Algebraic Number Theory – Lecture 6

Andrew Potter

"It was mentioned on CNN that the new prime number discovered recently is four times bigger than the previous record."

– John Blasik

1. Setting

Throughout, let k be a number field of degree n. Recall that \mathcal{O}_k is a Dedekind domain, in particular it has unique factorisation of ideals. That is, each ideal $\mathfrak{a} \subset \mathcal{O}_k$ factorises uniquely as a product of prime ideals. So, in some sense, "ideals take the place of rational integers".

Definition. Let $\mathfrak{a}, \mathfrak{b} \subset \mathcal{O}_k$ be ideals. Their greatest common divisor, $gcd(\mathfrak{a}, \mathfrak{b})$, is the ideal \mathfrak{g} with the properties

(1) $\mathfrak{g} \mid \mathfrak{a} \text{ and } \mathfrak{g} \mid \mathfrak{b};$ (2) if \mathfrak{g}' satisfies (1) then $\mathfrak{g}' \mid \mathfrak{g}.$

Similarly, their least common multiple, $lcm(\mathfrak{a}, \mathfrak{b})$, is the ideal \mathfrak{l} satisfying

(1) a | l and b | l;
(2) if l' satisfies (1) then l | l'.

We have the useful properties

- $gcd(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} + \mathfrak{b}$
- $\operatorname{lcm}(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} \cap \mathfrak{b}.$

Let $\mathfrak{a} \subset \mathcal{O}_k$ be an ideal and $b \in \mathcal{O}_k$. We write $\mathfrak{a} \mid b$ to mean $\mathfrak{a} \mid (b)$, the principal ideal generated by b. Then

$$\mathfrak{a} \mid b \quad \Leftrightarrow \quad b \in \mathfrak{a}.$$

This notation is useful because if ${\mathfrak p}$ is a prime ideal then

$$\mathfrak{p} \mid ab \quad \Rightarrow \quad \mathfrak{p} \mid a \text{ or } \mathfrak{p} \mid b.$$

What about non-principal ideals?

Theorem 1. Let $\mathfrak{a} \neq 0$ be an ideal of \mathcal{O}_k and let β be an element of \mathfrak{a} . Then there exists $\alpha \in \mathcal{O}_k$ such that $\mathfrak{a} = (\alpha, \beta)$.

2. Norms

Recall that if $\alpha \in k$ and σ_i are the *n* embeddings $k \hookrightarrow \mathbb{C}$ then we define

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha).$$

Definition. The norm of an ideal $\mathfrak{a} \subset \mathcal{O}_k$ is

$$N(\mathfrak{a}) = |\mathcal{O}_k/\mathfrak{a}|.$$

This is always a finite number, as seen in Dan's lecture.

What's the connexion between the norm of an ideal and that of an element?

Theorem 2. (1) Every ideal $\mathfrak{a} \subset \mathcal{O}_k$, $\mathfrak{a} \neq 0$, has a \mathbb{Z} -basis $\{\alpha_1, \ldots, \alpha_n\}$. (2) $N(\mathfrak{a}) = \left|\frac{\Delta[\alpha_1, \ldots, \alpha_n]}{\Delta}\right|^{1/2}$ where Δ is the discriminant of k.

Corollary. If $\mathfrak{a} = (a)$ then $N(\mathfrak{a}) = |N(a)|$.

The main, useful property of norms is their multiplicativity:

$$N(\mathfrak{ab}) = N(\mathfrak{a})N(\mathfrak{b}).$$

But other interesting properties include:

- (1) if $N(\mathfrak{a})$ is prime then \mathfrak{a} is a prime ideal;
- (2) $N(\mathfrak{a}) \in \mathfrak{a}$, i.e. $\mathfrak{a} \mid N(\mathfrak{a})$;
- (3) if \mathfrak{a} is a prime ideal then $N(\mathfrak{a}) = p^m$ for some $m \leq n$. Moreover, \mathfrak{a} divides exactly one p, so exactly one prime $p \in \mathbb{Z}$ is in \mathfrak{a} .

Thus norms are very handy for finding ideal factorisations. They also have several useful finiteness properties:

- (1) Every nonzero ideal of \mathcal{O}_k has finitely many divisors.
- (2) A nonzero rational integer belongs to only a finite number of ideals of \mathcal{O}_k .
- (3) Only finitely many ideals of \mathcal{O}_k have a given norm.

3. UNIQUE FACTORISATION

Let R be a ring. A principal ideal domain is always a unique factorisation domain: PID \Rightarrow UFD. But, in general, UFD \Rightarrow PID. However:

Theorem 3. \mathcal{O}_k is a UFD if and only if it is a PID.

Proof. (\Leftarrow) This implication is always true for rings.

 (\Rightarrow) Because of unique factorisation of ideals we only need to show that every prime ideal is principal. Let \mathfrak{p} be a prime ideal. There exists $N = N(\mathfrak{p})$ such that $\mathfrak{p} \mid N$. \mathcal{O}_k is a UFD by assumption so $N = \pi_1 \cdots \pi_s$ for π_i irreducible in \mathcal{O}_k . But $\mathfrak{p} \mid N$ so $\mathfrak{p} \mid \pi_1 \cdots \pi_s$, hence $\mathfrak{p} \mid \pi_i$ for some *i*, after relabeling we may assume i = 1. Now, π_1 is irreducible and \mathcal{O}_k is a UFD so π_1 is a prime element of \mathcal{O}_k . Thus (π_1) is a prime ideal, so $\mathfrak{p} = (\pi_1)$, so every prime ideal is principal.

4. The class group: A preview

Recall that the fractional ideals form an abelian group \mathcal{F} . The principal fractional ideals form a subgroup \mathcal{P} that is normal since \mathcal{F} is abelian. Let $\mathcal{H} = \mathcal{F}/\mathcal{P}$, and call \mathcal{H} the class group. Let $h = |\mathcal{H}|$, then h is called the class number. If h = 1then every ideal is principal and hence \mathcal{O}_k is a UFD, and by the previous theorem, if \mathcal{O}_k is a UFD then every ideal is principal and h = 1. So the class number somehow measures by how much unique factorisation fails.