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“You’re coming of age in the 21st century. A century in which
I promise you mathematics is going to play a starring role.”
– President Josiah Bartlet, The West Wing Series 1 Episode 17
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Why study probability?

Probability began from the study of gambling and games of chance.

It took hundreds of years to be placed on a completely rigorous
footing.

Now probability is used to analyse physical systems, model financial
markets, understand medical tests, study algorithms etc.

The world is full of randomness and uncertainty: we need to
understand it!
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Course outline

20+2 lectures, 6 exercise classes (odd weeks), 6 mandatory HW sets
(even weeks).

2 online quizzes (Weeks 4, 8) count 5% towards final module mark.

IT IS YOUR RESPONSIBILITY TO KEEP UP WITH
LECTURES AND TO ENSURE YOU HAVE A FULL SET OF
NOTES AND SOLUTIONS

Course webpage for notes, problem sheets, links etc:
https://people.maths.bris.ac.uk/∼maotj/prob.html
Drop-in sessions: 12pm Tuesdays, G83 Fry Building
(Other times, I may be unavailable – but just email
maotj@bristol.ac.uk to fix an appointment).

This material is copyright of the University unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the
University and is to be downloaded or copied for your private study
only.
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Textbook

The recommended textbook for the unit is:
A First Course in Probability by S. Ross.

Copies are available in the Queens Building library.
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Section 1: Elementary probability

Objectives: by the end of this section you should be able to

Define events and sample spaces, describe them in simple
examples
Describe combinations of events using set-theoretic notation
List the axioms of probability
State and use simple results such as inclusion–exclusion and de
Morgan’s Law
Understand how to calculate probabilities when there are equally
likely outcomes
Describe outcomes in the language of combinations and
permutations
Count these outcomes using factorial notation
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Section 1.1: Random events

[This material is also covered in Sections 2.1 and 2.2 of the course book]

Definition 1.1.

Random experiment or trial. Examples:
I spin of a roulette wheel
I throw of a dice

A sample point or elementary outcome ω is the result of a trial:
I the number on the roulette wheel
I the number on the dice

The sample space Ω is the set of all possible elementary outcomes ω.

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 7 / 252

Red and green dice

Example 1.2.

Consider the experiment of throwing a red die and a green die.

Represent an elementary outcome as a pair (r , g), such as

ω = (6, 3)

where r is the score on the red die and g is the score on the green die.

Then the sample space

Ω = {(1, 1), (1, 2), . . . , (6, 6)}

has 36 sample points.

Note we use set notation: this will be key for us.
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Events

Definition 1.3.

An event is a set of outcomes specified by some condition.

Note that events are subsets of the sample space, denoted A ⊆ Ω.

We say that event A occurs if the elementary outcome of the trial lies
in the set A, denoted ω ∈ A.

Example 1.4.

In the red and green dice example, Example 1.2, let A be the event that
the sum of the scores is 5:

A = {(1, 4), (2, 3), (3, 2), (4, 1)}.
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Two special cases

Remark 1.5.

There are two special events:

A = ∅, the empty set. This event never occurs, since we can never
have ω ∈ ∅.
A = Ω, the whole sample space. This event always occurs, since we
always have ω ∈ Ω.
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Combining events.

Given two events A and B, we can combine them together, using
standard set notation.

Informal description Formal description

A occurs or B occurs (or both) A ∪ B
A and B both occur A ∩ B
A does not occur Ac

A occurs implies B occurs A ⊆ B
A and B cannot both occur together A ∩ B = ∅
(disjoint or mutually exclusive)

You may find it useful to represent combinations of events using Venn
diagrams.
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Section 1.2: Axioms of probability

[This material is also covered in Section 2.3 of the course book.]

The probability P captures the intuitive idea that some events are
more likely than others.

We will give three axioms of probability . . .

. . . and develop the consequences of these axioms as a rigorous
mathematical theory, using only logic.

We show that it matches our intuition for how we expect probability
to behave.
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Axioms

Definition 1.6.

Let P be a map from events A ⊆ Ω to the real numbers R.

For each event A (each subset of Ω) there is a number P(A).

Then P is a probability measure if it satisfies:

Axiom 1 0 ≤ P(A) ≤ 1 for every event A.
Axiom 2 P(Ω) = 1.
Axiom 3 Let A1,A2, . . . be an infinite collection of disjoint

events (so Ai ∩ Aj = ∅ for all i 6= j). Then

P

( ∞⋃
i=1

Ai

)
= P(A1) + P(A2) + · · · =

∞∑
i=1

P(Ai ).
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Deductions from the axioms

[This material is also covered in Section 2.4 of the course book.]

Lemma 1.7.
1 P(∅) = 0

2 Axiom 3 implies a ‘finite’ version of the same result for disjoint
events A1, . . . ,An, (”Property 2”)

P

(
n⋃

i=1

Ai

)
= P(A1) + P(A2) + · · ·+ P(An) =

n∑
i=1

P(Ai ).

3 For any event A, the complement satisfies P(Ac) = 1− P(A).
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Deductions (continued)

Proof.
1 Take Ai = ∅, then ∪∞i=1Ai = ∅, so Axiom 3 gives

P(∅) =
∞∑
i=1

P(∅),

and hence P(∅) = 0.

2 This follows from Axiom 3 by taking Ai = ∅ for i ≥ n + 1.
3 To prove the complement result:

I By definition, A and Ac are disjoint events: that is A ∩ Ac = ∅.
I Further, Ω = A ∪ Ac , so P(Ω) = P(A) + P(Ac) by Property 2.
I But P(Ω) = 1, by Axiom 2. So 1 = P(A) + P(Ac).
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Some simple applications of the axioms (cont.)

Lemma 1.9.

Let A ⊆ B. Then P(A) ≤ P(B).

Proof.

We can write B = A ∪ (B ∩ Ac), and A ∩ (B ∩ Ac) = ∅.
That is, A and B ∩ Ac are disjoint events.

Draw a Venn diagram!

Hence by Property 2 we have P(B) = P(A) + P(B ∩ Ac).

But by Axiom 1 we have P(B ∩ Ac) ≥ 0, so P(B) ≥ P(A).
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Inclusion–exclusion principle n = 2

Lemma 1.10.

Let A and B be any two events (not necessarily disjoint). Then

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Proof.

A ∪ B = A ∪ (B ∩ Ac) is a disjoint union, so

P(A ∪ B) = P(A) + P(B ∩ Ac) (Property 2). (1.1)

B = (B ∩ A) ∪ (B ∩ Ac) is a disjoint union, so

P(B) = P(B ∩ A) + P(B ∩ Ac) (Property 2). (1.2)

Subtracting (1.2) from (1.1) we have
P(A ∪ B)− P(B) = P(A)− P(A ∩ B).

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 17 / 252

More general inclusion–exclusion principle

Theorem 1.11.

For three events A1, . . . ,A3, we can write

P
(
A1

⋃
A2

⋃
A3

)
= P(A1) + P(A2) + P(A3)

−P(A1 ∩ A2)− P(A2 ∩ A3)− P(A3 ∩ A1)

+P(A1 ∩ A2 ∩ A3).

Proof.

Not proved here – can you see the result for general n?
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Boole’s inequality – ‘union bound’

Proposition 1.12 (Boole’s inequality).

For any events A1, A2, . . . , An, the P (
⋃n

i=1 Ai ) ≤
∑n

i=1 P(Ai ).

Proof.

Proof by induction. When n = 2, by Lemma 1.10:

P (A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2) ≤ P(A1) + P(A2).

Now suppose true for n. Then

P

(
n+1⋃
i=1

Ai

)
= P

((
n⋃

i=1

Ai

)
∪ An+1

)
≤ P

(
n⋃

i=1

Ai

)
+ P(An+1)

≤
n∑

i=1

P(Ai ) + P(An+1) =
n+1∑
i=1

P(Ai ).
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Key idea: de Morgan’s Law

Theorem 1.13.

For any events A and B:

(A ∪ B)c = Ac ∩ Bc =⇒ 1− P (A ∪ B) = P (Ac ∩ Bc) , (1.3)

(A ∩ B)c = Ac ∪ Bc =⇒ 1− P (A ∩ B) = P (Ac ∪ Bc) . (1.4)

Proof.

Draw a Venn diagram.

Remark 1.14.

Swapping A and Ac , and B and Bc , (1.3) and (1.4) are equivalent.
(1.3)‘Neither A nor B happens’ same as ’A doesn’t happen and B
doesn’t happen’.
(1.4) ‘A and B don’t both happen’ same as ‘either A doesn’t happen,
or B doesn’t’
By a similar argument, can extend (1.3) and (1.4) to n events.
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Example

Example 1.15.

Return to Example 1.2: suppose we roll a red die and a green die.

What is the probability that we roll a 6 on at least one of them?

Write A = {roll a 6 on red die}, B = {roll a 6 on green die}.
Event ‘roll a 6 on at least one’ is A ∪ B.

Hence by (1.3),

P(A ∪ B) = 1− P (Ac ∩ Bc) = 1− 5

6
· 5

6
=

11

36
,

since P (Ac ∩ Bc) = P(Ac)P(Bc) = (1− P(A))(1− P(B))

Caution: This final step only works because two rolls are
‘independent’ (see later for much more on this!!)
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Section 1.3: Equally likely sample points
[This material is also covered in Section 2.5 of the course book]

A common case is where each sample point has the same probability.
e.g. symmetry says dice rolls have equal probability.
Assume that

I Ω, the sample space, is finite
I all sample points are equally likely

Then by Axiom 2 and Property 2, considering the disjoint union

1 = P(Ω) = P

(⋃
ω∈Ω

{ω}

)
=
∑
ω∈Ω

P({ω}) = |Ω|P({ω})

we can see that

P({ω}) =
1

Number of points in Ω
=

1

|Ω|
.

Also, if A ⊆ Ω, then P
(⋃

ω∈A{ω}
)

=
∑

ω∈A P({ω}) = |A|P({ω}) so:

P(A) =
Number of points in A

Number of points in Ω
=
|A|
|Ω|

.
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Example: red and green dice.

Example 1.16.

Return to the red and green dice, Example 1.2

Ω = {(1, 1), (1, 2), . . . , (6, 6)}

with 36 sample points.

By symmetry, assume that P({ω}) = 1
36 for each ω (i.e. equally likely

outcomes).

For each i , let Ai be the event that the sum of the scores is i :

A5 = {(1, 4), (2, 3), (3, 2), (4, 1)} so |A5| = 4 and P(A5) =
4

36
=

1

9
.

Exercise: Show that

P(A4) =
1

12
, P(A3) =

1

18
, P(A2) =

1

36
.
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Section 1.4: Permutations and combinations
[This material is also covered by Sections 1.1 - 1.4 of the course book.]

Definition 1.17.

A permutation is a selection of r objects from n ≥ r objects when the
ordering matters.

Example 1.18.

Eight swimmers in a race, how many different ways of allocating the three
medals are there?

Gold medal winner can be chosen in 8 ways.

For each gold medal winner, the silver medal can go to one of the
other 7 swimmers, so there are 8× 7 different options for gold and
silver.

For each choice of first and second place, the bronze medal can go to
one of the other 6 swimmers, so there are 8× 7× 6 different ways the
medals can be handed out.
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General theory

Lemma 1.19.

In general there are nPr = n(n − 1)(n − 2) · · · (n − r + 1) different
ways.

Note that we can write nPr = n!
(n−r)! .

General convention: 0! = 1

Remark 1.20.

Check the special cases:

r = n: nPn = n!
(n−n)! = n!

1 = n!, so there are n! ways of ordering n
objects.

r = 1: nP1 = n!
(n−1)! = n, so there are n ways of choosing 1 of n

objects.
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BANANA example1

Can extend this analysis to situations with multiple objects of the same
type:

Example 1.21.

In how many ways can the letters of the word BANANA be
rearranged to produce distinct 6-letter “words”?
There are 6! orderings of the letters of the word BANANA.
But can order the 3 As in 3! ways, and order two Ns in 2! ways.
(If you like, think about labelling A1, A2 and A3)
So each word is produced by 3!× 2! orderings of letters A and N.
So the total number of distinct words is

6!

3!2!1!
=

6× 5× 4× 3× 2× 1

3× 2× 1× 2× 1× 1
=

6× 5× 4

2
= 60.

1This kind of analysis was first performed by al-Farahidi in Iraq in the 8th Century
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Combinations

Definition 1.22.

A combination is a selection of r objects from n ≥ r objects when the
order is not important.

Example 1.23.

Eight swimmers in a club, how many different ways are there to select a
team of three of them?

We saw before that there are 8× 7× 6 ways to choose 3 people in
order.

The actual ordering is unimportant in terms of who gets in the team.

Each team could be formed from 3! = 6 different allocations of the
medals.

So the number of distinct teams is 8×7×6
6 .
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General result

Lemma 1.24.

More generally, think about choosing r where the order is important:
this can be done in nPr = n!

(n−r)! different ways.

But r ! of these ways result in the same set of r objects, since ordering
is not important.

Therefore the r objects can be chosen in(
n

r

)
:=

nPr

r !
=

n!

(n − r)!r !

different ways if order doesn’t matter.

At school many of you will have written nCr for this binomial
coefficient. Please use this new notation from now onwards.
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Example

Example 1.25.

How many hands of 5 can be dealt from a pack of 52 cards?

Note that the order in which you are dealt the cards is assumed to be
unimportant here.

Thus there are(
52

5

)
=

52!

47!× 5!
=

52× 51× 50× 49× 48

5× 4× 3× 2× 1

distinct hands.
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Properties of binomial coefficients

Proposition 1.26.

1 For any n and r :

(
n

r

)
=

(
n

n − r

)
.

2 [‘Pascal’s Identity’a] For any n and r :(
n

r

)
=

(
n − 1

r − 1

)
+

(
n − 1

r

)
.

3 [Binomial theorem] For any real a, b:

(a + b)n =
n∑

r=0

(
n

r

)
arbn−r .

4 For any n, we know: 2n =
∑n

r=0

(n
r

)
.

aIn fact, dates back to Indian mathematician Pingala, 2nd century B.C.
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Proof.
1 Choosing r objects to be included is the same as choosing (n − r)

objects to be excluded.
2 Consider choosing r objects out of n, and paint one object red. Either

I the red object is chosen, and the remaining r − 1 objects need to be
picked out of n − 1, or

I the red object is not chosen, and all r objects need to be picked out of
n − 1.

3 Write (a + b)n = (a + b)(a + b) · · · (a + b) and imagine writing out
the expansion. You choose an a or b from each term of the product,
so to get arbn−r you need to choose r brackets to take an a from
(and n − r to take a b from). There are

(n
r

)
ways to do this.

4 Simply take a = b = 1 in 3.
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Section 1.5: Counting examples

[This material is also covered in Section 2.5 of the course book.]

Example 1.27.

A fair coin is tossed n times.

Represent the outcome of the experiment by, e.g.
(H,T ,T , . . . ,H,T ).

Ω = {(s1, s2, . . . , sn) : si = H or T , i = 1, . . . , n} so that |Ω| = 2n.

If the coin is fair and tosses are independent then all 2n outcomes are
equally likely.

Let Ar be the event “there are exactly r heads”.

Each element of Ar is a sample point ω = (s1, s2, . . . , sn) with exactly
r of the si being a head.

There are
(n
r

)
different ways to choose the r elements of ω to be a

head, so |Ar | =
(n
r

)
.
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Example 1.27.

Therefore P(Exactly r heads) = P(Ar ) =
(nr)
2n .

n∑
r=0

P(Ar ) =
n∑

r=0

(n
r

)
2n

=
1

2n

n∑
r=0

(
n

r

)
=

1

2n
2n = 1,

using the Binomial Theorem, Proposition 1.26.4.

Example of binomial distribution . . . see Definition 3.10 later.
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Example: Bridge hand

Example 1.28.

We deal a (bridge) hand of 13 cards from a pack of 52.

What is the probability of being dealt the JQKA of spades?

A sample point is a set of 13 cards (order not important).

Hence the number of sample points is the number of ways of
choosing 13 cards from 52, i.e. |Ω| =

(52
13

)
.

We assume these are equally likely.
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Example 1.28.

Now we calculate the number of hands containing the JQKA of
spades.

Each of these hands contains those four cards, and 9 other cards from
the remaining 48 cards in the pack.

So there are |A| =
(48

9

)
different hands containing JQKA of spades.

P(JQKA spades) =

(48
9

)(52
13

) =
48!

9!39!
52!

13!39!

=
48!13!

52!9!

=
13× 12× 11× 10

52× 51× 50× 49
=

17160

6497400
' 0.00264.

Roughly 0.2% chance, or 1 in 400 hands.
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Example: Birthdays

Example 1.29.

There are m people in a room.

What is the probability that no two of them share a birthday?

Label the people 1 to m.

Let the ith person have a birthday on day ai , and assume
1 ≤ ai ≤ 365.

The m-tuple (a1, a2, . . . , am) specifies everyone’s birthday.

So

Ω = {(a1, a2, . . . , am) : ai = 1, 2, . . . , 365, i = 1, 2, . . . ,m}

and |Ω| = 365m.

Let Bm be the event “no 2 people share the same birthday”.

An element of Bm is a point (a1, . . . , am) with each ai different.
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Example 1.29.

Need to choose m birthdays out of the 365 days, and ordering is
important. (If Alice’s birthday is 1 Jan and Bob’s is 2 Jan, that is a
different sample point to if Alice’s is 2 Jan and Bob’s is 1 Jan.)

So

|Bm| = 365Pm =
365!

(365−m)!

P(Bm) =
|Bm|
|Ω|

=
365!

365m(365−m)!
.

For example,

P(B23) ≈ 0.493

P(B40) ≈ 0.109

P(B60) ≈ 0.006
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Section 2: Conditional probability

Objectives: by the end of this section you should be able to

Define and understand conditional probability.
State and prove the partition theorem and Bayes’ theorem
Put these results together to calculate probability values
Understand the concept of independence of events

[This material is also covered in Sections 3.1 - 3.3 of the course book.]
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Section 2.1: Motivation and definitions

An experiment is performed, and two events are of interest.

Suppose we know that B has occurred.

What information does this give us about whether A occurred in the
same experiment?

Remark 2.1.

Intuition: repeat the experiment infinitely often.

B occurs a proportion P(B) of the time.

A and B occur together a proportion P(A ∩ B) of the time.

So when B occurs, A also occurs a proportion

P(A ∩ B)

P(B)

of the time.
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Conditional probability

This motivates the following definition.

Definition 2.2.

Let A and B be events, with P(B) > 0. The conditional probability of A
given B, denoted P(A |B), is defined as

P(A |B) =
P(A ∩ B)

P(B)
.

(Sometimes also call this the ‘probability of A conditioned on B’)
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Example: Sex of children

Example 2.3.

Choose a family at random from all families with two children

Given the family has at least one boy, what is the probability that the
other child is also a boy?

Assume equally likely sample points:
Ω = {(b, b), (b, g), (g , b), (g , g)}.

A = {(b, b)} = “both boys”

B = {(b, b), (b, g), (g , b)} = “at least one boy”

A ∩ B = {(b, b)}
P(A ∩ B) = 1/4

P(B) = 3/4

P(A |B) =
1
4
3
4

=
1

3
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Section 2.2: Reduced sample space

A good way to understand this is via the idea of a reduced sample
space.

Example 2.4.

Return to the red and green dice, Example 1.2.

Suppose I tell you that the sum of the dice is 5: what is the
probability the red dice scored 2?

Write A = {red dice scored 2} and B = {sum of dice is 5}.
Remember from Example 1.16 that P(B) = 4

36 .

Clearly A ∩ B = {(2, 3)}, so P(A ∩ B) = 1
36 .

Hence

P(A |B) =
P(A ∩ B)

P(B)
=

1/36

4/36
=

1

4
.
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Reduced sample space

Example 2.4.

When we started in Example 1.2, our sample space was

Ω = {(1, 1), (1, 2), . . . , (6, 6)},

with 36 sample points.

However, learning that B occurred means that we can rule out a lot
of these possibilities.

We have reduced our world to the event
B = {(1, 4), (2, 3), (3, 2), (4, 1)}.
Conditioning on B means that we just treat B as our sample space
and proceed as before.

The set B is a reduced sample space.

We simply work in this set to figure out the conditional probabilities
given this event.
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Conditional probabilities are well-behaved

Proposition 2.5.

For a fixed B, the conditional probability P(· |B) is a probability measure
(it satisfies the axioms):

1 the conditional probability of any event A satisfies 0 ≤ P(A |B) ≤ 1,

2 the conditional probability of the sample space is one: P(Ω |B) = 1,

3 for any finitely or countably infinitely many disjoint events A1, A2, . . . ,

P

(⋃
i

Ai

∣∣∣∣∣ B
)

=
∑
i

P(Ai |B).
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Sketch proofs

1 By Axiom 1 and Lemma 1.9, we know that 0 ≤ P(A ∩ B) ≤ P(B),
and dividing through by P(B) the result follows.

2 Since Ω ∩ B = B, we know that P(Ω ∩ B)/P(B) = P(B)/P(B) = 1.

3 Applying Axiom 3 to the (disjoint) events Ai ∩ B, we know that

P

((⋃
i

Ai

)
∩ B

)
= P

(⋃
i

(Ai ∩ B)

)
=
∑
i

P (Ai ∩ B) ,

and again the result follows on dividing by P(B).
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Deductions from the axioms

Since (for fixed B) Proposition 2.5 shows that P(· |B) is a probability
measure, all the results we deduced in Chapter 1 continue to hold
true.

This is a good advert for the axiomatic method.

Corollary 2.6.

For example for fixed set B:

P(Ac |B) = 1− P(A |B).

P(∅ |B) = 0.

P(A ∪ C |B) = P(A |B) + P(C |B)− P(A ∩ C |B).

Remark 2.7.

WARNING: DON’T CHANGE THE CONDITIONING: e.g. P(A |B) and
P(A |Bc) have nothing to do with each other.
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Section 2.3: Partition theorem

Definition 2.8.

A collection of events B1,B2, . . . ,Bn is a disjoint partition of Ω, if

Bi ∩ Bj = ∅ if i 6= j , and⋃n
i=1 Bi = Ω.

In other words, the collection is a disjoint partition of Ω if and only if every
sample point lies in exactly one of the events.

Theorem 2.9 (Partition Theorem).

Let A be an event. Let B1,B2, . . . ,Bn be a disjoint partition of Ω with
P(Bi ) > 0 for all i . Then

P(A) =
n∑

i=1

P(A |Bi )P(Bi ).
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Proof of Partition theorem, Theorem 2.9

Proof.

Write Ci = A ∩ Bi .

Then for i 6= j the Ci ∩ Cj = (A ∩ Bi ) ∩ (A ∩ Bj) = A ∩ (Bi ∩ Bj) = ∅.
Also

⋃n
i=1 Ci =

⋃n
i=1(A ∩ Bi ) = A ∩ (

⋃n
i=1 Bi ) = A ∩ Ω = A.

So P(A) = P(
⋃n

i=1 Ci ) =
∑n

i=1 P(Ci ) since the Ci are disjoint

But P(Ci ) = P(A ∩ Bi ) = P(A |Bi )P(Bi ) by the definition of
conditional probability, so

P(A) =
n∑

i=1

P(A |Bi )P(Bi ).

Note: In the proof of Lemma 1.10, we saw that
P(A) = P(A ∩ B) + P(A ∩ Bc), just as here. In fact, B and Bc is a
disjoint partition of Ω.
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Example: Diagnostic test

Example 2.10.

A test for a disease gives a positive result 90% of the time when the
disease is present, and 20% of the time when it is absent.

It is known that 1% of the population have the disease.

In a randomly selected member of the population, what is the
probability of getting a positive test result?

Let B1 be the event “has disease”: P(B1) = 0.01.

Let B2 = Bc
1 be the event “no disease”: P(B2) = 0.99.

Let A be the event “positive test result”.

We are told: P(A |B1) = 0.9 P(A |B2) = 0.2.

Therefore

P(A) =
2∑

i=1

P(A |Bi )P(Bi ) = 0.9× 0.01 + 0.2× 0.99 = 0.207.
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Important advice

Remark 2.11.

With questions of this kind, always important to be methodical.

Write a list of named events.

Write down probabilities (conditional or not?)

Will get a lot of credit in exam for just that step.

Seems too obvious to bother with, but leaving it out can lead to
serious confusion.

Obviously need to do final calculation as well!

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 50 / 252



Section 2.4: Bayes’ theorem

We saw in Definition 2.2 that P(A ∩ B) = P(A |B)P(B).

We also have P(A ∩ B) = P(B ∩ A) = P(B |A)P(A).

So P(A |B)P(B) = P(B |A)P(A) and therefore

Theorem 2.12 (Bayes’ theorem).

For any events A and B with P(A) > 0 and P(B) > 0:

P(B |A) =
P(A |B)P(B)

P(A)
. (2.1)

This very simple observation forms the basis of large parts of modern
statistics.

If A is an observed event, and B is some hypothesis about how the
observation was generated, it allows us to switch

P(observation | hypothesis)↔ P(hypothesis | observation).
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Alternative form of Bayes’

Theorem 2.13 (Bayes’ theorem – partition form).

Let A be an event, and let B1, B2, . . . , Bn be a disjoint partition of Ω.
Then for any k:

P(Bk |A) =
P(A |Bk)P(Bk)∑n
i=1 P(A |Bi )P(Bi )

.

Proof.

We have already seen in (2.1) that

P(Bk |A) =
P(A |Bk)P(Bk)

P(A)
.

The partition theorem (Theorem 2.9) tells us that
P(A) =

∑n
i=1 P(A |Bi )P(Bi ).

The result follows immediately.
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Example: Diagnostic test revisited

In Example 2.10, the observation is the positive test result, and the
hypothesis is that you have the disease.

Example 2.14.

A test for a disease gives positive results 90% of the time when the
disease is present, and 20% of the time when it is absent.

It is known that 1% of the population have the disease.

A randomly chosen person receives a positive test result. What is the
probability they have the disease?

A is the event “positive test result” and B1 is the event “has disease”.

Use the formulation (2.1), since we already know P(A) = 0.207.

So P(B1 |A) = P(A |B1)P(B1)
P(A) = 0.9×0.01

0.207 = 0.0435 (3.s.f.)
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Example: Prosecutor’s fallacy

Example 2.15.

A crime is committed, and some DNA evidence is discovered.

The DNA is compared with the national database and a match is
found.

In court, the prosecutor tells the jury that the probability of seeing
this match if the suspect is innocent is 1 in 1,000,000.

How strong is the evidence that the suspect is guilty?

Let E be the event that the DNA evidence from the crime scene
matches that of the suspect.

Let G be the event that the suspect is guilty.

P(E |G ) = 1, P(E |G c) = 10−6.
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Example 2.15.

We want to know P(G |E ), so use Bayes’ theorem.

We need to know P(G ).

Suppose that only very vague extra information is known about the
suspect, so there is a pool of 107 equally likely suspects, except for
the DNA data: P(G ) = 10−7.

Hence

P(G |E ) =
P(E |G )P(G )

P(E |G )P(G ) + P(E |G c)P(G c)

=
1× 10−7

1× 10−7 + 10−6 × (1− 10−7)
=

1

1 + 10× (1− 10−7)

≈ 1

11
.

This is a much lower probability of guilt than you might think, given
the DNA evidence.
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Section 2.5: Independence of events
Motivation: Events are independent if the occurrence of one does not
affect the occurrence of the other i.e.

P(A |B) = P(A)⇐⇒ P(A ∩ B)

P(B)
= P(A)⇐⇒ P(A ∩ B) = P(A)P(B).

Definition 2.16.

1 Two events A and B are independent if and only if
P(A ∩ B) = P(A)P(B).

2 Events A1,. . . ,An are independent if and only if for any subset
S ⊆ {1, . . . , n}

P

(⋂
i∈S

Ai

)
=
∏
i∈S

P(Ai )

Lemma 2.17.

If events A and B are independent, so are events A and Bc .
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Example

Example 2.18.

Throw a fair dice repeatedly, with the throws independent.

What is P(first six occurs on 4th throw)?

Let Ai be the event that a 6 is thrown on the ith throw of the dice.

Event of interest is

{ first six occurs on 4th throw}
= { 1st throw not 6 AND 2nd throw not 6

AND 3rd throw not 6 AND 4th throw is 6}
= Ac

1 ∩ Ac
2 ∩ Ac

3 ∩ A4.

By independence,

P(Ac
1 ∩Ac

2 ∩Ac
3 ∩A4) = P(Ac

1)P(Ac
2)P(Ac

3)P(A4) =
5

6
· 5

6
· 5

6
· 1

6
=

53

64
.
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Chain rule

Lemma 2.19.

Chain rule / Multiplication rule

1 For any two events A and B with P(B) > 0,

P(A ∩ B) = P(A |B)P(B).

2 More generally, if A1, . . . ,An are events with P(A1 ∩ · · · ∩ An−1) > 0,
then

P(A1 ∩ · · · ∩ An)

= P(A1)P(A2 |A1)P(A3 |A1 ∩ A2) · · ·P(An |A1 ∩ · · · ∩ An−1).
(2.2)
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Chain rule (proof)

Proof.

To ease notation, let Bi = A1 ∩ A2 ∩ · · · ∩ Ai . Note that
B1 ⊇ B2 ⊇ · · · ⊇ Bn.

We can write the RHS of (2.2) as

P(B1)P(A2 |B1)P(A3 |B2) · · ·P(An |Bn−1).

But Ai+1 ∩ Bi = Bi+1, so by definition:

P(Ai+1|Bi ) =
P(Ai+1 ∩ Bi )

P(Bi )
=

P(Bi+1)

P(Bi )
.

Hence as required the RHS of (2.2) is equal to

P(B1)
P(B2)

P(B1)

P(B3)

P(B2)
· · · P(Bn)

P(Bn−1)
= P(Bn).
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Example: bridge hand (revisited – see Example 1.28)

Example 2.20.

You are dealt 13 cards at random from a pack of cards.

What is the probability that you are dealt a JQKA of spades? Let
I A1 = “dealt J spades”
I A2 = “dealt Q spades”
I A3 = “dealt K spades”
I A4 = “dealt A spades”

Note P(A1) = P(A2) = P(A3) = P(A4) = 13
52 = 1

4 , but these events
are not independent.
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Example 2.20.

P(A2 |A1) =
P(A1 ∩ A2)

P(A1)

=

(50
11

)
/
(52

13

)(51
12

)
/
(52

13

) (
=

number of hands with J and Q

number of hands with J

)
=

12

51
(or see this directly?)

This is not equal to P(A2) = 1
4 .

Similarly P(A3 |A1 ∩ A2) = 11
50 and P(A4 |A1 ∩ A2 ∩ A3) = 10

49 .

Deduce (as before) that

P(A1 ∩ A2 ∩ A3 ∩ A4)

= P(A1)P(A2 |A1)P(A3 |A1 ∩ A2)P(A4 |A1 ∩ A2 ∩ A3)

=
13

52
· 12

51
· 11

50
· 10

49
.
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Section 3: Discrete random variables

Objectives: by the end of this section you should be able to

To build a mathematical model for discrete random variables
To understand the probability mass function of such variables
To get experience in working with some of the basic distributions
(Bernoulli, Binomial, Poisson, Geometric)

[The material for this Section is also covered in Chapter 4 of the course
book.]
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Section 3.1: Motivation and definitions

A trial selects an outcome ω from a sample space Ω.

Often we are interested in a number associated with the outcome, not
the outcome itself.

Example 3.1.

Throw two fair dice. Look at the total score.

Let X (ω) be the total score when the outcome is ω.

Remember we write the sample space as

Ω = {(a, b) : a, b = 1, . . . , 6}.

So X ((a, b)) = a + b.
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Formal definition

Definition 3.2.

Let Ω be a sample space.

A random variable (r.v.) X is a function X : Ω→ R.

That is, X assigns a value X (ω) to each outcome ω.

Remark 3.3.

For any set B ⊆ R, we use the notation P(X ∈ B) as shorthand for

P({ω ∈ Ω : X (ω) ∈ B}).

E.g. X is the sum of the scores of two fair dice, P(X ≤ 3) is
shorthand for

P
(
{ω ∈ Ω : X (ω) ≤ 3}

)
= P

(
{(1, 1), (1, 2), (2, 1)}

)
=

3

36
.
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Probability mass functions
In this chapter we look at discrete random variables X , which are
those where X (ω) takes a discrete set of values S = {x1, x2, . . .}.
This avoids certain technicalities we will worry about in due course.

Definition 3.4.

Let X be a discrete r.v. taking values in S = {x1, x2, . . .}.
The probability mass function (pmf) of X is the function pX given by

pX (x) = P(X = x) = P({ω ∈ Ω : X (ω) = x}).

Remark 3.5.

If pX is a p.m.f. then

0 ≤ pX (x) ≤ 1 for all x∑
x∈S pX (x) = 1 (since P(Ω) = 1).

In fact, any function with these properties can be thought of as a pmf of
some random variable.
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Example 3.6.

X is the sum of the scores on 2 fair dice

x = 2 3 4 5 6 7 . . .

|{ω : X (ω) = x}| = 1 2 3 4 5 6 . . .

pX (x) = 1
36

2
36

3
36

4
36

5
36

6
36 . . .

x = 8 9 10 11 12

|{ω : X (ω) = x}| = 5 4 3 2 1

pX (x) = 5
36

4
36

3
36

2
36

1
36
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Section 3.2: Bernoulli distribution

This is the building block for many distributions.

Definition 3.7.

Think of an experiment with two outcomes: success or failure.

Ω = {success, failure}

This is called a Bernoulli trial.

Let X (failure) = 0 and X (success) = 1, so that X counts the number
of successes in the trial.

Suppose that P(X = 1) = P({success}) = p.

Then

P(X = 0) = P({failure}) = 1− P({success}) = 1− p.

We say that X has a Bernoulli distribution with parameter p.
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Bernoulli distribution notation

Remark 3.8.

Notation: X ∼ Bernoulli(p)

X has pmf

pX (0) = 1− p,

pX (1) = p,

pX (x) = 0 for x /∈ {0, 1}.

Equivalently, pX (x) = (1− p)1−xpx for x = 0, 1.
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Example: Indicator functions

Example 3.9.

Let A be an event, and let random variable I be defined by

I (ω) =

{
1 ω ∈ A
0 ω /∈ A

I is called the indicator function of A.

P(I = 1) = P({ω : I (ω) = 1}) = P(A)
P(I = 0) = P({ω : I (ω) = 0}) = P(Ac)

That is pI (1) = P(A) and pI (0) = 1− P(A).

Thus I ∼ Bernoulli(P(A)).
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Section 3.3: Binomial distribution

Definition 3.10.

Consider n independent Bernoulli trials.

Each trial has probability p of success.

Let T be the total number of successes.

Then T is said to have a binomial distribution with parameters (n, p).

Notation: T ∼ Bin(n, p).
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Binomial distribution example

Example 3.11.

Take n = 3 trials with p = 1
3

Ω = {FFF ,FFS ,FSF ,SFF ,FSS ,SFS ,SSF ,SSS}

P({FFF}) =
2

3
· 2

3
· 2

3
=

8

27

P({FFS}) = P({FSF}) = P({SFF}) =
2

3
· 2

3
· 1

3
=

4

27

P({FSS}) = P({SFS}) = P({SSF}) =
2

3
· 1

3
· 1

3
=

2

27

P({SSS}) =
1

3
· 1

3
· 1

3
=

1

27
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Binomial distribution example (cont.)

Example 3.11.

Hence
I {T = 0} = {FFF} so that P(T = 0) = 8

27
I {T = 1} = {FFS ,FSF ,SFF} so that P(T = 1) = 3× 4

27 = 12
27

I {T = 2} = {FSS ,SFS ,SSF} so that P(T = 2) = 3× 2
27 = 6

27
I {T = 3} = {SSS} so that P(T = 3) = 1

27

Thus T has pmf

pT (0) =
8

27
, pT (1) =

12

27
, pT (2) =

6

27
, pT (3) =

1

27

with pT (x) = 0 otherwise.
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General binomial distribution pmf

Lemma 3.12.

In general if T ∼ Bin(n, p) then

pT (x) = P(T = x) =

(
n

x

)
px(1− p)n−x , x = 0, 1, . . . , n.

Proof.

There are
(n
x

)
sample points with x successes from the n trials.

Each of these sample points has probability px(1− p)n−x .

Exercise: Verify that
∑n

x=0 pT (x) = 1 in this case (Hint: use Proposition
1.26.3).
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Binomial distribution example

Example 3.13.

40% of a large population vote Labour.

A random sample of 10 people is taken.

What is the probability that not more than 2 people vote Labour?

Let T be the number of people that vote Labour. So
T ∼ Bin(10, 0.4).

P(T ≤ 2) = pT (0) + pT (1) + pT (2)

=

(
10

0

)
(0.4)0(0.6)10 +

(
10

1

)
(0.4)1(0.6)9

+

(
10

2

)
(0.4)2(0.6)8

= 0.167
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Section 3.4: Geometric distribution

Definition 3.14.

Carry out independent Bernoulli trials until we obtain first success.

Let X be the number of the trial when we see the first success.

Suppose the probability of a success on any one trial is p, then

P(X = x) = (1− p)x−1p, x = 1, 2, 3, . . .

Hence the mass function is

pX (x) = P(X = x) = p(1− p)x−1, x = 1, 2, 3, . . .

with pX (x) = 0 otherwise.

X is said to have a geometric distribution with parameter p

Notation: X ∼ Geom(p)

Exercise: Verify that
∑∞

x=1 pX (x) = 1.
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Example: call-centre

Example 3.15.

Consider a call-centre with 10 incoming phone lines.

Each time an operative is free, they answer a random line.

Let X be the number of people served (up to and including yourself)
from the time that you get through.

Each time the operative serves someone there is a probability 1
10 that

it will be you.

So X ∼ Geom( 1
10 ).

x = 1 2 3 4 5 6 · · ·
P(X = x) = 0.1 0.09 0.081 0.0729 0.06561 0.05905 · · ·
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Geometric tail distribution

Lemma 3.16.

If X ∼ Geom(p) then P(X > x) = (1− p)x for any integer x ≥ 0.

Proof.

Write q = 1− p. Then by summing a geometric progression to infinity:

P(X > x) = P(X = x + 1) + P(X = x + 2) + P(X = x + 3) + · · ·
= pqx + pqx+1 + pqx+2 + · · ·
= pqx(1 + q + q2 + · · · )

= pqx
1

1− q

= qx ,

since p/(1− q) = 1.
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Waiting time formulation

Remark 3.17.

Lemma 3.16 is easily seen by thinking about waiting for successes: the
probability of waiting more than x for a success is the probability that you
get failures on the first x trials, which has probability (1− p)x .

If waiting at the call-centre (Example 3.15),

P(X > 10) = 0.910 = 0.349 (to 3 s.f.).
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Lack-of-memory property

Lemma 3.18.

Lack of memory property If X ∼ Geom(p) then for any x ≥ 1:

P(X = x + n |X > n) = P(X = x).

Remark 3.19.

In the call-centre example (Example 3.15) this tells us for example
that

P(X = 5 + x |X > 5) = P(X = x).

The fact that you have waited for 5 other people to get served
doesn’t mean you are more likely to get served quickly than if you
have just joined the queue.
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Section 3.5: Poisson distribution

Definition 3.20.

Let λ > 0 be a real number.

A r.v. X has a Poisson distribution with parameter λ if X takes
values in the range 0,1,2,. . . and has pmf

pX (x) = e−λ
λx

x!
, x = 0, 1, 2, . . . .

Notation: X ∼ Poi(λ).

Exercise: verify that
∑∞

x=0 pX (x) = 1.

Hint: see later in Analysis that

∞∑
x=0

λx

x!
= eλ.
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Two motivations

Remark 3.21.

If X ∼ Bin(n, p) with n large and p small then

P(X = x) ≈ e−np
(np)x

x!

i.e. X is distributed approximately the same as a Poi(λ) random variable
where λ = np.

Remark 3.22.

In the second year Probability 2 course you can see that the Poisson
distribution is a natural distribution for the number of arrivals of
something in a given time period: telephone calls, internet traffic, disease
incidences, nuclear particles.
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Example: airline tickets

Example 3.23.

An airline sells 403 tickets for a flight with 400 seats.

On average 1% of purchasers fail to turn up.

What is the probability that there are more passengers than seats
(someone is bumped)?

Let X = number of purchasers that fail to turn up.

True distribution X ∼ Bin(403, 0.01)

Approximately X ∼ Poi(4.03)
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Example: airline tickets (cont.)

Example 3.23.

P(X = x) ≈ e−4.03 4.03x

x!

For example

x = 0 1 2 3 4 · · ·
P(X = x) ≈ 0.0178 0.0716 0.144 0.1939 0.1953 · · ·

We can deduce that

P(at least one passenger bumped)

= P(X ≤ 2) = pX (0) + pX (1) + pX (2)

≈ 0.2334.
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Section 4: Expectation and variance

Objectives: by the end of this section you should be able to

To understand where random variables are centred and how
dispersed they are
To understand basic properties of mean and variance
To use results such as Chebyshev’s theorem to bound probabilities

[The material for this Section is also covered in Chapter 4 of the course
book.]
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Section 4.1: Expectation

We want some concept of the average value of a r.v. X and the
spread about this average.

Key insight is that the average should weight the outcomes by
probability.

Definition 4.1.

Let X be a random variable taking the values in a discrete set S .

The expected value (or expectation) of X , denoted E(X ), is defined as

E(X ) =
∑
x∈S

xpX (x).

This is well-defined so long as
∑

x∈S |x |pX (x) converges.

E(X ) is also sometimes called the mean of the distribution of X .
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Example: Bernoulli random variable

Example 4.2.

Recall from Remark 3.8 that if X ∼ Bernoulli(p) then X has pmf
pX (0) = 1− p, pX (1) = p, pX (x) = 0 for x /∈ {0, 1}.
Hence in Definition 4.1

E(X ) = 0 · (1− p) + 1 · p = p.

Note that for p 6= 0, 1 this random variable X won’t ever equal E(X ).
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Motivation

Remark 4.3.

Do not confuse E(X ) with the mean of a collection of observed
values, which is referred to as the sample mean.

However, there is a relationship between E(X ) and sample mean
which motivates the definition.

Perform an experiment and observe the random variable X which
takes values in the discrete set S.

Repeat the experiment infinitely often, and observe outcomes X1, X2,
. . .

Consider the limit of the sample means

lim
n→∞

X1 + · · ·+ Xn

n
.
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Motivation (cont.)

Remark 4.4.

Let an(x) be the number of times the outcome is x in the first n
trials. Then reordering the sum, we know that

X1 + X2 + · · ·+ Xn =
∑
x∈S

xan(x).

We expect (but have not yet proved) that

an(x)

n
→ pX (x) as n→∞.

If so then

X1 + · · ·+ Xn

n
=

∑
x∈S xan(x)

n
=
∑
x∈S

x
an(x)

n
→
∑
x∈S

xpX (x).

This motivates Definition 4.1.
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Section 4.2: Examples

Example 4.5 (Uniform random variable).

Let X take the integer values 1, . . . , n.

pX (x) =

{
1
n x = 1, . . . , n
0 otherwise

E(X ) =
n∑

x=1

x
1

n
=

1

n

n∑
x=1

x =
1

n

1

2
n(n + 1) =

n + 1

2
.

Hence for example if n = 6, the expected value of a dice roll is 7/2.
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Example: binomial distribution

Example 4.6.

X ∼ Bin(n, p) (see Definition 3.10).

P(X = x) =

{ (n
x

)
px(1− p)n−x x = 0, 1, . . . , n

0 otherwise

E(X ) =
n∑

x=0

x

(
n

x

)
px(1− p)n−x

= np
n∑

x=1

(
n − 1

x − 1

)
px−1(1− p)(n−1)−(x−1)

= np.

Here we use the fact that x
(n
x

)
= n

(n−1
x−1

)
(check directly?) and apply

the Binomial Theorem 1.26.3.

There are easier ways — see later.
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Example: Poisson distribution

Example 4.7.

X ∼ Poi(λ) (see Definition 3.20).

P(X = x) =

{
e−λ λ

x

x! x = 0, 1, . . .
0 otherwise

E(X ) =
∞∑
x=0

xe−λ
λx

x!

=
∞∑
x=1

xe−λ
λx

x!
= λe−λ

∞∑
x=1

λx−1

(x − 1)!

= λe−λ
∞∑
y=0

λy

y !
= λe−λeλ.

So E(X ) = λ.
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Example: geometric distribution

Example 4.8.

X ∼ Geom(p) (see Definition 3.14).

Recall that P(X = x) = (1− p)x−1p, so that

E(X ) =
∞∑
x=1

(1− p)x−1px

= p
∞∑
x=1

(1− p)x−1x

= p
1

(1− (1− p))2
=

1

p
.

Here we use the standard result that
∑∞

x=1 t
x−1x = 1/(1− t)2

(differentiate sum of geometric progression?)
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Section 4.3: Expectation of a function of a r.v.

Consider a random variable X taking values x1, x2, . . .

Take a function g : R→ R and define a new r.v. Z (ω) = g(X (ω)).

Then Z takes values in the range z1 = g(x1), z2 = g(x2). . . .

By definition E(Z ) =
∑

i zipZ (zi ) where pZ is the pmf of Z which we
could in principle work out.

But it’s often easier to use:

Theorem 4.9.

Let Z = g(X ). Then

E(Z ) = Eg(X ) =
∑
i

g(xi )pX (xi ) =
∑
x∈S

g(x)pX (x).
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Proof.

(you are not required to know this proof)

Recall that pZ (zi ) = P(Z = zi ) = P({ω ∈ Ω : Z (ω) = zi}).
Notice that

{ω ∈ Ω : Z (ω) = zi} =
⋃

j : g(xj )=zi

{ω : X (ω) = xj},

which is a disjoint union.
So pZ (zi ) =

∑
j : g(xj )=zi

pX (xj).
Therefore

E(Z ) =
∑
i

zipZ (zi ) =
∑
i

zi

 ∑
j : g(xj )=zi

pX (xj)


=

∑
i

 ∑
j : g(xj )=zi

g(xj)pX (xj)

 =
∑
j

g(xj)pX (xj).
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Example 4.10.

Returning to Example 4.5:

pX (x) =

{
1
n x = 1, . . . , n
0 otherwise

Consider Z = X 2 so Z takes the values 1, 4, 9, . . . , n2 each with
probability 1

n . We have g(x) = x2.

By Theorem 4.9

E(Z ) =
n∑

x=1

g(x)pX (x)

=
n∑

x=1

x2 1

n
=

1

n

n∑
x=1

x2

=
1

n

1

6
n(n + 1)(2n + 1) =

1

6
(n + 1)(2n + 1)
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Linearity of expectation

Lemma 4.11.

Let a and b be constants. Then E(aX + b) = aE(X ) + b.

Proof.

Let g(x) = ax + b. From Theorem 4.9 we know that

E(g(X )) =
∑
i

g(xi )pX (xi ) =
∑
i

(axi + b)pX (xi )

= a
∑
i

xipX (xi ) + b
∑
i

pX (xi ) = aE(X ) + b.
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Section 4.4: Variance

This is the standard measure for the spread of a distribution.

Definition 4.12.

Let X be a r.v., and let µ = E(X ).

Define the variance of X , denoted by Var (X ), by

Var (X ) = E
(
(X − µ)2

)
.

Notation: Var (X ) is often denoted σ2.

The standard deviation of X is
√
Var (X ).
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Example of spread

Example 4.13.

Define random variables each with mean zero EY = EZ = EU = 0

Y =


1, wp.

1

2
,

−1, wp.
1

2
,

U =


10, wp.

1

2
,

−10, wp.
1

2
,

Z =


2, wp.

1

5
,

−1

2
, wp.

4

5
.

Notice the expectation does not distinguish between these rv.’s.

Yet they are clearly different, and the variance helps capture this.

Var (Y ) = E(Y − 0)2 = 12 · 1

2
+ (−1)2 · 1

2
= 1,

Var (U) = E(U − 0)2 = 102 · 1

2
+ (−10)2 · 1

2
= 100,

Var (Z ) = E(Z − 0)2 = 22 · 1

5
+
(
−1

2

)2
· 4

5
= 1.
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Useful lemma

Lemma 4.14.

Var (X ) = E(X 2)− (E(X ))2

Sketch proof: see Theorem 6.15.

Var (X ) = E((X − µ)2)

= E(X 2 − 2µX + µ2)

= E(X 2)− 2µE(X ) + µ2 (will prove this step later)

= E(X 2)− 2µ2 + µ2

= E(X 2)− µ2
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Example: Bernoulli random variable

Example 4.15.

Recall from Remark 3.8 and Example 4.2 that if X ∼ Bernoulli(p)
then pX (0) = 1− p, pX (1) = p and EX = p.

We can calculate Var (X ) in two different ways:
1 Var (X ) = E(X − µ)2 =

∑
x pX (x)(x − p)2 =

(1− p)(−p)2 + p(1− p)2 = (1− p)p(p + 1− p) = p(1− p).
2 Alternatively:

E(X 2) =
∑
x

pX (x)x2 = (1− p)02 + p12 = p,

so that Var (X ) = E(X 2)− (EX )2 = p − p2 = p(1− p).

Remark 4.16.

We will see in Example 6.17 below that if X ∼ Bin(n, p) (see Definition
3.10) then Var (X ) = np(1− p). (Need to know this formula)
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Uniform Example

Example 4.17.

Again consider the uniform random variable (from Example 4.5)

pX (x) =

{
1
n x = 1, . . . , n
0 otherwise

Know from Example 4.5 that E(X ) = n+1
2 and from Example 4.10

that E(X 2) = 1
6 (n + 1)(2n + 1).

Var (X ) = E(X 2)− (E(X ))2

=
1

6
(n + 1)(2n + 1)−

(
n + 1

2

)2

=
n + 1

12
(4n + 2− 3(n + 1))

=
(n + 1)

12
(n − 1) =

(n2 − 1)

12
.
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Example: Poisson random variable

Example 4.18.

Consider X ∼ Poi(λ) (see Definition 3.20).

Recall that P(X = x) =

{
e−λ λ

x

x! x = 0, 1, . . .
0 otherwise

and E(X ) = λ.

We show (see next page) that E(X 2) = λ2 + λ.

Thus Var (X ) = E(X 2)− (E(X ))2 = (λ2 + λ)− (λ)2 = λ.
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Example: Poisson (cont.)

Example 4.18.

Key is that x2 = x(x − 1) + x , so again changing the range of summation:

E(X 2) =
∞∑
x=0

x2e−λ
λx

x!

=
∞∑
x=0

x(x − 1)e−λ
λx

x!
+
∞∑
x=0

xe−λ
λx

x!

= λ2e−λ
∞∑
x=2

λx−2

(x − 2)!
+ λe−λ

∞∑
x=1

λx−1

(x − 1)!

= λ2e−λ

( ∞∑
z=0

λz

z!

)
+ λe−λ

 ∞∑
y=0

λy

y !


which equals λ2 + λ since each bracketed term is precisely eλ as before.
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Non-linearity of variance

We now state (and prove later) an important result concerning variances,
which is the counterpart of Lemma 4.11:

Lemma 4.19.

Let a and b be constants. Then Var (aX + b) = a2Var (X ).
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Section 4.5: Chebyshev’s inequality

Let X be any random variable with finite mean µ and variance σ2,
and let c be any constant.

Define the indicator variable I (ω) =

{
1 if |X (ω)− µ| > c
0 otherwise

Calculate
E(I ) = 0 · P(I = 0) + 1 · P(I = 1) = P(I = 1) = P(|X − µ| > c).

Define also Z (ω) = (X (ω)− µ)2/c2, so that

E(Z ) = E
(

(X − µ)2

c2

)
=

E((X − µ)2)

c2
=
σ2

c2

This last step uses Lemma 4.11 with a = 1/c2 and b = 0.

Notice that I (ω) ≤ Z (ω) for any ω. (plot a graph?)

So E(I ) ≤ E(Z ), and we deduce that . . .
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Theorem 4.20 (Chebyshev’s inequality).

For any random variable X with finite mean µ and variance σ2, and any
constant c:

P(|X − µ| > c) ≤ σ2

c2
.

Remark 4.21.

We only need to assume that X has finite mean and variance.

Inequality says the probability that X is far from µ is bounded by a
quantity that increases with the variance σ2 and decreases with the
distance from µ.

In particular makes sense to take c a multiple of σ.

This shows that our axioms and definitions give us something that fits
with our intuition.
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Application of Chebyshev’s inequality

Example 4.22.

A fair coin is tossed 104 times.
Let T denote the total number of heads.
Then since T ∼ Bin(104, 0.5) we have E(T ) = 5000 and
Var (T ) = 2500 (see Example 4.6 and Remark 4.16).
Thus by taking c = 500 in Chebyshev’s inequality (Theorem 4.20) we
have

P(|T − 5000| > 500) ≤ 0.01,

so that
P(4500 ≤ T ≤ 5500) ≥ 0.99.

We can also express this as

P
(

0.45 ≤ T

104
≤ 0.55

)
≥ 0.99.
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Section 5: Joint distributions

Objectives: by the end of this section you should be able to

Understand the joint probability mass function
Know how to use relationships between joint, marginal and
conditional probability mass functions
Use convolutions to calculate mass functions of sums.

[This material is also covered in Chapter 6 of the course book.]
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Section 5.1: The joint probability mass function

Up to now we have only considered a single random variable at once,
but now consider related random variables.

Often we want to measure two attributes, X and Y , in the same
experiment.

For example
I height X and weight Y of a randomly chosen person
I the DNA profile X and the cancer type Y of a randomly chosen person.
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Joint probability mass function

Recall that random variables are functions of the underlying outcome
ω in sample space Ω.

Hence two random variables are simply two different functions of ω in
the same sample space.

In particular, consider discrete random variables X ,Y : Ω 7→ R.

Definition 5.1.

The joint pmf for X and Y is pX ,Y , defined by

pX ,Y (x , y) = P(X = x ,Y = y)

= P
(
{ω : X (ω) = x} ∩ {ω : Y (ω) = y}

)
We can define the joint pmf of random variables X1, . . . ,Xn in an
analogous way.
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Example: coin tosses

Example 5.2.

A fair coin is tossed 3 times. Let
I X = number of heads in first 2 tosses
I Y = number of heads in all 3 tosses

We can display the joint pmf in a table

pX ,Y (x , y) y = 0 y = 1 y = 2 y = 3

x = 0 1/8 1/8 0 0
x = 1 0 1/4 1/4 0
x = 2 0 0 1/8 1/8
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Section 5.2: Marginal pmfs

Continue the set-up from above: imagine we have two random variables X
and Y . Then:

Definition 5.3.

The marginal pmf for X is pX , defined by

pX (x) = P(X = x) = P
(
{ω : X (ω) = x}

)
.

Similarly the marginal pmf for Y is pY , defined by

pY (y) = P(Y = y) = P
(
{ω : Y (ω) = y}

)
.
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Joint pmf determines the marginals

Suppose X takes values x1, x2, . . . and Y takes values y1, y2, . . ..

for each xi : {X = xi} =
⋃
j

{X = xi ,Y = yj} (disjoint union),

=⇒ P(X = xi ) =
∑
j

P(X = xi ,Y = yj) (Axiom 3).

Hence (and with a corresponding argument for {Y = yj}) we deduce
that summing over the joint distribution determines the marginals:

Theorem 5.4.

For any random variables X and Y :

pX (xi ) =
∑
j

pX ,Y (xi , yj),

pY (yj) =
∑
i

pX ,Y (xi , yj).
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Example: coin tosses (return to Example 5.2)

Example 5.5.

A fair coin is tossed 3 times. Let
I X = number of heads in first 2 tosses
I Y = number of heads in all 3 tosses

We can display the joint and marginal pmfs in a table

pX ,Y (x , y) y = 0 y = 1 y = 2 y = 3

x = 0 1/8 1/8 0 0 1/4
x = 1 0 1/4 1/4 0 1/2
x = 2 0 0 1/8 1/8 1/4

1/8 3/8 3/8 1/8

We calculate marginals for X by summing the rows of the table.

We calculate marginals for Y by summing the columns.
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Marginal pmfs don’t determine joint

Example 5.6.

Consider tossing a fair coin once.

Let X be the number of heads, and let Y be the number of tails.

Write the joint pmf in a table:

pX ,Y (x , y) y = 0 y = 1

x = 0 0 1/2
x = 1 1/2 0

Either write down the marginals directly, or calculate

pX (0) = pX ,Y (0, 0) + pX ,Y (0, 1) = 1/2,

and pX (1) = 1− pX (0) = 1/2 and similarly pY (0) = pY (1) = 1/2.
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Marginal pmfs don’t determine joint (cont.)

Example 5.7.

Now toss a fair coin twice.

Let X is the number of heads on the first throw, and Y be the
number of tails on the second throw.

Write the joint pmf in a table:

pX ,Y (x , y) y = 0 y = 1

x = 0 1/4 1/4
x = 1 1/4 1/4

Summing rows and columns we see that
pX (0) = pX (1) = pY (0) = pY (1) = 1/2, just as in Example 5.6.

Comparing Examples 5.6 and 5.7 we see that the marginal pmfs don’t
determine the joint pmf.
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Section 5.3: Conditional pmfs

Definition 5.8.

The conditional pmf for X given Y = y is pX |Y , defined by

pX |Y (x |y) = P(X = x |Y = y).

(This is only well-defined for y for which P(Y = y) > 0.)

Similarly the conditional pmf for Y given X = x is pY |X , defined by

pY |X (y |x) = P(Y = y |X = x).
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Calculating conditional pmfs

Remark 5.9.

Notice that (‘scale column by its sum’)

pX |Y (x |y) = P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)

=
pX ,Y (x , y)

pY (y)
. (5.1)

Similarly (’scale row by its sum’)

pY |X (y |x) =
pX ,Y (x , y)

pX (x)
.
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Conditional pmfs are probability mass functions

Remark 5.10.

We can check (in the spirit of Remark 3.5) that for any fixed y, the
pX |Y (· | y) is a pmf.

That is, for any x, since (5.1) expresses it as a ratio of probabilities,
clearly pX |Y (· | y) ≥ 0.

Similarly using Theorem 5.4 we know that pY (y) =
∑

x pX ,Y (x , y).

This means that (by (5.1))∑
x

pX |Y (x | y) =
∑
x

pX ,Y (x , y)

pY (y)

=
1

pY (y)

∑
x

pX ,Y (x , y) =
1

pY (y)
pY (y) = 1,

as required.
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Example 5.2 continued

Example 5.11.

Condition on X = 2:

pY |X (y |2) =
pX ,Y (2, y)

pX (2)
= 4pX ,Y (2, y)

y 0 1 2 3

pY |X (y |2) 0 0 1/2 1/2

Condition on Y = 1

pX |Y (x |1) =
pX ,Y (x , 1)

pY (1)
=

8

3
pX ,Y (x , 1)

x 0 1 2

pX |Y (x |1) 1/3 2/3 0
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Example: Inviting friends to the pub

Example 5.12.

You decide to invite every friend you see today to the pub tonight.

You have 3 friends (!)

You will see each of them with probability 1/2.

Each invited friend will come with probability 2
3 independently of the

others.

Find the distribution of the number of friends you meet in the pub.

Let X be the number of friends you invite.

X ∼ Bin(3, 1
2 ) so pX (x) =

(3
x

) (
1
2

)x (1
2

)3−x
=
(3
x

)
1
8 for 0 ≤ x ≤ 3.

Let Y be the number of friends who come to the pub.

Y |X = x ∼ Bin(x , 2
3 ) so pY |X (y |x) =

(x
y

) (
2
3

)y (1
3

)x−y
for 0 ≤ y ≤ x .
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Example: Inviting friends to the pub (cont.)

Example 5.12.

So pX ,Y (x , y) = pX (x)pY |X (y |x) =

{ 1
8

(3
x

)(x
y

)
2y

3x 0 ≤ y ≤ x ≤ 3

0 otherwise

y = 0 1 2 3

x = 0 1
8 × 1 = 1

8 0 0 0
1 3

8 ×
1
3 = 1

8
3
8 ×

2
3 = 1

4 0 0
2 3

8 ×
1
9 = 1

24
3
8 ×

4
9 = 1

6
3
8 ×

4
9 = 1

6 0
3 1

8 ×
1

27 = 1
216

1
8 ×

6
27 = 1

36
1
8 ×

12
27 = 1

18
1
8 ×

8
27 = 1

27

8
27

12
27

6
27

1
27

Therefore E(Y ) = 0× 8
27 + 1× 12

27 + 2× 6
27 + 3× 1

27 = 12+12+3
27 = 1.

There is a much easier way to calculate E(Y ) - see Section 9.
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Section 5.4: Independent random variables

Definition 5.13.

Two random variables are independent if

pX ,Y (x , y) = pX (x)pY (y), for all x and y .

Equivalently if

pX |Y (x |y) = pX (x), for all x and y .

In general, random variables X1, . . . ,Xn are independent if

pX1,...,Xn(x1, . . . , xn) =
n∏

i=1

pXi
(xi ), for all xi .
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Properties of independent random variables

Remark 5.14.

1 Consistent with Definition 2.16 (independence of events).

2 We require that the events {X = x} and {Y = y} are independent
for any x and y.

3 In fact this is equivalent to requiring events {X ∈ A} and {Y ∈ B}
independent for any A and B.

4 Important: if X and Y are independent, so are g(X ) and h(Y ) for
any functions g and h. a

aProof (not examinable): For any u, v

P(g(X ) = u, h(Y ) = v) = P
(
{X ∈ g−1(u)}

⋂
{Y ∈ h−1(v)}

)
= P

(
{X ∈ g−1(u)}

)
P
(
{Y ∈ h−1(v)}

)
= P(g(X ) = u)P(h(Y ) = v).
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IID random variables

Definition 5.15.

We say that random variables X1, . . . ,Xn are IID (independent and
identically distributed) if they are independent, and all their marginals
pXi

are the same, so

pX1,...,Xn(x1, . . . , xn) =
n∏

i=1

pX (xi ),

for some fixed pX .

Here we obtain marginals pX1(x1) =
∑

x2,...,xn
pX1,...,Xn(x1, . . . , xn) etc.
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Example

Example 5.16.

Again return to Example 1.2, rolling red and green dice.

Let X be the number on the red dice, Y on the green dice.

Then every pair of numbers have equal probability:

pX ,Y (x , y) =
1

36
=

1

6
· 1

6
= pX (x) · pY (y) for all x , y = 1, . . . , 6.

We see that these variables are independent (in fact IID as well).
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Discrete convolution

Proposition 5.17.

Let X and Y be independent, integer-valued random variables with
respective mass functions pX and pY .

Then random variable X + Y is also integer-valued and has mass
function satisfying

pX+Y (k) =
∞∑

i=−∞
pX (k − i) · pY (i), for all k ∈ Z.

This formula is called the discrete convolution of the mass functions
pX and pY .
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Discrete convolution proof

Proof.

Using independence, and since it is a disjoint union, we know that

pX+Y (k) = P(X + Y = k) = P

( ∞⋃
i=−∞

{X + Y = k ,Y = i}

)

=
∞∑

i=−∞
P(X + Y = k , Y = i)

=
∞∑

i=−∞
P(X = k − i , Y = i) =

∞∑
i=−∞

P(X = k − i)P(Y = i)

=
∞∑

i=−∞
pX (k − i) · pY (i).
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Convolution of Poissons gives a Poisson

Theorem 5.18.

Recall the definition of the Poisson distribution from Definition 3.20.

Let X ∼ Poi(λ) and Y ∼ Poi(µ) be independent.

Then X + Y ∼ Poi(λ+ µ).
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Proof of Theorem 5.18

Proof.

Using Proposition 5.17, since X and Y only take positive values we know

pX+Y (k) =
k∑

i=0

pX (k − i)pY (i)

=
k∑

i=0

(
e−λ

λk−i

(k − i)!

)(
e−µ

µi

i !

)

= e−(λ+µ) 1

k!

k∑
i=0

(
k

i

)
λk−iµi

= e−(λ+µ) (λ+ µ)k

k!
,

where we use the Binomial Theorem, Proposition 1.26.3.
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Section 6: Properties of mean and variance

Objectives: by the end of this section you should be able to

To explore further properties of expectations of a single and
multiple variables.
To understand and use the Law of Large Numbers.
To define covariance, and use it for computing variances of sums.
To calculate and interpret correlation coefficients.

[This material is also covered in Sections 7.1 to 7.3 of the course book]
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Section 6.1: Properties of expectation E

Theorem 6.1.

1 Let X be a constant r.v. with P(X = c) = 1. Then E(X ) = c.

2 Let a and b be constants and X be a r.v. Then
E(aX + b) = aE(X ) + b.

3 Let X and Y be r.v.s. Then E(X + Y ) = E(X ) + E(Y ).

Proof.
1 If P(X = c) = 1 then E(X ) = cP(X = c) = c.

2 This is Lemma 4.11.
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Proof of Theorem 6.1 (cont).

Proof.
3 Let Z = X + Y , i.e. Z = g(X ,Y ) where g(x , y) = x + y .Then

E(Z ) =
∑
xi

∑
yj

g(xi , yj)pX ,Y (xi , yj) by extension of Theorem 4.9

=
∑
xi

∑
yj

(xi + yj)pX ,Y (xi , yj)

=
∑
xi

∑
yj

{xipX ,Y (xi , yj) + yjpX ,Y (xi , yj)}

=
∑
xi

xi

∑
yj

pX ,Y (xi , yj)

+
∑
yj

yj

{∑
xi

pX ,Y (xi , yj)

}

=
∑
xi

xipX (xi ) +
∑
yj

yjpY (yj)

= E(X ) + E(Y ).
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Additivity of expectation

Corollary 6.2.

If X1, . . . ,Xn are r.v.s then

E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn).

Proof.

Use Theorem 6.1.3 and induction on n.

Combining this with Theorem 6.1.2, we can also show more generally that:

Theorem 6.3.

If a1, . . . , an are constants and X1, . . . ,Xn are r.v.s then

E(a1X1 + · · ·+ anXn) = a1E(X1) + · · ·+ anE(Xn).
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Example: Bernoulli trials

Example 6.4.

Let T be the number of successes in n independent Bernoulli trials.

Each trial has probability p of success, so T ∼ Bin(n, p).

Can represent T as X1 + · · ·+ Xn where indicator

Xi =

{
0 if ith trial a failure
1 if ith trial a sucess.

For each i , E(Xi ) = (1− p) · 0 + p · 1 = p

So E(T ) = E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn) by Corollary 6.2.

So E(T ) = np.

This is simpler (and more general) than Example 4.6.

Argument extends to Bernoulli trials Xi with probabilities pi varying
with i .

In general E(T ) =
∑n

i=1 pi .
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Example: BitTorrent problem

Example 6.5.

Every pack of cornflakes contains a plastic monster drawn at random
from a set of k different monsters.

Let N be the number of packs bought in order to obtain a full set.

Find the expected value of N.

Let Xr be the number of packs you need to buy to get from r − 1
distinct monsters to r distinct monsters. So

N = X1 + X2 + · · ·+ Xk .

Then X1 = 1 (i.e. when you do not have any monsters it takes one
pack to get the first monster).

For 2 ≤ r ≤ k we have Xr ∼ Geom(pr ) where

pr =
number of monsters we don’t have

number of different monsters
=

k − (r − 1)

k
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Example: BitTorrent problem (cont.)

Example 6.5.

Therefore (see Example 4.8) E(Xr ) = 1
pr

= k
k−r+1 .

Hence

E(N) =
k∑

r=1

E(Xr ) =
k∑

r=1

k

k − r + 1

= k(1 +
1

2
+

1

3
+ · · ·+ 1

k
) ≈ k ln k .

To illustrate this result we have:

k E(N)

5 11.4
10 29.3
20 80.0
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Section 6.2: Covariance
We’ve seen that E(X + Y ) = E(X ) + E(Y ).
But when does E(XY ) = E(X )E(Y ) ?
We will see in Lemma 6.10 that it holds if X and Y are independent.
We first note that it is not generally true that E(XY ) = E(X )E(Y ).

Example 6.6.

Let X and Y be r.v.s with

X =

{
1 w.p. 1

2
0 w.p. 1

2

and Y = X .

We have E(X ) = E(Y ) = 1
2 .

Let Z = XY , so Z =

{
1 w.p. 1

2
0 w.p. 1

2

and E(Z ) = 1
2 .

We see that in this case

E(XY ) 6= E(X )E(Y )
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Covariance definition

Definition 6.7.

The covariance of X and Y is defined as

Cov (X ,Y ) = E[(X − E(X ))(Y − E(Y ))].

Covariance measures how the two random variables vary together.

Remark 6.8.

For any random variable X we have Cov (X ,X ) = Var (X ).

Further (the proofs are an exercise):

Cov (aX ,Y ) = aCov (X ,Y )

Cov (X , bY ) = bCov (X ,Y )

Cov (X ,Y + Z ) = Cov (X ,Y ) + Cov (X ,Z )
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Alternative expression for covariance

Lemma 6.9.

For any random variables X and Y Cov (X ,Y ) = E(XY )− E(X )E(Y ).

Proof.

Write µ = E(X ) and ν = E(Y ). Then

Cov (X ,Y ) = E[(X − µ)(Y − ν)]

= E[XY − νX − µY + µν]

= E(XY )− νE(X )− µE(Y ) + µν

= E(XY )− E(Y )E(X )− E(X )E(Y ) + E(X )E(Y )
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Useful lemma

Lemma 6.10.

Let X and Y be independent r.v.s. Then

E(XY ) = E(X )E(Y ).

Proof:

E(XY ) =
∑
i

∑
j

xiyjpX ,Y (xi , yj)

=
∑
i

∑
j

xiyjpX (xi )pY (yj) by independence

=
∑
i

xipX (xi )
∑
j

yjpY (yj)

=
∑
i

xipX (xi )E(Y )

= E(X )E(Y )
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Delicate issue

We can rephrase Lemmas 6.9 and 6.10 to deduce that

Lemma 6.11.

Let X and Y be independent. Then Cov (X ,Y ) = 0.

Example 6.12.

If Cov (X ,Y ) = 0, we cannot deduce that X and Y are independent.

Consider

pX ,Y (−1, 0) = pX ,Y (1, 0) = pX ,Y (0,−1) = pX ,Y (0, 1) = 1/4.

Then (check): XY ≡ 0 so E(XY ) = 0, and by symmetry
EX = EY = 0.

Hence Cov (X ,Y ) = 0, but clearly X and Y are dependent.

Important: to understand the direction of implication of these statements.
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Corollary of Lemma 6.11

Corollary 6.13.

If X and Y are independent then (by Remark 5.14)

E (g(X )h(Y )) = (Eg(X )) · (Eh(Y )) ,

for any functions g and h.
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Correlation coefficient

If X and Y tend to increase (and decrease) together Cov (X ,Y ) > 0
(e.g. age and salary).

If one tends to increase as the other decreases then Cov (X ,Y ) < 0
(e.g. hours of training, marathon times).

If X and Y are independent then Cov (X ,Y ) = 0

Definition 6.14.

The correlation coefficient of X and Y is

ρ(X ,Y ) =
Cov (X ,Y )√
Var (X )Var (Y )

.

Note that it can be shown that −1 ≤ ρ(X ,Y ) ≤ 1.

This is essentially the Cauchy–Schwarz inequality from linear algebra.

ρ is a measure of how dependent the random variables are, and
doesn’t depend on the scale of either r.v.
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Section 6.3: Properties of variance

Theorem 6.15.

1 Var (X ) = E(X 2)− (E(X ))2

2 Let a and b be constants. Then Var (aX + b) = a2Var (X ).

3 For any random variables X and Y ,

Var (X + Y ) = Var (X ) + 2Cov (X ,Y ) + Var (Y ).

4 If X and Y are independent r.v.s then

Var (X + Y ) = Var (X ) + Var (Y ).

Important: Note that if X and Y are not independent, then 4. is not
usually true.
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Proof of Theorem 6.15

Proof.
1 Seen before as Lemma 4.14 — now we can justify all the steps in that

proof. Key is to observe that

E(X 2 − 2µX + µ2) = E(X 2)− 2µE(X ) + µ2,

by Theorem 6.1.2.

2 Set Z = aX + b. We know E(Z ) = aE(X ) + b, so

(Z − E(Z ))2 = ((aX + b)− (aE(X ) + b))2

= (a(X − E(X )))2 = a2(X − E(X ))2.

Thus

Var (Z ) = E
(
(Z − E(Z ))2

)
= a2E((X − E(X ))2) = a2Var (X ).
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Proof of Theorem 6.15 (cont).

Proof.
3 I Set T = X + Y . We know that E(T ) = E(X ) + E(Y ), so

(E(T ))2 = (E(X ))2 + 2E(X )E(Y ) + (E(Y ))2. (6.1)

I Need to calculate

E(T 2) = E(X 2 + 2XY + Y 2) = E(X 2) + 2E(XY ) + E(Y 2). (6.2)

I Hence subtracting (6.1) from (6.2) and rearranging, we obtain:

Var (T ) = E(T 2)− (E(T ))2

= (E(X 2)− (E(X ))2) + 2(E(XY )− E(X )E(Y ))

+(E(Y 2)− (E(Y ))2)

= Var (X ) + 2(E(XY )− E(X )E(Y )) + Var (Y ).

= Var (X ) + 2Cov (X ,Y ) + Var (Y ) (6.3)

4 Part 4. follows using Lemma 6.11.
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General variance formula for independent Xi

Corollary 6.16.

Let X1, X2, . . . be independent. Then

Var (X1 + X2 + · · ·+ Xn) = Var (X1) + Var (X2) + · · ·+ Var (Xn).

Proof.

Induction on n, using Theorem 6.15.4.

Important: If Xi are not independent then the situation is more
complicated, will have covariance terms as well.
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Section 6.4: Examples and Law of Large Numbers

Example 6.17.

Recall from Example 6.4 that T ∼ Bin(n, p).

Can write T = X1 + · · ·+ Xn where the Xi are independent
Bernoulli(p) r.v.s.

Recall from Example 4.15 that E(Xi ) = 0× (1− p) + 1× p = p and
E(X 2

i ) = 02 × (1− p) + 12 × p = p

So Var (Xi ) = p − p2 = p(1− p).

Hence by independence and Corollary 6.16

Var (T ) = Var (X1 + · · ·+ Xn)

= Var (X1) + · · ·+ Var (Xn) = np(1− p).

Note: much easier than trying to sum this directly!
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Application: Sample means

Theorem 6.18.

Let X1,X2, . . . be a sequence of independent identically distributed
(IID) random variables with common mean µ and variance σ2.

Let the sample mean X̄ = 1
n (X1 + · · ·+ Xn).

Then

E(X̄ ) = µ

Var (X̄ ) = σ2/n
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Proof.

Then (see also Theorem 6.3)

E(X̄ ) =
1

n
E(X1 + · · ·+ Xn)

=
1

n
(E(X1) + · · ·+ E(Xn)) =

1

n
(µ+ · · ·+ µ) = µ.

Var (X̄ ) = Var

(
1

n
(X1 + · · ·+ Xn)

)
=

(
1

n

)2

Var (X1 + · · ·+ Xn) by Theorem 6.15

=
1

n2
(Var (X1) + · · ·+ Var (Xn)) by Corollary 6.16

=
1

n2
(nσ2) =

σ2

n
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Example: coin toss (slight return)

Example 6.19.

For example, toss a fair coin repeatedly, and let

Xi =

{
1 if ith throw is a head
0 if ith throw is a tail

Then X̄ is the proportion of heads in the first n tosses.

E(X̄ ) = E(Xi ) = 1
2 .

Var (Xi ) = 1
2 (1− 1

2 ) = 1
4 , so

Var (X̄ ) =
1

4n
.
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The weak law of large numbers

Let Y be any r.v. and let c > 0 be a positive constant.

Recall Chebyshev’s inequality (Theorem 4.20):

P(|Y − E(Y )| > c) ≤ Var (Y )

c2
.

We know that E(X̄ ) = µ and Var (X̄ ) = σ2

n .

So taking Y = X̄ in Chebyshev we deduce:

P(|X̄ − µ| > c) ≤ σ2

nc2
.

Theorem 6.20 (Weak law of large numbers).

Let X1,X2, . . . be a sequence of independent identically distributed (IID)
random variables with common mean µ and variance σ2. Then for any
c > 0:

P(|X̄ − µ| > c)→ 0 as n→∞.
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Application to coin tossing

Example 6.21.

As in Example 6.19, let X̄ be the proportion of heads in first n tosses.

Then µ = 1
2 and σ2 = 1

4 . Thus

P
(∣∣∣∣X̄ − 1

2

∣∣∣∣ > c

)
≤ 1

4nc2
.

So for example taking c = 0.01:

P(0.49 < X̄ < 0.51) ≥ 1− 2500

n
.

This tends to one as n→∞.

In fact the inequalities are very conservative here.

Axioms and definitions match our intuitive beliefs about probability.

Closely related to central limit theorem (see later).
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Section 6.5: Examples

Example 6.22.

An urn contains two biased coins.

Coin 1 has a probability 1
3 of showing a head.

Coin 2 has a probability 2
3 of showing a head.

A coin is selected at random and the same coin is tossed twice.

Let X =

{
1 if 1st toss is H
0 if 1st toss is T

and Y =

{
1 if 2nd toss is H
0 if 2nd toss is T

Let W = X + Y be the total number of heads. Find Cov (X ,Y ),
E(W ), Var (W ).
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Urn example (cont.)

Example 6.22.

P(X = 1,Y = 1) = P(X = 1,Y = 1 | coin 1)P(coin 1)

+P(X = 1,Y = 1 | coin 2)P(coin 2)

=

(
1

3

)2 1

2
+

(
2

3

)2 1

2
=

5

18

Similarly for the other values

pX ,Y (x , y) y = 0 y = 1 pX (x)

x = 0 5/18 4/18 1/2
x = 1 4/18 5/18 1/2

pY (y) 1/2 1/2

X and Y are Bernoulli( 1
2 ) r.v.s, so E(X ) = E(Y ) = 1

2 and
Var (X ) = Var (Y ) = 1

4 , and E(W ) = E(X ) + E(Y ) = 1.
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Urn example (cont.)

Example 6.22.

E(XY ) = 0× 0× pX ,Y (0, 0) + 0× 1× pX ,Y (0, 1)

+1× 0× pX ,Y (1, 0) + 1× 1× pX ,Y (1, 1) =
5

18
.

Thus Cov (X ,Y ) = E(XY )− E(X )E(Y ) = 5
18 − ( 1

2 )2 = 1
36 .

Further, since Var (X ) = 1
4 , Var (Y ) = 1

4 , we know ρ(X ,Y ) = 1
9 .

Var (W ) = Var (X ) + 2Cov (X ,Y ) + Var (Y ) =
1

4
+

2

36
+

1

4
=

5

9
.

Compare with Bin(2, 1
2 ) when variance = 1

2 .
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Further example

Example 6.23.

A fair coin is tossed 10 times.

Let X be the number of heads in the first 5 tosses and let Y be the
total number of heads.

We will find ρ(X ,Y ).

First note that since X and Y are both binomially distributed we have

Var (X ) =
5

4

Var (Y ) =
5

2
.
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Further example (cont.)

Example 6.23.

To find the covariance of X and Y it is convenient to set Z = Y −X .

Note that Z is the number of heads in the last 5 tosses.

Thus X and Z are independent. This implies that Cov (X ,Z ) = 0.
Thus

Cov (X ,Y ) = Cov (X ,X + Z ) = Cov (X ,X ) + Cov (X ,Z )

= Var (X ) + 0 =
5

4
.

Thus

ρ(X ,Y ) =
Cov (X ,Y )√
Var (X )Var (Y )

=
1√
2
.
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Section 7: Continuous random variables I

Objectives: by the end of this section you should be able to

Understand continuous random variables.
Interpret density and distribution functions.
Know how to calculate means and variances of continuous
random variables.
Understand the basic properties of the exponential and gamma
distributions.

[This material is also covered in Sections 5.1, 5.2, 5.3 and 5.5 of the
course book]
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Section 7.1: Motivation and definition

Remark 7.1.

So far we studied r.v.s that take a discrete (countable) set of values.

Many r.v.s take a continuum of values e.g. height, weight, time,
temperature are real-valued.

Let X be time in seconds until an atom decays. Then P(X = π) = 0.

But we expect for δ small that

P(π ≤ X ≤ π + δ) ≈ const× δ

In general P(X = x) = 0 for any particular x but expect for δ small:

P(x ≤ X ≤ x + δ) ≈ fX (x)δ

Think of fX (x) as an ‘intensity’ – won’t generally be 0.

But fX (x) will be ≥ 0 (because probabilities are).
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Remark 7.1.

Consider an interval [a, b].

Divide it up into n segments of equal size

a = x0 < x1 < · · · < xn = b

with δ = xi − xi−1 = (b − a)/n for i = 1, . . . , n.

Then

P(a ≤ X < b) = P

(
n⋃

i=1

{xi−1 ≤ X < xi}

)

=
n∑

i=1

P(xi−1 ≤ X < xi ) ≈
n∑

i=1

fX (xi−1)δ.

As n→∞,
∑n

i=1 fX (xi−1)δ →
∫ b
a fX (x) dx .

So we expect P(a ≤ X < b) =
∫ b
a fX (x) dx.
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Continuous random variables

Definition 7.2.

A random variable X has a continuous distribution if there exists a
function fX : R→ R such that

P(a ≤ X < b) =

∫ b

a
fX (x) dx for all a, b with a < b.

The function fX (x) is called the probability density function (pdf) for X .
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Remark 7.3.

Suppose that X is a continuous r.v., then

P(X = x) = 0 for all x, so

P(a ≤ X < b) = P(a ≤ X ≤ b).

Special case:
P(X ≤ b) = P(X < b) = lima→−∞ P(a ≤ X ≤ b) =

∫ b
−∞ fX (x) dx .

Since P(−∞ < X <∞) = 1 we have∫ ∞
−∞

fX (x) dx = 1.

fX (x) is not a probability. In particular we can have fX (x) > 1.

However fX (x) ≥ 0.
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Section 7.2: Mean and variance

Definition 7.4.

Let X be a continuous r.v. with pdf fX (x). The mean or expectation of X
is

E(X ) =

∫ ∞
−∞

xfX (x) dx .

Lemma 7.5.

Let X be a continuous r.v. with pdf fX (x) and Z = g(X ) for some
function g. Then

E(Z ) = E(g(X )) =

∫ ∞
−∞

g(x)fX (x) dx .

Note that x is a dummy variable.
Note that in general we need to integrate over x from −∞ to ∞.
However (see e.g. Example 7.7) we only need to consider the range
where fX (x) > 0.
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Variance

Definition 7.6.

The variance of X is

Var (X ) = E((X − µ)2),

where µ is shorthand for E(X ). As before we can show that

Var (X ) = E(X 2)− (E(X ))2.
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Uniform distribution

Example 7.7.

Suppose the density fX (x) = 1 for 0 ≤ x ≤ 1 and 0 otherwise.

May be best to represent this with an indicator function I.
Can write fX (x) = I(0 ≤ x ≤ 1).

We know that this is a valid density function since∫ ∞
−∞

fX (x)dx =

∫ ∞
−∞

I(0 ≤ x ≤ 1)dx =

∫ 1

0
1dx = 1.

We call this the Uniform distribution on [0, 1].

Generalize: given a < b, uniform distribution on [a, b] has density

fY (y) =
1

b − a
I(a ≤ y ≤ b).

Write Y ∼ U(a, b).
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Uniform distribution

Example 7.7.

If X is uniform on [0, 1]:

E(X ) =

∫ ∞
−∞

xfX (x)dx =

∫ 1

0
xdx =

[
x2

2

]1

0

=
1

2
,

E(X 2) =

∫ ∞
−∞

x2fX (x)dx =

∫ 1

0
x2dx =

[
x3

3

]1

0

=
1

3
,

so that Var (X ) = E(X 2)− (E(X ))2 = 1
3 −

1
22 = 1

12 .

Similarly if Y is uniform on [a, b]:

E(Y ) =

∫ ∞
−∞

xfY (x)dx =

∫ b

a

x

b − a
dx

=
1

b − a

[
x2

2

]b
a

=
b2 − a2

2(b − a)
=

a + b

2
.
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Section 7.3: The distribution function

Definition 7.8.

For any r.v. X , the (cumulative) distribution function of X is defined as
the function FX : R→ [0, 1] given by

FX (x) = P(X ≤ x) for x ∈ R.

Lemma 7.9.

In fact, these hold for any r.v. whether discrete, continuous or other:

P(a < X ≤ b) = FX (b)− FX (a)

FX (x) is an increasing function of x

FX (x)→ 0 as x → −∞
FX (x)→ 1 as x →∞
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Distribution and density function

Lemma 7.10.

Let X have a continuous distribution. Then (y is a dummy variable)

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (y) dy for all x ∈ R.

P(X ≤ x) is the area under the density function to the left of x .

Hence we have that F ′X (x) = fX (x).

Note that when X is continuous, P(X = x) = 0 for all x so
FX (x) = P(X ≤ x) = P(X < x).

Example 7.11.

In the uniform random variable setting of Example 7.7, the

FX (x) =


0 for x ≤ 0,
x for 0 ≤ x ≤ 1,
1 for 1 ≤ x .
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Example

Example 7.12.

Suppose X has a continuous distribution with density function

fX (x) =

{
0 x ≤ 1
2
x3 x > 1

Find FX .

Let x ≤ 1. Then

FX (x) =

∫ x

−∞
fX (y) dy =

∫ x

−∞
0 dy = 0.
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Example (cont.)

Example 7.12.

Let x > 1. Then

FX (x) =

∫ x

−∞
fX (y) dy =

∫ 1

−∞
0 dy +

∫ x

1

2

y3
dy = 0 +

[
−1

y2

]x
1

=
−1

x2
− −1

1
= 1− 1

x2
.

So FX (x) =

{
0 x ≤ 1

1− 1
x2 x > 1

Note: the integrals have limits. Don’t write FX (x) =
∫
fX (y) dy without

limits then determine C . It is both confusing and sloppy!
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Continuous convolution

Recall the discrete convolution formula (Proposition 5.17)

pX+Y (k) =
∞∑

i=−∞
pX (k − i) · pY (i), for all k ∈ Z.

In a very similar way we state without proof the continuous convolution
formula for densities:

Proposition 7.13.

Suppose X and Y are independent continuous random variables with
respective densities fX and fY . Then their sum is a continuous random
variable with density

fX+Y (z) =

∫ ∞
−∞

fX (z − y) · fY (y) dy , for all z ∈ R.
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Section 7.4: Examples of continuous random variables

Let T be the time to wait for an event e.g. a bus to arrive, or a
radioactive decay to occur.

Suppose that if the event has not happened by t then the probability
that it happens in (t, t + δ) is λδ + o(δ) (i.e. it doesn’t depend on t).

Then (for t > 0) FT (t) = P(T ≤ t) = 1− e−λt and fT (t) = λe−λt .
See why in Probability 2.

Definition 7.14.

A r.v. T has an exponential distribution with rate parameter λ if it
has a continuous distribution with density

fT (t) =

{
0 t ≤ 0

λe−λt t > 0

Notation T ∼ Exp(λ).
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Exponential distribution properties

Remark 7.15.

P(T > t) = 1− P(T ≤ t) = e−λt

E(T ) =

∫ ∞
−∞

tfT (t) dt =

∫ ∞
0

tλe−λt dt

=
[
−te−λt

]∞
0

+

∫ ∞
0

e−λt dt

= 0 +
1

λ

Var (T ) =
1

λ2
(Exercise).
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Exponential distribution properties (cont.)

Remark 7.15.

Exponential is continuous analogue of the geometric distribution.

In particular it has the lack of memory property (cf Lemma 3.18):

P(T > t + s |T > s) =
P(T > t + s and T > s)

P(T > s)

=
P(T > t + s)

P(T > s)

=
e−λ(t+s)

e−λs

= e−λt

= P(T > t).
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Section 7.5: Gamma distributions

Definition 7.16.

For α > 0 define the gamma function

Γ(α) =

∫ ∞
0

xα−1e−x dx .

We will see that this is a generalisation of the (shifted) factorial function.
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Gamma function properties

Remark 7.17.

Note that for α > 1:

Γ(α) =

∫ ∞
0

xα−1e−x dx

=
[
−xα−1e−x

]∞
0

+ (α− 1)

∫ ∞
0

xα−2e−x dx

= 0 + (α− 1)Γ(α− 1)

for general α.

Also

Γ(1) =

∫ ∞
0

x1−1e−x dx =
[
−e−x

]∞
0

= 1.

So by induction for integer n, the Γ(n) = (n − 1)! since

Γ(n) = (n − 1)Γ(n − 1) = (n − 1)(n − 2)! = (n − 1)!.
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Gamma distribution

Definition 7.18.

A random variable has a gamma distribution with shape parameter α
and rate parameter λ if it has a continuous distribution with density
proportional to

xα−1e−λx ,

for x > 0.

Note that for α = 1 this reduces to the exponential distribution of
Definition 7.14.

We find the normalization constant in Lemma 7.19 below.

Notation: X ∼ Gamma(α, λ).

Warning: sometimes gamma and exponential distributions are reported
with different parameterisations, using a mean µ = 1/λ instead of a rate λ.
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Lemma 7.19.

Let X ∼ Gamma(α, λ). Then

fX (x) =

{
λα

Γ(α)x
α−1e−λx x > 0,

0 x ≤ 0.

Proof.

For x > 0, fX (x) = Cxα−1e−λx for some constant C . Setting y = λx :

1 =

∫ ∞
−∞

fX (x) dx

=

∫ ∞
0

Cxα−1e−λx dx

= C

∫ ∞
0

(y
λ

)α−1
e−y

dy

λ
=

C

λα
Γ(α).
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Gamma distribution properties

Remark 7.20.

If α = 1 then fX (x) =

{
0 x ≤ 0

λe−λx x > 0.
I.e. if X ∼ Gamma(1, λ) then X ∼ Exp(λ).

In Proposition 7.21 (see also Lemma 10.13) we will see that (for
integer α) a Gamma(α, λ) r.v. has the same distribution as the sum
of α independent Exp(λ) r.v.s

Proposition 7.21.

If X ∼ Gamma(α, λ) and Y ∼ Gamma(β, λ) are independent, then their
sum X + Y ∼ Gamma(α + β, λ).
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Proof of Proposition 7.21 (integer α, β)

Proof.

By Proposition 7.13 we know that the density of X + Y is the convolution

fX+Y (z) =

∫ ∞
−∞

fX (z − y) · fY (y)dy

=

∫ z

0
fX (z − y) · fY (y)dy

=

∫ z

0

λα

Γ(α)
(z − y)α−1e−λ(z−y) · λ

β

Γ(β)
yβ−1e−λydy

=
λα+β

Γ(α)Γ(β)
e−λz

∫ z

0
(z − y)α−1yβ−1dy

=:
λα+β

Γ(α)Γ(β)
e−λz Iα,β.
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Proof of Proposition 7.21 (integer α, β, cont.)

Proof.

This integral, known as a beta integral, equals
Iα,β = zα+β−1Γ(α)Γ(β)/Γ(α + β), as required.

This follows in integer case by induction, since we can write it as
zα+β−1(α− 1)!(β − 1)!/(α + β − 1)!

Value found using integration by parts (since function vanishes at
either end of support):

Iα,β =

∫ z

0
(z − y)α−1yβ−1dy

=

∫ z

0
(α− 1)(z − y)α−2 y

β

β
dy =

α− 1

β
Iα−1,β+1.

We use the fact that I1,β =
∫ z

0 yβ−1 = zβ

β .
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Gamma distribution properties (cont.)

Remark 7.21.

E(X ) =

∫ ∞
0

x
λα

Γ(α)
xα−1e−λx dx

=
λα

Γ(α)

∫ ∞
0

xαe−λx dx

=
λα

Γ(α)

Γ(α + 1)

λα+1

(∫ ∞
0

λα+1

Γ(α + 1)
xαe−λx dx

)
=

αΓ(α)

λΓ(α)
× 1 =

α

λ

since the bracketed term is the integral of a Gamma(α+ 1, λ) density,
which equals 1.

Similarly Var (X ) =
α

λ2
.
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Section 8: Continuous random variables II

Objectives: by the end of this section you should be able to

Understand transformations of continuous random variables.
Describe normal random variables and use tables to calculate
probabilities.
Consider jointly distributed continuous random variables.

[This material is also covered in Sections 5.4, 5.7 and 6.1 of the course
book]
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Section 8.1: Change of variables

Let X be a r.v. with a known distribution.

Let g : R→ R, and define a new r.v. Y by Y = g(X ).

What is the distribution of Y ?

Note we already know how to calculate E(Y ) = E(g(X )) using
Theorem 4.9.
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Example: scaling uniforms

Example 8.1.

Suppose that X ∼ U(0, 1), so that

fX (x) =

{
1 0 < x < 1
0 otherwise

Suppose that g(x) = a + (b − a)x with b > a, so Y = a + (b − a)X .

Note that 0 ≤ X ≤ 1 =⇒ a ≤ Y ≤ b.

For a ≤ y ≤ b we have

FY (y) = P(Y ≤ y) = P(a + (b − a)X ≤ y) = P
(
X ≤ y − a

b − a

)
=

y − a

b − a
since X ∼ U(0, 1).

Thus fY (y) = F ′Y (y) = 1
b−a if a < y < b. Also fY (y) = 0 otherwise.

So Y ∼ U(a, b).
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General case

Lemma 8.2.

Let X take values in I ⊆ R. Let Y = g(X ) where g : I → J is strictly
monotonic and differentiable on I with inverse function h = g−1. Then

fY (y) =

{
fX (h(y))|h′(y)| y ∈ J

0 y /∈ J.

Proof.

X takes values in I , and g : I → J, so Y takes values in J.

Therefore fY (y) = 0 for y /∈ J.

Case 1 Assume first that g is strictly increasing. For y ∈ J

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y) = P(X ≤ h(y)) = FX (h(y)).

So fY (y) = F ′Y (y) = F ′X (h(y))h′(y) = fX (h(y))h′(y) by chain rule.
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Proof of Lemma 8.2 (cont.)

Proof.

Case 2 Now assume g is strictly decreasing. For y ∈ J

FY (y) = P(g(X ) ≤ y) = P(X ≥ h(y))

= 1− P(X < h(y)) = 1− FX (h(y)).

So fY (y) = −fX (h(y))h′(y).

But g (and therefore h) are strictly decreasing, so h′(y) < 0, and
−h′(y) = |h′(y)|.
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Simulation of random variables

In general computers can give you U(0, 1) random numbers and
nothing else.

You need to transform these U(0, 1) to give you something useful.

Example 8.3.

Let X ∼ U(0, 1) and let Y = 1
λ log

(
1

1−X

)
.

What is the distribution of Y ?

Define g : (0, 1)→ (0,∞) by g(x) = 1
λ log

(
1

1−x

)
.

To find the inverse of the function g set

y =
1

λ
log

(
1

1− x

)
=⇒ −λy = log(1− x)

=⇒ x = 1− e−λy

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 190 / 252



Simulation of random variables (cont.)

Example 8.3.

That is, the inverse function h is given by h(y) = 1− e−λy .

The image of the function g is J = (0,∞), so fY (y) = 0 for y ≤ 0.

Let y > 0. Then fY (y) = fX (h(y))|h′(y)| = 1× λe−λy .

So Y ∼ Exp(λ).

To generate Exp(λ) random variables, you take the U(0, 1) r.v.s given
by the computer and apply g .
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General simulation result

Lemma 8.4.

Let F be the distribution function of a continuous r.v. and let g = F−1.
Take X ∼ U(0, 1), then Y = g(X ) has density F ′ and distribution
function F .

Proof.

Distribution functions are monotone increasing, so apply Lemma 8.2.

Here h = g−1 = F .

Hence by Lemma 8.2 the density of Y satisfies

fY (y) = fX (h(y))|h′(y)| = 1 · F ′(y),

as required.

The form of the distribution function follows by integration.

This generalizes Example 8.3.
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Section 8.2: The normal distribution

Definition 8.5.

A r.v. Z has the standard normal distribution if it is continuous with pdf

fZ (z) =
1√
2π

e−
z2

2 z ∈ R.

Notation: Z ∼ N (0, 1).

Not obvious 1/
√

2π is the right constant to make fZ integrate to 1.

(There’s a nice proof involving polar coordinates).

Lemma 8.6.

For Z ∼ N (0, 1):

E(Z ) = 0,

Var (Z ) = E(Z 2) = 1.
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Proof of Lemma 8.6

Proof.

fZ (z) is symmetric about 0. So

E(Z ) =

∫ ∞
−∞

zfZ (z) dz = 0.

Alternatively, notice that zfZ (z) = − d
dz fZ (z) so that

E(Z ) =

∫ ∞
−∞

zfZ (z) dz =

∫ ∞
−∞
− d

dz
fZ (z)dz = [−fZ (z)]∞−∞ = 0.

Similarly, integration by parts gives

E(Z 2) =
1√
2π

∫ ∞
−∞

z(ze−
z2

2 ) dz =
1√
2π

∫ ∞
−∞

e−
z2

2 dz = 1.

So Var (Z ) = E(Z 2)− (E(Z ))2 = 1.
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General normal distribution properties

Remark 8.7.

Often fZ (z) is denoted φ(z) and FZ (z) is denoted Φ(z).

Not possible to write down a formula for Φ(z) using ‘standard
functions’.

Instead values of Φ(z) are in tables, or can be calculated by
computer. See second half of course.

Definition 8.8.

A r.v. X has a normal distribution with mean µ and variance σ2 if it is
continuous with pdf

fX (x) =
1√

2πσ2
exp

{
−(x − µ)2

2σ2

}
.

Notation: X ∼ N (µ, σ2).
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General normal distribution properties (cont.)

Lemma 8.9.

Let X ∼ N (µ, σ2) and define Z = X−µ
σ . Then Z ∼ N (0, 1).

Proof.

Z = g(X ) where g(x) = x−µ
σ .

If z = g(x) = x−µ
σ then x = µ+ σz so h(z) = µ+ σz = g−1(z).

Therefore by Lemma 8.2

fZ (z) = fX (h(z))|h′(z)|

=
1√

2πσ2
exp

{
−(h(z)− µ)2

2σ2

}
× σ

=
1√
2π

exp

{
−(µ+ σz − µ)2

2σ2

}
=

1√
2π

exp

{
−z2

2

}
.
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General normal distribution properties (cont.)

Corollary 8.10.

Let X ∼ N (µ, σ2). Then E(X ) = µ and Var (X ) = σ2.

Proof.

We know that Z = X−µ
σ ∼ N (0, 1), so E(Z ) = 0 and Var (Z ) = 1.

So 0 = E(Z ) = E
(
X−µ
σ

)
= E(X )−µ

σ and E(X ) = µ.

Also 1 = Var (Z ) = Var
(
X−µ
σ

)
= Var (X )

σ2 .

Many quantities have an approximate normal distribution.

For example heights in a population, measurement errors.

There are good theoretical reasons for this (see Central Limit
Theorem, Section 10).

The normal distribution is very important in statistics.
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Normal convergence

Theorem 8.11 (DeMoivre-Laplace).

Fix p, and let Xn ∼ Bin(n, p). Then for every fixed a < b,

lim
n→∞

P

(
a <

Xn − np√
np(1− p)

≤ b

)
= Φ(b)− Φ(a).

That is, take X ∼ Bin(n, p) with large n and fixed p.

Then Xn−np√
np(1−p)

is approximately N(0, 1) distributed.

This is a special case of the Central Limit Theorem, see Section 10). .
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Normal distribution tables

Φ(z)
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
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Application

Example 8.12.

The height of a randomly selected male student at Bristol has a
normal distribution with mean 1.75m and standard deviation 0.05m.

A student is chosen at random. What is the probability his height is
greater than 1.86m?

Let X be the height of the student, so X ∼ N (1.75, (0.05)2).

Let Z = X−1.75
0.05 so that Z ∼ N (0, 1).

P(X > 1.86) = P
(
X − 1.75

0.05
>

1.86− 1.75

0.05

)
= P(Z > 2.2) = 1− P(Z ≤ 2.2) = 1− Φ(2.2)

Can find Φ(2.2) from tabulated values, or (when you’ve done Stats
part of course) using a computer language called R.

The value is Φ(2.2) = 0.9861. So P(X > 1.86) = 0.0139.
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Fact, proved in Section 10.4

Lemma 8.13.

If X ∼ N (µ, σ2) and Y ∼ N (ν, τ2) are independent then

X + Y ∼ N (µ+ ν, σ2 + τ2).

Very few random variables have this property that you can add them
and still get a distribution in the same family.

Compare with the addition of Poissons in Theorem 5.18.

See Lemma 10.18 for full proof.
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Section 8.3: Jointly distributed continuous r.v.s

Definition 8.14.

Let X and Y be continuous r.v.s. They are jointly distributed with
density function

fX ,Y (x , y)

if for any region A ⊂ R2

P((X ,Y ) ∈ A) =

∫
A
fX ,Y (x , y) dxdy .

Marginal density for X is fX (x) =
∫∞
−∞ fX ,Y (x , y) dy .

Conditional density for X given Y = y is fX |Y (x | y) =
fX ,Y (x ,y)
fY (y) .

Similarly for Y .

X and Y are independent iff fX ,Y (x , y) = fX (x)fY (y) for all x , y ∈ R.
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Time to wait for a lift while hitchhiking

Example 8.15.

You choose a site to hitchhike at random.

Let X be the site type and assume X ∼ Exp(1).

If the site type is x it takes an Exp(x) amount of time to get a lift (so
large x is good).

We have been given

fX (x) = e−x x > 0

fT |X (t|x) = xe−xt x , t > 0

Thus fX ,T (x , t) = fT |X (t|x)fX (x) = xe−(t+1)x for x , t > 0.

Hence
fT (t) =

∫∞
−∞ fX ,T (x , t) dx =

∫∞
0 xe−(t+1)x dx = Γ(2)

(t+1)2 = 1
(t+1)2 .

Finally, P(T > t) =
∫∞
t fT (τ) dτ =

∫∞
t

1
(τ+1)2 dτ =

[
−1
τ+1

]∞
t

= 1
t+1 .
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Section 9: Conditional expectation

Objectives: by the end of this section you should be able to

Calculate conditional expectations.
Understand the difference between function E[X |Y = y ] and
random variable E[X |Y ].
Perform calculations with these quantities.
Use conditional expectations to perform calculations with random
sums.

[This material is also covered in Section 7.4 of the course book]
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Section 9.1: Introduction

We have a pair of r.v.s X and Y .

Recall that we define

pmf (discrete) pdf (continuous)

joint pX ,Y (x , y) fX ,Y (x , y)

marg. pX (x) =
∑

y pX ,Y (x , y) fX (x) =
∫∞
−∞ fX ,Y (x , y) dy

pY (y) =
∑

x pX ,Y (x , y) fY (y) =
∫∞
−∞ fX ,Y (x , y) dx

cond. pX |Y (x |y) = pX ,Y (x , y)/pY (y) fX |Y (x |y) = fX ,Y (x , y)/fY (y)
pY |X (y |x) = pX ,Y (x , y)/pX (x) fY |X (y |x) = fX ,Y (x , y)/fX (x)
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Conditional expectation definition

Definition 9.1.

Define E(X |Y = y) to be the expected value of X using the conditional
distribution of X given that Y = y :

E(X |Y = y) =


∑

x xpX |Y (x |y) X discrete∫∞
−∞ xfX |Y (x |y) dx X continuous
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Example

Example 9.2.

X , Y discrete

pX ,Y (x , y) y = 0 1 2 3 pX (x)

x = 0 1/4 0 0 0 1/4
1 1/8 1/8 0 0 1/4
2 1/16 2/16 1/16 0 1/4
3 1/32 3/32 3/32 1/32 1/4

pY (y) 15/32 11/32 5/32 1/32

For E(X |Y = 0): pX |Y (x | 0) =
pX ,Y (x ,0)
pY (0) = 32

15pX ,Y (x , 0) so

x 0 1 2 3

pX |Y (x | 0) 8/15 4/15 2/15 1/15

So E(X |Y = 0) = 0× 8
15 + 1× 4

15 + 2× 2
15 + 3× 1

15 = 11
15 .
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Example (cont.)

Example 9.2.

Similarly

E(X |Y = 1) = 0× 0 + 1× 4
11 + 2× 4

11 + 3× 3
11 = 21

11

E(X |Y = 2) = 0× 0 + 1× 0 + 2× 2
5 + 3× 3

5 = 13
5

E(X |Y = 3) = 0× 0 + 1× 0 + 2× 0 + 3× 1 = 3

Remark 9.3.

It is vital to understand that:

E(X ) is a number

E(X |Y = y) is a function – specifically a function of y (call it A(y)).

We also define random variable E(X |Y ) = A(Y ) (pick value of Y
randomly, according to pY ).

Good to spend time thinking which type of object is which.
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Section 9.2: Expectation of a conditional expectation

Theorem 9.4 (Tower Law aka Law of Total Expectation).

For any random variables X and Y , the E[X |Y ] is a random variable, with

E(X ) = E (E[X |Y ])

Remark 9.5.

For Y discrete

E (E[X |Y ]) =
∑
y

E(X |Y = y)P(Y = y).

For Y continuous

E (E[X |Y ]) =

∫ ∞
−∞

E(X |Y = y)fY (y) dy .
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Important notation

Remark 9.6.

Remember from Remark 9.3 that E(X |Y = y) is a function of y .

Set A(y) = E(X |Y = y).

Then the Tower Law (Theorem 9.4) gives
E(X ) =

∑
y E(X |Y = y)P(Y = y) =

∑
y A(y)P(Y = y) =

E(A(Y )).

Remember A(Y ) is a random variable that we often write as E(X |Y ).
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Proof of Theorem 9.4

Proof.

For discrete Y , using the Partition Theorem 2.9 to expand P(X = x):

E(X ) =
∑
x

xP(X = x)

=
∑
x

x

[∑
y

P(X = x |Y = y)P(Y = y)

]

=
∑
y

[∑
x

xP(X = x |Y = y)

]
P(Y = y)

=
∑
y

E(X |Y = y)P(Y = y)

For the continuous case, replace the sums with integrals and P(Y = y)
with fY (y).
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Example 9.2 (cont.)

Example 9.7.

Recall from Example 9.2

y 0 1 2 3

pY (y) 15/32 11/32 5/32 1/32
E(X |Y = y) 11/15 21/11 13/5 3

Hence

E(X ) =
11

15

15

32
+

21

11

11

32
+

13

5

5

32
+ 3

1

32
=

48

32
=

3

2
.

Direct calculation from pX (x) confirms

E(X ) = 0× 1

4
+ 1× 1

4
+ 2× 1

4
+ 3× 1

4
=

3

2
.

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 212 / 252



Tower law example

Example 9.8.

A disoriented miner finds themselves in a room of the mine with three
doors:

I The first door brings them to safety after a 3 hours long hike.
I The second door takes them back to the same room after 5 hours of

climbing.
I The third door takes them again back to the same room after 7 hours

of exhausting climbing.

The disoriented miner chooses one of the three doors with equal
chance independently each time they are in that room.

What is the expected time after which the miner is safe?
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Tower law example (cont.)

Example 9.8.

Let X be the time to reach safety, and Y the initial choice of a door
(= 1, 2, 3). Then using Theorem 9.4

EX = E (E(X |Y ))

= E(X |Y = 1) · P(Y = 1) + E(X |Y = 2) · P(Y = 2)

+ E(X |Y = 3) · P(Y = 3)

= 3 · 1

3
+ (EX + 5) · 1

3
+ (EX + 7) · 1

3
,

which we rearrange as

3EX = 15 + 2EX ; EX = 15.
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Example

Example 9.9.

Nuts in a wood have an intrinsic hardness H, a non-negative integer
random variable.

The hardness H of a randomly selected nut has a Poi(1) distribution.

If a nut has hardness H = h a squirrel takes a geometric 1
h+1 number

of attempts to crack the nut.

What is the expected number of attempts taken to crack a randomly
selected nut?

Let X be the number of attempts. We want E(X ).

Given H = h, X ∼ Geom( 1
h+1 ), so E(X |H = h) = 1

1
h+1

= h + 1.

Therefore
E(X ) = E(E(X |H)) = E(A(H)) = E(H +1) = E(H)+1 = 1+1 = 2.
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Important notation

Example 9.10.

Remember we write A for the function A(h) = E(X |H = h).

In the nut example, Example 9.9 A(h) = E(X |H = h) = h + 1.

Hence A(H) = H + 1 i.e. E(X |H) = H + 1 [NB FUNCTION OF H].

Therefore
E(X ) = E(E(X |H)) = E(A(H)) = E(H + 1) = E(H) + 1 = 2.
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Section 9.3: Conditional variance

Definition 9.11.

The conditional variance of X , given Y is

Var (X |Y ) = E
[
(X − E(X |Y ))2 |Y

]
= E(X 2 |Y )−

[
E(X |Y )

]2
.

No surprise here, just use conditionals everywhere in the definition of
variance.

Notice that Var (X |Y ) is again a function of Y (a random variable).

If we write A(Y ) for
[
E(X |Y )

]
then we can rewrite Definition 9.11 as

Var (X |Y ) = E(X 2 |Y )− A(Y )2. (9.1)
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Law of Total Variance

Proposition 9.12.

The Law of Total Variance holds:

Var X = E (Var (X |Y )) + Var (E(X |Y )) .

In words: the variance is the expectation of the conditional variance
plus the variance of the conditional expectation.

Note that since Var (X |Y ) and E(X |Y ) are random variables, it
makes sense to take their mean and variance.

They are both functions of Y , so implicitly these are taken over Y .
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Proof of Proposition 9.12 (not examinable)

Proof.

Again we write A(Y ) for
[
E(X |Y )

]
.

Taking the expectation (over Y ) of Equation (9.1) and applying the
tower law Theorem 9.4 gives

E (Var (X |Y )) = E
(
E(X 2 |Y )− A(Y )2

)
= E(X 2)− E

(
A(Y )2

)
(9.2)

Similarly, since Theorem 9.4 gives E(A(Y )) = E (E(X |Y )) = E(X ):

Var (E(X |Y )) = Var (A(Y ))

= E
(
A(Y )2

)
− (E(A(Y )))2

= E
(
A(Y )2

)
− (E(X ))2 . (9.3)

Notice that first term of (9.3) is minus the second term of (9.2).
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Proof of Proposition 9.12 (cont.)

Proof.

Hence adding (9.2) and (9.3) together, cancellation occurs and we
obtain:

EVar (X |Y ) + Var E(X |Y ) = E(X 2)− (E(X ))2 = Var (X ).
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Section 9.4: Random sum

Definition 9.13.

Let X1,X2, . . . be IID random variables with the same distribution as
a random variable X .

Let N be a non-negative integer valued random variable which is
independent of X1,X2, . . ..

Let S =

{
0 if N = 0

X1 + X2 + · · ·+ XN if N ≥ 1.

We call S a random sum.

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 221 / 252

Random sum examples

Example 9.14 (Number of infections).

Patient Zero infects N (a random number of) people with a virus.

The ith infected person goes on to infect Xi people.

Then S = X1 + · · ·+ XN is the total number of infected people in the
second generation.

Example 9.15 (Inviting friends to a party).

Let N be the number of friends invited

Let Xi =

{
0 if the ith invited person does not come
1 if the ith invited person does come

Then S = X1 + · · ·+ XN is the total number of people at the party.
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Random sum examples (cont.)

Example 9.16.

Look at the total value of insurance claims made in one year.

Let N be the number of claims, and Xi be the value of the ith claim.

Then S = X1 + X2 + · · ·+ XN is the total value of claims.

Does it make sense that N and X are independent?
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Random sum theorem

Theorem 9.17.

For any random sum of the form of Definition 9.13

E(S) = E(N)E(X ).

Proof.

Condition on the (random) value of N. Let A(n) = E(S |N = n).
Then

A(n) = E(X1 + · · ·+ XN |N = n)

= E(X1 + · · ·+ Xn |N = n)

= E(X1 + · · ·+ Xn) since the Xi are independent of N

= nE(X )

So A(N) = E(S |N) = NE(X ).

Therefore E(S) = E(E(S |N)) = E(NE(X )) = E(X )E(N).
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Section 10: Moment generating functions

Objectives: by the end of this section you should be able to

Define and calculate the moment generating function of a random
variable.
Manipulate the moment generating function to calculate
moments.
Find the moment generating function of sums of independent
random variables.
Use moment generating functions to work with random sums.
Know the moment generating function of the normal.
Understand the sketch proof of the Central Limit Theorem.

[This material is also covered in Sections 7.6 and 8.3 of the course book]
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Section 10.1: MGF definition and properties

Definition 10.1.

Let X be a random variable. The moment generating function (MGF)
MX : R→ R of X is given by

MX (t) = E(etX )

(defined for all t such that E(etX ) <∞).

So MX (t) =

{ ∑
i e

txipX (xi ) X discrete∫∞
−∞ etx fX (x) dx X cts

The moment generating function is a way of encoding the information
in the original pmf or pdf.

In this Section we will see ways in which this encoding is useful.
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Example: geometric

Example 10.2.

Consider X ∼ Geom(p)

MX (t) =
∞∑
x=1

etxp(1− p)x−1

=
∞∑
x=1

pet
(
(1− p)et

)x−1

= pet
∞∑
y=0

(
(1− p)et

)y
=

pet

1− (1− p)et
defined for (1− p)et < 1
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Example: Poisson

Example 10.3.

Consider X ∼ Poi(λ)

MX (t) =
∞∑
x=0

etx
e−λλx

x!

= e−λ
∞∑
x=0

1

x!

(
λet
)x

= eλ(et−1).
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Example: exponential

Example 10.4.

Consider X ∼ Exp(λ)

MX (t) =

∫ ∞
0

etxλe−λx dx

= λ

∫ ∞
0

e−(λ−t)x dx

=
λ

λ− t

[
−e−(λ−t)x

]∞
0

=
λ

λ− t
defined for t < λ
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Example: gamma

Example 10.5.

Consider X ∼ Gamma(α, λ)

Taking y = (λ− t)x so dy = (λ− t)dx :

MX (t) =

∫ ∞
0

etx
λα

Γ(α)
xα−1e−λx dx

=

(
λ

λ− t

)α ∫ ∞
0

(λ− t)α

Γ(α)
xα−1e−(λ−t)x dx

=

(
λ

λ− t

)α ∫ ∞
0

1

Γ(α)
yα−1e−y dy

=

(
λ

λ− t

)α
defined for t < λ
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MX uniquely defines the distribution of X .

Theorem 10.6.

Uniqueness of the MGF.

Consider random variables X , Y such that that MX (t) and MY (t) are
finite on an interval I ⊆ R containing the origin.

Suppose that
MX (t) = MY (t) for all t ∈ I .

Then X and Y have the same distribution.

Proof.

Not given.
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Moments

Definition 10.7.

The rth moment of X is E(X r ).

Lemma 10.8.

For any random variable X and for any t:

MX (t) = 1 + tE(X ) +
t2

2!
E(X 2) +

t3

3!
E(X 3) + · · · =

∞∑
r=0

tr

r !
E(X r )

i.e. MX “generates” the moments of X .
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Proof of Lemma 10.8

Proof.

For any t, using the linearity of expectation:

MX (t) = E(etX )

= E
[

1 + (tX ) +
(tX )2

2!
+

(tX )3

3!
+ · · ·

]
= 1 + tE(X ) +

t2

2!
E(X 2) +

t3

3!
E(X 3) + · · ·

Note that MX (0) = E(e0) = 1, as we’d expect.
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Recovering moments of exponential

We can recover the moments of X from MX (t) in two ways:

Method 1 Expand MX (t) as a power series in t. The coefficient of tk is
E(X k )
k! .

Method 2 M
(k)
X (0) = E(X k), where M

(k)
X denotes the kth derivative of

MX .
To see this, note that

M ′X (t) = E(X ) + tE(X 2) +
t2

2!
E(X 3) + · · ·

M ′X (0) = E(X )

MX
′′(t) = E(X 2) + tE(X 3) +

t2

2!
E(X 4) + · · ·

MX
′′(0) = E(X 2)

etc
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Recovering moments of exponential: example

Example 10.9.

Consider X ∼ Exp(λ)

We know from Example 10.4 that MX (t) = λ
λ−t .

To find E(X r ) use Method 1.

MX (t) = 1
1− t

λ

= 1 + t
λ +

(
t
λ

)2
+
(
t
λ

)3
+ · · ·

Compare with MX (t) = 1 + tE(X ) + t2

2!E(X 2) + t3

3!E(X 3) + · · ·

We see that E(X k )
k! = 1

λk

Hence E(X k) = k!
λk

.
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Recovering moments of gamma

Example 10.10.

Recall from Example 10.5 that MX (t) = λα(λ− t)−α.

To find E(X r ) use Method 2:

M ′X (t) = λαα(λ− t)−α−1

E(X ) = M ′X (0) =
α

λ

M ′′X (t) = λαα(α + 1)(λ− t)−(α+2)

E(X 2) = M ′′X (0) =
α(α + 1)

λ2

This can be continued, but notice that with minimal work we can now
see that

Var (X ) = E(X 2)− (E(X ))2 =
α(α + 1)

λ2
−
(α
λ

)2
=

α

λ2
.
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Section 10.2: Sums of random variables

Theorem 10.11.

Let X1,X2, . . . ,Xn be independent rvs and let Z =
∑n

i=1 Xi . Then

MZ (t) =
n∏

i=1

MXi
(t).

Proof.

Since Xi are independent, then for fixed t so are etXi (by Remark
5.14).

MZ (t) = E(etZ ) = E

(
n∏

i=1

etXi

)

=
n∏

i=1

E
(
etXi

)
=

n∏
i=1

MXi
(t).
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Example: adding Poissons

Example 10.12 (cf Theorem 5.18).

If X ∼ Poi(λ) and Y ∼ Poi(µ), we deduce using Example 10.3 and
Theorem 10.11 that Z = X + Y has moment generating function

MZ (t) = MX (t)MY (t) = eλ(et−1).eµ(et−1)

= e(λ+µ)(et−1),

We deduce that (since it has the same MGF) Z ∼ Poi(λ+ µ) by
Theorem 10.6.
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Application: adding exponentials

Lemma 10.13.

Let X1,X2, . . . ,Xn be independent Exp(λ) rvs, and let
Z = X1 + · · ·+ Xn.

Then

MXi
(t) =

λ

λ− t
for each i = 1, . . . , n.

Thus by Theorem 10.11:

MZ (t) =

(
λ

λ− t

)n

and Z ∼ Gamma(n, λ) by the uniqueness theorem (Theorem 10.6)
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Section 10.3: Random sums

In Theorem 9.17 we saw how to calculate the expectation of a
random sum S

e.g. insurance company cares about the distribution of the total
claims in a year.

What if we want the full distribution of S?

Theorem 10.14.

Consider X1,X2, . . . iid with distribution the same as X , and N is a
non-negative integer-valued rv independent of the Xi . Then

S =

{
0 N = 0

X1 + · · ·+ XN N > 0

has MGF satisfying
MS(t) = MN(logMX (t))
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Proof of Theorem 10.14

Proof.

Let A(n) = E(etS |N = n)

= E(et(X1+···+XN) |N = n)

= E(et(X1+···+Xn) |N = n)

= E(et(X1+···+Xn)) since the Xi s are independent of N

= E(etX1 · · · etXn)

= E(etX1) · · ·E(etXn) since the Xi s are independent

= (MX (t))n

= en log MX (t)

Thus E(etS |N) = A(N) = eN log MX (t) and by Theorem 9.4

MS(t) = E(etS) = E(E(etS |N)) = E(eN log MX (t)) = MN(logMX (t))
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Example

Example 10.15.

Suppose the number of insurance claims in one year is N ∼ Poi(λ).

Suppose claims are IID Xi ∼ Exp(1), and these are independent of N.

Let S = X1 + X2 + · · ·+ XN be the total claim.

First by Example 10.3:

MN(t) = eλ(et−1).

We also know that MX (t) = 1
1−t (Example 10.4).

So

MS(t) = MN(logMX (t)) = eλ(e log MX (t)−1) = eλ(MX (t)−1)

= eλ( 1
1−t
−1) = eλ( t

1−t
).

From this we can calculate E(S), Var (S), etc.

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 242 / 252



Section 10.4: MGF of the normal

Example 10.16.

Let X ∼ N (0, 1).

So MX (t) =
∫∞
−∞ etx 1√

2π
e−

x2

2 dx .

Let y = x − t. Key is that t(y + t)− (y+t)2

2 = −1
2

[
y2 − t2

]
so

MX (t) =
1√
2π

∫ ∞
−∞

et(y+t)− (y+t)2

2 dy

=
1√
2π

∫ ∞
−∞

e−
1
2 [y2−t2] dy

= e
1
2
t2 1√

2π

∫ ∞
−∞

e−
1
2
y2
dy

= e
1
2
t2

Oliver Johnson (o.johnson@bristol.ac.uk) Probability and Statistics Part 1 TB 1 c©UoB 2023 243 / 252

MGF of the general normal

Example 10.17.

Now let Y ∼ N (µ, σ2)

Set X = Y−µ
σ so X ∼ N (0, 1) by Lemma 8.9.

Then Y = µ+ σX and

MY (t) = E(etY ) = E(et(µ+σX ))

= E(eµteσtX ) = eµtE(e(σt)X )

= eµtMX (σt) = eµte
1
2

(σt)2

= eµt+ 1
2
σ2t2
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Normal distribution properties

Lemma 10.18.

1. If X ∼ N (µ, σ2) and c is a constant then X + c ∼ N (µ+ c , σ2).

2. If X ∼ N (µ, σ2) and β is a constant then βX ∼ N (βµ, β2σ2).

3. If X and Y are independent with X ∼ N (µX , σ
2
X ) and

Y ∼ N (µY , σ
2
Y ) then

X + Y ∼ N (µX + µY , σ
2
X + σ2

Y ).

Note: Properties 1 and 2 can easily be shown using transformation of
variables. We use MGFs to prove all three here.
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Proof of Lemma 10.18

Proof.

1. Let Y = X + c. Then

MY (t) = E(etY ) = E(et(X+c)) = etcE(etX ) = etcMX (t)

= etceµt+ 1
2
σ2t2

= e(µ+c)t+ 1
2
σ2t2

So Y ∼ N (µ+ c , σ2) by uniqueness, Theorem 10.6.
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Proof of Lemma 10.18 (cont).

Proof.

2. Let Y = βX . Then

MY (t) = E(etY ) = E(etβX ) = MX (βt)

= eµβt+ 1
2
σ2(βt)2

= eµβt+ 1
2
β2σ2t2

So Y ∼ N (βµ, β2σ2) by uniqueness, Theorem 10.6.

3. Let Z = X + Y . Then by Theorem 10.11

MZ (t) = MX (t)MY (t)

= eµX t+ 1
2
σ2
X t

2
eµY t+ 1

2
σ2
Y t2

= e(µX +µY )t+ 1
2

(σ2
X +σ2

Y )t2

So Z ∼ N (µX + µY , σ
2
X + σ2

Y ) by uniqueness, Theorem 10.6.
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Example: heights

Example 10.19.

Heights of male students are N (175, 33) and heights of female
students are N (170, 25).

One female and three male students are chosen at random.

What is the probability that the female is taller than the average
height of the three males?

Let X1,X2,X3 be the height of the three male students, and Y be the
height of the female student.

We have Xi ∼ N (175, 33) and Y ∼ N (170, 25).

By Lemma 10.18.3,
X1 + X2 + X3 ∼ N (175 + 175 + 175, 33 + 33 + 33).
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Example: heights (cont.)

Example 10.19.

Let W = X1+X2+X3
3 be the average height of the male students. By

Lemma 10.18.2

W ∼ N

(
1

3
(3× 175),

(
1

3

)2

(3× 33)

)
= N (175, 11).

Let the difference D = Y −W = Y + (−W ).

We know Y ∼ N (170, 25), and (−W ) ∼ N (−175, 11) by Lemma
10.18.2.

So D ∼ N (170 + (−175), 25 + 11) by Lemma 10.18.3, i.e.
D ∼ N (−5, 36) or D+5

6 ∼ N (0, 1).

We want to know P(D > 0) = P(D+5
6 > 5

6 ) = 1− Φ( 5
6 ). Using tables

or R we can find Φ( 5
6 ) = 0.7976, so P(D > 0) = 1− 0.7976 = 0.2024.
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Section 10.5: Central Limit Theorem

Consider IID X1, . . . ,Xn with mean µ and variance σ2.

The Weak Law of Large Numbers (Theorem 6.20) tells us that
1
n (X1 + . . .+ Xn) ' µ or X1 + . . .+ Xn − nµ ' 0.

The Central Limit Theorem tells us how close these two quantities are
(the approximate distribution of the difference).

We start with an auxiliary proposition without proof.

Proposition 10.20.

Suppose MZn(t)→ MZ (t) for every t in an open interval containing 0.

Then distribution functions converge: FZn(z)→ FZ (z).
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Central Limit Theorem

Theorem 10.21 (Central Limit Theorem (CLT)).

Let X1, X2, . . . be IID random variables with both their mean µ and
variance σ2 finite. Then for every real a < b:

lim
n→∞

P
(
a <

X1 + X2 + . . .+ Xn − nµ√
nσ2

< b

)
= Φ(b)− Φ(a).

Remark 10.22.

Notice that X1 + . . .+ Xn has mean nµ and variance nσ2.

CLT implies that for large n, the X1 + . . .+ Xn ' N(nµ, nσ2) or
equivalently 1√

nσ2
(X1 + . . .+ Xn − nµ) ' N(0, 1).

If Xi ∼ Bernoulli(p) this reduces to the de Moivre–Laplace Theorem
8.11
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Sketch proof.

Will just consider the case µ = 0, σ2 = 1 for brevity.

Write MX for the MGF of each Xi .

Know that MX (t) = 1 + 1
2 t

2 + O(t3).

Consider Tn :=
∑n

i=1
Xi√
n

. Its moment generating function is

MTn(t) = E
(
e

t√
n

∑n
i=1 Xi

)
= E

(
n∏

i=1

e
t√
n
Xi

)
=

n∏
i=1

E
(
e

t√
n
Xi
)

=
n∏

i=1

MXi

(
t√
n

)
=

[
MX

(
t√
n

)]n
=

(
1 +

1

2

t2

n
+ O(n−3/2)

)n

→ et
2/2,

as required.
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