of orientation, is equivalent to 27(1 — cosv) from part (a).

Why should these answers be related? It turns out that curvature is additive in two
dimensions, and that the amount of rotation of a parallel transported vector is given
by the amount of curvature enclosed within the curve. Of course a sphere has constant
curvature, so the total curvature is proportional to the area.

4. The line element is given by the solution to 6.1(a):
ds® = (a + bcos ¢)2db? + b?d¢?

(a) In a similar manner to the sphere (covered in lectures), the value of the Hamiltonian
9" pupy /2 is conserved; in terms of the tangent vector (4-velocity in GR) # it is

%gwu“u” = %[(a + beos @) (u?)? + b%(u?)?]

of course we can ignore the half. We can also think of this conservation as normalisation
of the tangent vector.

The other conservation law follows from the fact that the metric does not depend on
0, hence
po = (a + bcos p)?u’

is conserved.



(b) We have ggg,o = —2bsin ¢(a + bcos ¢) which leads to

—bsin ¢
o, =1r%, = ——"_
09 P 4+ beoso
Fg’e = sin (b(% + cos @)

so the geodesic equation reads

420 2bsing dbde

X2 a—i—bCOS(baa =0
2¢ . a do\?
e —|—sm¢(5 + cos ¢) (dA) =0

(c) Use the general formula

_ " "
R%.5 = Ths0 = Tiys + 1 Tgs — Dislsy

from which the only contributions come from
6  _ 16 0 16
Rg0p = —To. —Toglao

which reduces to

bcos ¢
a+bcoso
Note that this is physically plausible: It is positive on the outside of the torus, and
negative on the inside; it is small for large a since in that limit the torus resembles a
cylinder; it is singular at the centre when a = b.

0 _
R4 =

(d) Since the metric is diagonal, raising and lowering indices is obtained by multiplying
and dividing by a single metric component. We have

Ropop = 99939¢9¢
Now the Ricci tensor is obtained by contracting the first and third indices,
06 0
Rop = 9" Rugws = 97 Rogop = R 400
R9¢ = R¢9 =0

Roo = " Ruovo = 9°° Ryogo = 9°° Ropos = 9¢¢999R0¢9¢

where we have made extensive use of the fact that the Riemann tensor is antisymmetric
with repect to exchange of indices 1 «» 2 and 3 < 4. Note that we can summarise
these results in the equation

Ry = gung”* R’ g

The curvature scalar is obtained by contracting on the remaining two indices,

R=¢""R,, 2909R99 —|—g¢¢R¢¢ — 29¢¢R0¢9¢



Finally the Einstein tensor is
1
G;w = Ruu - igm/R =0

since R, is proportional to g,,. Einstein’s field equations are not very useful in two
dimensions!

. (a) Use the comma-to-semicolon rule:

1
AmJt = I, = —=(Vg|F"™).

varl
Fuy = Ay — Ay = App — Ay

In the first simplication, we need the fact that F' is antisymmetric, which follows from
the second equation.
(b) Direct substitution leads to

AVl ARV = A 8

which is equivalent to
AV — AT = A JH

however when we convert these to covariant derivatives they no longer commute: the
difference is
Vil _ AV W _ DRV AT __ n Ao
AV, — AT M =RY, AT = RFA

Substitution of the results of part (a) gives
AVR — AW = Ag JH

which is indeed the correct generalisation.

G _ %gaﬁng _ poB _ %gaﬁRvW _ %gaﬁ (wa _ ;ngRaé)
Now g7, is just summing the diagonal of the unit matrix, so it gives 4, the dimension
of the space. Thus the RHS collapses to simply R*? as required. To make this work
in dimension d, put ¢ instead of 1/2 in the above calculation and show that everything
cancels if ¢ = 2/d. The derivation of the Einstein tensor from the Bianchi identities in
the lectures does not involve the dimension of the space, so it is not the trace reverse
of R in dimensions other than four. There are other pathologies with gravity in other
dimensions, for example for d > 4 there are no stable orbits, even in the nonrelativistic
limit. In d = 3 the Einstein tensor determines the curvature, so vacuum solutions are
flat. In d = 2 the Einstein tensor vanishes identically. There are benefits to studying
these, however, for example low dimensional gravity is easier to quantize.



