
Gδσ-games and generalized computation

P.D. Welch

School of Mathematics, University of Bristol,
Bristol, BS8 1TW, England

23.ix.15

Abstract

We show the equivalence between the existence of winning strategies for Gδσ (also called Σ30)
games in Cantor or Baire space, and the existence of functions generalized-recursive in a higher
type-2 functional. (Such recursions are associated with certain transfinite computational models.)

We show, inter alia, that the set of indices of convergent recursions in this sense is a complete
!Σ30 set: as paraphrase, the listing of those games at this level that are won by player I , essentially
has the same information as the ‘halting problem’ for this notion of recursion.

Moreover the strategies for the first player in such games are recursive in this sense.We thereby
establish the ordinal length ofmonotone !Σ30-inductive operators, and characterise the first ordinal
where such strategies are to be found in the constructible hierarchy. In summary:

Theorem (a) The following sets are recursively isomorphic.
(i) The complete ittm-semi-recursive-in-eJ set,HeJ;
(ii) the Σ1-theory of (Lη0,∈), where η0 is the closure ordinal of !Σ30-monotone inductions;
(iii) the complete !Σ30 set of integers.
(b) The ittm-recursive-in-eJ sets of integers are precisely those of Lη0.

1 Introduction
The attempt to prove the determinacy of two person perfect information games (and the conse-
quences of the existence of such winning strategies) has a long and fruitful history, starting with
work of Banach and Mazur and continuing to the present. The work in the paper [20] was initially
motivated by trying to see how the Π31-theory of arithmetical quasi-inductive definitions fits in with
other subsystems of second order number theory, in particular with the determinacy of Σ30-sets. There
it was shown, inter alia, that �QI’s - which were known to be formally equivalent with the most
basic form of generalized computation to be introduced below - are not strong enough to compute
strategies for Σ30-games. What had been left open was a more precise discussion of the location
of those strategies. We continue that discussion here. To give this research a context we shall also
mention the results previously known in this area.

The argument in [21] explicitly extracts what was undeclared in the proof, a criterion for where
exactly the strategies appear in the Gödel constructible Lα hierarchy. Whilst we have had this result
for some while, the characterisation is somewhat unusual in that it is expressed in terms of the
potential for such Lα to have certain kinds of ill-founded elementary end extensions, and is not
so perspicuous. We had conjectured that certain kinds of illfounded-computation trees (defined by
Lubarsky) should also characterize this ordinal. This we have verified, but now see that there is a
bigger picture that connects the generalized recursion theory of the late 50’s and early 60’s of Kleene
(v. [9]) of higher types with the determinacy of games at this level. To be clearer the connection is
between the existence of winning strategies and the generalization of Kleenewhich is associated with
a transfinite computational model of the so-called Infinite Time Turing machines of Hamkins and
Kidder [5]. Kleene in [9] developed an equational calculus, itself evolving out of his analysis of the
Gödel-Herbrand General Recursive Functions (on integers) fom the 1930’s, but now enlarged for
dealing with recursion in objects of finite type. (The set of natural numbers we denote by ω and they
are of type 0; f : a→ω is of type k+1 if a is of type k.) � particular type-2 functional was that of
the ordinary jump J , where

1

J(e,m" , x")=1 if {e}(m" , x")↓ (meaning converges, or is defined)
=0 otherwise.

Herem" is a string of integers, and x" a vector of functions f :ω→ω (thus a vector of objects of
type 1) and {e} a usual index of a recursive function. The function under discussion is {e} which is
given by a natural number index coding its formation. In this formalism the index set

HJ(e)↔ {e}J(e)↓
is a complete semi-recursive (in J) set of integers, and Kleene showed that this is in turn a complete
Π1
1 set of integers. Further he showed that the J-recursive sets of integers, i.e. those setsR for which

R(n)↔ {e}J(n)↓ 1∧ ¬R(n)↔ {e}J(n)↓ 0
for some index e, are precisely the hyperarithmetic ones.

Recall that a setX ⊆ω (ωω) is said to be in !Γ for some (adequate) pointclass Γ on the integers
(Baire space), if there is a set Y ⊆ω×ωω (ωω×ωω) so thatX={x|Player I has a winning strategy
in G(Yx, <ωω)} where Yx= {y | 〈x, y〉 ∈ Y }. Roughly speaking, if one has a recursive listing of
the Γ sets of reals, (say from some universal Γ set): A0, A1, ... , An, ... , then a complete !Γ set of
integers, gives those n for which I has a winning strategy in G(An; <ωω).

We have the following theorem connecting this with determinacy of open games:

Theorem 1.1. (Moschovakis [14], Svenonius [17]) The complete!Σ10 set of integers is a completeΠ1
1

set of integers.

Hence by Kleene’s results just alluded to:

Corollary 1.2. The complete !Σ10 set of integers is recursively isomorphic toHJ, a complete J-semi-
decidable set of integers.

Moreover:

Theorem 1.3. (Blass [2]) Any Σ1
0-game for which the open player, that is I, has a winning strategy,

has a hyperarithmetic winning strategy.

Corollary 1.4. Any Σ1
0-game for which player I has a winning strategy, has a J-recursive strategy.

We seek to raise these ideas to the level ofΣ30. Kleenealso gavean equivalent account of recursion
in objects of finite typeusing as an alternative the Turing model enhanced with oracle calls to a higher
type functional, see [10],[11]; the account here is motivated in spirit by that approach. Instead of
using an equational calculus we shall couch this in terms of infinite time Turing machines -(ittm’s)
computations recursive in a certain operator eJ in place of J . Indeed there is already a version of
this kind of computation in the literature. In [12] Lubarsky defines the notion of a ‘feedback’-ittm
machine, where a Hamkins-Kidder ittm may call upon a sub-computation handled by another such
machine, and pass an index and an element of Cantor space to it as a parameter. The information
passed back is as to whether the computation with the given index acting on the given parameter
halts or not (which it may do after a transfinite number of steps, in contradistinction to the standard
Turing machine). This is thus in the spirit of the jump J defined above. � convergent feedback-ittm
computation can then be conceived as a wellfounded tree of halting sub-computations. � divergent
computation (“freezing” in Lubarsky’s terminology) is onewhichdescends down an ill-founded path.

2 Section 1

Rather than define recursions involving what would be the generalization of J above to halting
ittm-computations, we use an eventual jump operator eJ. The ittm’s have an arguably more funda-
mental behaviour than ‘halting’ or ‘non-halting’: they may eventually have some settled output on
their output tape without formally entering a halting state (the Read/Write head may be meandering
up and down the tape, perhaps fiddling with the Scratch or Input tape, but leaving the output alone,
in some fixed loopwithout formally halting). This ‘eventual’ or ‘settled’ behaviour fits in with the Σ2
definable liminf rules of its operation. We thus define:

eJ(e,m" , x")=1 if {e}(m" , x")| (denoting converges to a settled ouput)

=0 otherwise

Here {e} is now an index of a standard ittm-computable function, say given by some usual finite
programme Pe(m" ,x"). We then consider ittm-computations recursive in eJ, forwhichwewould now
use the notation {e}eJ to denote the e’th such function recursive in eJ. Here a query instruction or
state is included as part of the machine’s language. For this notion we find a level of the L hierarchy
Lα0 to provide an analogy with the above.

Theorem 1.5. The complete !Σ30 set of integers is recursively isomorphic to HeJ, the complete eJ-
semi-decidable set of integers.

Thus to paraphrase, the listing of those games that are won by I , essentially has the same
information as the ‘halting problem’ for this notion of recursion. We feel this is interesting as it
demonstrates that two, prima facie very different, notions are in fact intimately connected. Define
τ0 as the supremum of the convergence times of eJ-recursive computations.

Corresponding to the result on Π11 we have:

Theorem 1.6. The complete !Σ30 set of integers is a complete Σ1
Lτ0 truth set.

(Recall that the completeΠ11 set is also the Σ1
L
ω1
ck
truth set.) Moreover

Theorem 1.7. Any Σ30-game for which the player I has a winning strategy, has an eJ-recursive win-
ning strategy.

Corresponding to the result on hyperarithmetic strategies we have:

Corollary 1.8. AnyΣ3
0-game for which player I has a winning strategy, has a winning strategy in Lτ0.

We assume the reader has familiarity both with the constructible hierarchy of Gödel - for which
see Devlin [4]. For the basic notions of descriptive set theory including the elementary theory of
Gale-Stewart games, seeMoschovakis [15]. Our notation is standard. Some of the results here relate
to sub-systems of second order number, or analysis, and the basic theory of this is exposited in
Simpson’s monograph [16]. For models of admissible set theory, also called “Kripke-Platek set
theory” or “KP” see Barwise [1]. By “KPI” we mean the theory KP augmented by the axiom that
every set is an element of some admissible set.

Introduction 3

In the language of generalized recursion theory, the pointclass !Σ30 of sets of integers cannot
be the 1-envelope of a normal type-2 function, by results of Harrington, Kechris, and Simpson (see
[7]). (� “1-envelope” is the set of relations on ω recursive in the type-2 functional.) What we are
showing here is that the complete set of integers in !Σ30 is however (recursively isomorphic to) the
complete set which is ittm-semi-recursive in eJ - the eventual jump type-2 functional. It is the “ittm-
1-envelope” of eJ. Section 3 contains some facts related to ittm-computations, and an exposition,
and sets the scene with some basic results of our ittm-recursions-in-eJ.

We answer a further question of Lubarsky concerning Freezing-ITTM’s at Corollary 4.9.

�cknowledgements: We should like to warmly thank Bob Lubarsky for illuminating explanations of
his paper [12], discussions on the conjecture mentioned in the second paragraph, and comments on
an earlier draft of this paper.

2

We first repeat the extraction fromour earlier paper [21] of a criterion for the constructible rankof
Σ3
0 games’ strategies. (Note that we take our games as defined in L and using constructible, indeed an
initial recursive, game trees; the existence of a winning strategy for a particular Σ30 (indeed arithmetic
or Borel) game is a Σ21 assertion about the countable tree T and the payoff set. �s T ∈ L the truth
of such an assertion has the same truth value in the universe of sets or in L. We thus expect to find
such strategies in L (since Davis in [3] proved such strategies exist in the universe V of sets). But
where are they?

Definition 2.1. A pair of ordinals (µ, ν) is a Σ2-extendible pair, if Lµ≺Σ2Lν and moreover ν is the
least such with this property. We say µ is Σ2-extendible if there exists ν with (µ, ν) a Σ2-extendible
pair. By relativisation, a pair of ordinals (µ,ν) is an x-Σ2-extendible pair, and µ is x-Σ2-extendible,
if Lµ[x]≺Σ2Lν[x].

Indeed all the above ideas relativise normally to real parameters x∈2N, and we thus have λ(x),
ζ(x),Σ(x) etc., with the latter two forming the least x-Σ2-extendible pair.

Definition 2.2. Let an m-depth Σ2-nesting of an ordinal α be a sequence (ζn,σn)n<m with (i) For
0≤n<m: ζn−1≤ ζn<α<σn<σn−1 ; (ii)Lζn≺Σ2Lσn. We write d(α)≥m. If α is not nested
we set d(α)= 0.

We shall want to consider non-standard admissible models (M, E) of KP together with some
other properties. We letWFP(M) be the wellfounded part of the model. By the so-called ‘Trun-
cation Lemma’ it is well known (v. [1]) that this well founded part must also be an admissible set.
Usually for us the model will also be a countable one of “V = L”. Let M be such and let α =
On ∩WFP(M). By the above α is thus an ‘admissible ordinal’, i.e. Lα will also be a KP model.
�n ‘ω-depth’ nesting cannot exist by the wellfoundedness of the ordinals. However an ill founded
modelM when viewed from the outside may have infinite descending chains of ‘M -ordinals’ in its
ill founded part. These considerations motivate the following definition.

Definition 2.3. An infinite depth Σ2-nesting of α based onM is a sequence (ζn, sn)n<ω with :

(i) ζn−1≤ ζn<α⊂ sn⊂ sn−1 ; (ii) sn∈OnM; (iii) (Lζn≺Σ2Lsn)M.

4 Section 2

Thus the sn form an infinite descending E-chain through the illfounded part of the modelM . In
[20] we devised a game whereby one player produced an ω-model of a theory and the other player
tried to find such infinite descending chains throughM ’s ordinals. In this paper we shall switch the
roles of the players, and have Player II produce the model and Player I attempt to find the chain.
(This is just to orientate the game as then Σ30.)

In order for there to exist a non-standard model with an infinite depth nesting (of the ordinal
of its wellfounded part) then the wellfounded part will already be a relatively long countable initial
segment of L (it is easy to see that if ζ = supnζn then already Lζ !Σ1-Separation).

Example 2.4. (i) Let δ be least so that Lδ ! Σ2-Separation, and let (M, E) be an admissible non-
wellfounded end extension of Lδ with Lδ as its wellfounded part. Then there is an infinite depth
nesting of δ based onM .

(ii) By refining considerations of the last example, let γ0 be least such that there is γ1> γ0 with
Lγ0≺Σ2Lγ1!KP. Then again there is an infinite depth nesting of γ1 based on some illfounded end
extensionM of Lγ1.

Both of the above can be established by standard Barwise Compactness arguments. However
both these δ and γ0 we shall see are greater than the ordinal β0 defined from this notion of nesting
as follows.

Definition 2.5. Let β0 be the least ordinal β so that Lβ has an admissible end-extension (M, E)
based on which there exists an infinite depth Σ2-nesting of β.

Definition 2.6. Let γ0 be the least ordinal so that for any game G(A, T) with A ∈ Σ30, T ∈ Lγ0 a
game tree, then there is a winning strategy for a player definable over Lγ0.

The following then pins down the location of winning strategies for games at this level played in,
e.g. recursive trees.

Theorem 2.7. γ0= β0. Moreover, any Σ3
0-game for a tree T, with a strategy for Player I, has such a

strategy an element of Lβ0. Any Π3
0-game for such a tree has a strategy which is definable over Lβ0.

Definition 2.8. Let η0 be the closure ordinal of monotone !Σ30-operators.

This ordinal will be less than β0.

Theorem 2.9. (a) The following sets are recursively isomorphic.
(i) The complete ittm-semi-recursive-in-eJ set, HeJ;
(ii) theΣ1-theory of (Lη0,∈);
(iii) the complete !Σ30 set of integers.

(b) The ittm-recursive-in-eJ sets of integers are precisely those of Lη0.

Definition 2.10. Let τ0 be the supremum of convergence ordinals of well-founded computations,
arising from infinite time Turing machine computations on integers which are ittm-recursive (in a
generalized sense of Kleene et al.) in the Type-2 eventual jump functional eJ.

Theorem 2.11. η0= τ0.

Remark: (i) The proof reveals more about the L-least strategies for Σ30-games: those for player
I , in fact can be found within a strictly bounded initial segment of β0: they will occur in Lη0.

5

(ii) The existence of all the above ordinals, and β-models of the above theories can be proven
in the subsystem of analysis Π31-CA0, but not in∆3

1-CA0 (or even some strengthenings of the latter)
See [20].

2.1 The location of strategies forΣ3
0-games

Proof: of Theorem 2.7 We look at the construction of the proof of Theorem 5 of [20] in particular
that of Lemma 3. There we used an assumption that there is a triple of ordinals γ0< γ1< γ2 with
(a) Lγ0≺Σ2Lγ1 and (b) Lγ0≺Σ1Lγ2 and (c) γ2 was the second admissible ordinal beyond γ1. One
assumed that I did not have a winning strategy inG(A;T). The Lemma 3 there ran as follows:

Lemma 2.12. Let B ⊆A⊆ /T 0 with B ∈Π20. If (G(A; T) is not a win for I)Lγ0, then there is a
quasi-strategy T ∗∈Lγ0 for II with the following properties:

(i) /T ∗0 ∩B=∅
(ii) (G(A;T ∗) is not a win for I)Lγ0.

The format of the lemma’s proof involved showing that the Σ2
Lγ0 notion of ‘goodness’ embodied

in (i) and (ii) held for∅. To do this involved defining goodness in general. We first define T ′ as II ’s
non-losing quasi-strategy forG(A;T) (the set of positions p∈ T so that I does not have a winning
strategy in G(A; Tp)); this is Π1 definable over Lγ0 as the latter is a model KPI; in particular if we
use the notation

Definition 2.13. Sγ1=df{δ< γ|Lδ≺Σ1Lγ}.

Definition 2.14. For n≤ω, let Tδ
n denote theΣn-theory of Lδ.

then “ p∈T ′ ” isΠ1
Lζ0 , where ζ0=dfminSγ0

1 \ρL(T). More generally we define:

� p∈T ′ is good if there is a quasi-strategy T ∗ for II in Tp′ so that the following hold:
(i) /T ∗0 ∩B=∅;
(ii)G(A;T ∗) is not a win for I .
Here Tp′ is the subtree of T ′ below the node p. The point of requiring that the pair (γ0, γ1) have

the Σ2-reflecting property of (a) above, is that the class H of good p’s of Lγ1 is the same as that
of Lγ0 and so is a set in Lγ1 as it is thus definable over Lγ0 by a Σ2({T ′}) definition. The overall
argument is a proof by contradiction, where we assume that ∅ is in fact not good, and proceeds
to construct a strategy σ for Player I in the game G(A; T ′), which is definable over Lγ1, and is
apparently winning in Lγ2. (The requirement (c) that γ2 be a couple of admissibles beyond γ1 was
only to allow for the strategy σ to be seen to be truly winning by going to the next admissible set,
and verifying that there are no winning runs of play for II .) The contradiction arises since T ′ - which
was defined as the subtree of T of II ’s non-losing positions - is concluded still to be the same subtree
of non-losing positions in Lγ2. Being a non-losing position, p say, for II is a Π1 property of p. This
carries up from Lγ0 to Lγ2 as Lγ0≺Σ1Lγ2, and this is the reason for the requirement (b): we want
T ′ to survive beyond Lγ1 for our argument to work. (This idea is important for the arguments in
Section 4, so let us refer to it as ‘the survival argument ’.) There is then no winning strategy for I in
G(A;T ′) definable over Lγ1, contradicting the reasoning that σ is such.

This proves the Lemma: Lγ1 sees there is T
∗ a subtree of T ′ witnessing that ∅ is good. The

existence of such a subtree is a Σ2({T ′})-sentence, and then again this reflects down to Lγ0. We thus
have such a T ∗ in Lγ0.

6 Section 2

The Theorem is proven by repeated applications of the Lemma, by using the argument for each
Π2
0 set Bn in turn where A =

⋃
n Bn and refining the trees using this procession from a tree to a

subtree T ∗. We thus repeat the argument with T ∗ replacingT . Because T ∗∈Lγ0 we have the same
constellation of this triple of ordinals γi above the constructible rank of T ∗, and can do this.

However we can get away with less. The definition of the subtree of non-losing positions of II
now this time in the new T ∗ can be considered as taking place Π1 over Lδ0 where δ0 is the least
element of Sγ0

1 withT ∗∈Lδ0. To get our contradiction we actually use that Lδ0≺Σ1Lγ2 ; we do not
need that Lγ0≺Σ1Lγ2. Notice that our argument that T ∗ exists is non-constructive: we simply say
that theΣ2-sentence of its existence reflects to Lγ0: we do not have any control over its constructible
rank below γ0. Moreover any sufficiently large γ ′ greater than γ1would do for the upper ordinal, as
long as it is a couple of admissibles larger than γ1. Thus we could apply the Lemma repeatedly for
differentBn if we have a guarantee that whenever a Tn∗-like subtree is defined there exists a ζn∈Sγ0

1

and a suitable upper ordinal γn> γ1 with Tn∗∈Lζn≺Σ1Lγn . Of course if there are arbitrarily large
ζn below γ0with this extendability property, then this is tantamount toLγ0≺Σ1Lγ ′ for some suitable
γ ′, and this shows why our original constellation of γi provides a sufficient condition.

�ctually as the final paragraph of the Theorem 5 there shows, we are doing slightly more than
this: we are, each time, applying the Lemma infinitely often to each possible subtree of T ∗ below
some node p2 of it which is of length 2, to define our strategy τ applied to moves of length 3. We
thenmove on to the nextΠ2

0 set. �lthoughwe are applying the Lemma infinitelymany times for each
such p2, and thus infinitelymany newΣ2-sentences, or trees, have to be instantiated, we had that Lγ0
is a Σ2-admissible set, and as the class of such p2 is just a set of Lγ0, Σ2-admissibility works for us
to find a bound for the ranks of the witnessing trees, as some δ < γ0. We thus can claim that our
final τ is an element of Lγ0 even after ω-many iterations of this process.

(β0≥ γ0)We argue for this. Let (M,E) be a non-standard model ofKPwith an infinite nesting
(ζn, sn) about β0 as described. Note thatSβ0

1 must be unbounded in β0 (so thatLβ0!Σ1-Separation),
and each ζn is a limit point ofSβ0

1 . We do not assume that β0 isΣ2-admissible (which in fact it is not
as the proof shows). Let T ∈Lβ0 be a game tree. By omitting finitely much of the outer nesting we
assumeT ∈Lζ0. We assume that Player I has no winning strategy forG(A;T) inLβ0 (for otherwise
we are done). Note that inM we have thatLs0 also has no winning strategy for this game (otherwise
the existence of such would reflect intoLβ0. We show that II has a winning strategy definable over
Lβ0. Let A=

⋃
Bn with eachBn∈Π20. For n=0 we apply the argument of the Lemma using the

pair (ζ1, s1) in the role of (γ0, γ1) from before, with (ζ0, s0) in the role of (δ0, γ2) described above,
i.e. we use only that T ∈Lζ0 and that Lζ0≺Σ1Ls0.

The Lemma then asserts the existence of a quasi-strategy for II definable using the pair (ζ1, s1):
T ∗(∅). ByΣ2-reflection the L-least such lies in Lζ1, and we shall assume that T ∗(∅) refers to it.

Claim: For any pair (ζn, sn) for n≥ 1 the same tree T ∗(∅) would have resulted using this pair.
Proof: Note that we can define such a tree like T ∗(∅) using such pairs, since for all of them

we have that (ζ0, s0)⊃ (ζ1, s1)⊃ (ζm, sm) form> 1. �s T ∗(∅)∈Lζ1 and satisfies a Σ2 defining
condition there, and since we also have ζ1 ∈ Sζm

1 , it thus satisfies the same Σ2 condition in Lζm.
Q.E.D. Claim

For any position p1∈T with lh(p1)=1, let τ(p1)be somearbitrary butfixedmove in T ′(∅), this
now II ’s non-losing quasi-strategy for the game G(A, T ∗(∅)) as defined in Lζ2. The relation “p∈
T ′(∅)” is Π1

Lζ2({T ∗(∅)}) or equivalently Π1
Lζ1({T ∗(∅)}), or indeed Π1

Lδ({T ∗(∅)}) where δ is
least in Sζ1

1 above ρL(T ∗(∅)). Hence “y = T ′(∅)” ∈∆2
Lδ({T ∗(∅)}) and thus T ′(∅) also lies in

Lζ1. For definiteness we let τ (p1) be the numerically least move.

7

For any play, p2 say, of length 2 consistent with the above definition of τ so far, we apply the
lemma againwithB=A1 replacingB=A0 andwith (T ∗(∅))p2 replacing T . We use the nested pair
(ζ2, s2) to define quasi-strategies for II, call them T ∗(p2), one for each of the countably many p2.
These are each definable in a Σ2way over Lζ2, in the parameter (T

∗(∅))p2. This argument uses that
(T ∗(∅))p2∈Lζ1≺Σ1Ls1. Let T ′(p2)∈Lζ2 be II ’s non-losing quasi-strategy forG(A,T ∗(p2)), this

timewith “y=T ′(p2)”∈∆2
Lζ2({T ∗(p2)}). (�gain thesewill satisfy the samedefinitions as overLζm

for any m ≥ 2.) Note that we may assume that the countably many trees T ′(p2) appear boundedly
below ζ2 (using the Σ2-admissibility of ζ2). �gain for p3 ∈ T ∗(p2) any position of length 3, let
τ (p3)be some arbitrary but fixed move in T ′(p2). Now we consider appropriate moves p4 of length
4, and reapply the lemma withB=A2 and (T ∗(p2))p4. Continuing in this way we obtain a strategy
τ for II , so that τ " [1,2k+2) ω , for k <ω, is defined by a length k-recursion that is Σ2

Lζk({T }).
�s the argument continues more and more of the strategy τ is defined using successive (ζm, sm)

to justify the existence of the relevant trees in Lζm. Knowing that the trees are there for the asking,
we see that τ can actually be defined by a Σ2-recursion over Lβ0 in the parameter T in precisely the
manner given above (the Σ2-inadmissibility of β0 notwithstanding).

If x is any play consistent with τ , then for every n, by the defining properties of T ∗(p2n) given
by the relevant application of the lemma, x∈/T ∗(x "2n)0⊆¬An. Hence x∈/ A, and τ is a winning
strategy for II as required. Thus β0≥ γ0 is demonstrated.

(β0≤ γ0) : suppose β0> γ0. Then, since the existence of a winning strategy for a player in any
particular !Σ30 game would be part of the theory Tβ0

1 =Tα0
1 where α0 is least withLα0≺Σ1Lβ0, and

since moreover that the existence of a stage γ0 over which all such games have strategies, amounts
also to an existential statement, we have that γ0< α0. But this is an immediate contradiction: find
a ψ ∈ Tα0

1 with γ0 < αψ < α0. But as before II has as winning strategy σ to play a code for Lαψ.
Hence as γ0<αψ such a strategy and so such a code can be found in Lαψ; but again as before, this
contradicts Tarski. Contradiction. Hence β0≤ γ0. Q.E.D. Theorem 2.7

Remark 2.15. We make some definitions from the (β0 ≥ γ0) part of the last proof for later use.
We have our starting tree T , and the tree of non-losing positions for II , T ′. We shall call these the
trees of depth 0. Then for any p∈T ′ we argued that p was good, and, since ∅ was good, we could
define the tree T ∗(∅) - the L-least tree witnessing this fact, and thence we had T ′(∅) the tree of
non-losing positions for II in G(A,T ∗(∅)). We give the trees T ∗(∅), T ′(∅) depth 1. Then for any
position p1∈T with lh(p1)= 1, we let τ (p1) be the numerically least move in T ′(∅). We call any
play, p2 say, of length 2 consistent with this definition of τ so far, relevant (of length 2). We wished
to apply the lemma again with B = A1 replacing B = A0 and with (T ∗(∅))p2 replacing T . We
shall call a tree of the form (T ∗(∅))p2 or ((T ∗(∅))p2)′ (the latter the tree of non-losing moves for
II in G(A; (T ∗(∅))p2)) relevant trees of depth 1. We then used (ζ2, s2) to define the T ∗(p2) (one
tree for each relevant p2) and thence the trees T ′(p2) to be II ’s non-losing quasi-strategy for G(A,
T ∗(p2)). We give trees of the form T ∗(p2), T ′(p2) depth 2. For p3∈T ∗(p2) any position of length
3, τ(p3)was the numerically least move in T ′(p2). �gain we call such p4= p3

˘
τ(p3) relevant , and

the corresponding trees (T ∗(p2))p4 and (T
∗(p2))p4)

′ relevant trees of depth 2. T ∗(p4), T ′(p4) will
be of depth 3. �nd so forth.

Definition2.16. Let Tk denote the set of trees, and relevant trees, of depth k, as just defined for k<ω.

We return now to considering the complexity of !Σ30.

Theorem 2.17. Let α0 be least with Tα0
1 =Tβ0

1 (thus α0=minSβ0
1).

(i) Tα0
1 is a complete !Σ30 set of integers.

(ii) Hence the reals of Lα0 are all !Σ30 sets of integers.

8 Section 2

Proof: The argument is really close to that of the Corollary 2 of [20]. Indeed there we showed that
the Tαψ

1 (which occurred cofinally in Lα0) were !Σ30 sets. Some details of this are repeated. First
remark that (ii) is immediate given (i) since all the other reals in Lα0 are all recursive in Tα0

1 and
!Σ30, being a Spector class (v. [15]), is closed under recursive substitution. We define a game Gϕ

∗ for
Σ1-sentences ϕ.

Rules for II.
In this game II ’s moves in x must be a set of Gödel numbers for the complete Σ1-theory of an ω-
model of KP+V =L+(¬ϕ∧Det(Σ30)).

Everything else remains the same mutatis mutandis: I ’s Rules remain the same and his task is to
find an infinite descending chain through the ordinals of II ’s model. Note that if ϕ∈Tα0

1 , I now has
a winning strategy: for if II obeys her rules, and lists an xwhich codes an ω-modelM of this theory,
thenM is not wellfounded, and has WFP(M) ∩ On <ρ(ϕ) where ρ(ϕ) is defined as the least ρ
such that ϕ∈Tρ+11 . However I playing (just as II did in the main Theorem 4) can find a descending
chain and win. For we haveWFP(M) ∩On<β0 and so the argument goes through, as there are
no infinite depth nestings there. On the other hand if ϕ ∈/ Tα0

1 , II may just play a code for the true
wellfounded Lβ0+ with β0

+ the least admissible above β0+ 1, and so win. This shows that Tα0
1 is a

!Σ30 set of integers.

Now suppose a∈!Σ30. Then we have some Σ30 setA⊆ω× ωω withn∈a←→ I has a winning
strategy to play intoAa= {y ∈ ωω | (a, y)∈A}. Then a is Σ1

Lα0 (since allΣ30-games that are a win
for I , have a winning strategy an element of Lβ0, and thence by Σ1-elementarity, the L-least such is
actually an element of Lα0 - and wemerely have to search through Lα0 for it) and thus is recursive in
Tα0
1 . Hence Tα0

1 is a complete!Σ30 set of integers. Q.E.D. Theorem 2.17 and 2.9(a) (ii)↔(iii).

In conclusion: we saw above that α0 was the least α with Tα
1 = Tβ0

1 . Phrased in other terms,
by elementary constructible hierarchy considerations, this is saying that α0 is the minimum of Sβ0

1 .
Hence Lα0 ≺Σ1 Lβ0 but for no smaller δ is Lδ ≺Σ1 Lβ0. Since the statement “There is a winning
strategy for Player I in G(A, T)” is equivalent in KPI to a Σ1-assertion, if true in Lβ0 it is true in
Lα0. In short for those Σ3

0-games that are wins for I on trees T ∈Lα0, there are strategies for such
also within Lα0 itself. For those that are wins for Player II , when not found in Lα0, these may be
defined overLβ0. This somewhat asymmetrical picture reflects the earlier theorems cited above. The
theorems of the next section harmonise perfectly with this.

Remark: (i) Since !Σ30 is a Spector class, one will have a !Σ30-prewellordering of Tα01 as a !Σ30
set of integers, of maximal length, here α0.

We write down one on T =Tα0
1 . �bbreviateΓ=!Σ30 and Γ̌=!Π30. We need to provide relations

≤Γ and ≤Γ̌ in Γ and Γ̌ respectively, so that the following hold:

T (y)=⇒∀x{[T (x)∧ ρ(x)≤ ρ(y)]⇐⇒x≤Γ y⇐⇒x≤Γ̌ y}.

For the relation x ≤Γ y, we define the game where II produces a model M II of T (y) ∧ (¬
T (x) ∨ρ(x)≤ρ(y)) and I tries to demonstrate that it is illfounded. �ssume then T (y). If T (x) ∧
ρ(x) ≤ ρ(y) then either (¬T (x))MII

and thusM II is illfounded withWFP(M II) ∩ On < ρ(x)

and hence I can win as in this region there are no ω-nested sequences. Or: (ρ(x)≤ρ(y))MII
. Thus

(ρ(x)>ρ(y))M
II
and again this impliesWFP(M II)∩On< ρ(x) with I winning.

Conversely suppose x ≤Γ y. Since T (y) is assumed, if ¬T (x), then II can play a wellfounded
model with (y ∧ ¬x)MII

and win. If ρ(x) >ρ(y) then again the same can be done. This proves
the first equivalence above. The second is similar, with now I producing a model M I of T (x) ∧
ρ(x)≤ ρ(y) and II finding descending chains. We leave the details to the reader.

9

(ii) One may also write out directly the theories Tα1 for α<α0 in a !Π30 form. This should not
be surprising: a !Σ30 norm as above should have ‘good’ ∆(!Σ30) initial segments.

(iii) For any set A∈!Π30\!Σ3 there will be n∈A so that the winning strategy witnessing this
is definable over Lβ0 but not an element thereof. (Otherwise an admissibility andΣ1-reflection argu-
ment shows that there is a level Lδ with δ<α0 containing strategies for both A and its complement.
But that would make A∈∆(!Σ30) - a contradiction.)

Corollary 2.18. η0=α0.

Proof: Since !Σ30 is a Spector class, and we see that a complete !Σ30 set has a !Σ30 -norm of length
α0, standard reasoning shows that there is a !Σ30-monotone operator whose closure ordinal is α0.
Hence η0=α0. Q.E.D.

Results ofMartin in [13] show that for a co-Spector class, Γ̌ say, the closure ordinal of monotone
Γ̌-operators, o(Γ̌-mon) =df sup {o(Φ) | Φ ∈ Γ̌, Φ monotone}, is non-projectible, that is
Lo(Γ̌-mon)!Σ1-Sep. Moreover o(Γ) < o(Γ̌-mon).

He shows:

Theorem 2.19. (Theorem D [13]) Let Γ be a Spector pointclass. (i) Suppose that for every X ⊆ω,
and every Γ̌(X) monotoneΦ, that Φ∞∈ Γ̌(X), then o(Γ̌-mon) is non-projectible, that is So(Γ̌-mon)

1

is unbounded in o(Γ̌-mon).
(ii) (from the proof of his Lemma D.1) o(Γ-mon)∈So(Γ̌-mon)

1 .

(He shows too that for Spector classes such as !Σ30, the supposition of (i) is fulfilled.) If we set π0
to be the closure ordinal of !Π30-mon. operators, then in this context we have an upper bound for π0:

Lemma 2.20. α0<π0≤ β0.

Proof: By (ii) of the last theorem, α0∈ Sπ0
1 . But for no β ′> β0 do we have Lα0≺Σ1Lβ ′ (as there

are games with winning strategies (for II) in Lβ0+1 for which there are none in Lβ0).
Q.E.D.

Question: Is π0= β0?

3 Recursion in eJ

3.1 Kleene Recursion in higher types

We take some notation and discussion from Hinman [8]. There was developed the basic theory
of higher type recursion based on an equational calculus defined by Kleene and refined by him and
Gandy in the 1960’s. The basic intuition was to define recursions using not just recursive functions
on integers but also allowing recursive schemes using ‘computable’ functions f :ω× ωω−→ ω (and
similarly for domains which are product spaces of this type). � basic result in this area is that the
functions recursive in E (defined below) are precisely those recursive in J , the ‘ordinary Turing
jump’, where we set

10 Section 3

J(e,m,x) = 0 if {e}(m,x)↓
= 1 otherwise.

(We shall follow mostly Hinman in using boldface notation, early or mid-alphabet roman for
integers, but end alphabet roman for elements of ωω, to indicate an (unspecified) number of variables
of the given type in an appropriate product space kω × l(ωω) - which he abbreviates as k,lω.) Then
E (often written 2E) is the functional:

E(x) = 0 if ∃n(x(n)= 0)
=1 otherwise.

For a fixed type-2 functional I of the kind above - thus a function I : kω× l(ωω)−→ω such asE
or J just defined, an inductive definition of a set, Ω(I), consisting of equational clauses can be built
up in ω1-steps. This defines the class of those functions {e}I that are recursive in I. Of course such
include partial functions, as a descending chain of subcomputation calls in the tree of computations
represents divergence. Just as the clauses of the induction and the set Ω(I) is an expansion of those
clauses and functions of type-1 recursion, also due to Kleene and yielding an inductive set Ω, we
shall wish to expand the notion of ‘computation’ further along another axis.

Our notation for computation will be modelled on that of the transfinite machine model,
the ‘infinite time Turing machine’ introduced by Hamkins and Kidder [5]. The signifying feature
of such ITTM’s is the transfinite number of stages that they are allowed to run their standard finite
Turing program, on their one-way infinite tape. The behaviour at limit stages is defined by a ‘liminf’
rule for the cell values of 0 or 1, and a replacing of the read/write head back at the start of the
tape, and finally a special ‘limit state’ qL is entered into.

�ctually the formalism is quite robust: one may change details of these arrangements without
altering the computational power. In [5] they considered a 3-tape arrangement (for Input, Scratch
Work, andOutput). The paper [6] shows this can be reduced to 1-tape (if the alphabet has more than
two symbols!). One can change the limit behaviour so that instead of a liminf value being declared for
each cell’s value, it simply becomes blank - for ambiguity - if it has changedvalue cofinally in the limit
stage (Theorem 1 of [18]). Similarly the special state qL is unnecessary: one may define the “next
instruction” at a limit stage to be the instruction, or transition table entry, whose number is the liminf
of the previous instruction numbers - this has the machine entering the outermost subroutine that
was called cofinally in the stage. Likewise the Read/Write head may be placed at the cell numbered
according to the liminf values of the cells visited prior to that limit stage (unless that liminf is now
infinite, in which case we do return the head to the starting cell). �ll of these variants make no
difference to the functions computed.

We shall review the following facts related to such machines.

3.2 Infinite Time Turing Machine computation

Such ITTM’s have two modes of producing results: a program can halt outright with an infinite
string of 0, 1’s on the part of the tape designated for output (the ‘output tape’) but it may also have
some ‘eventual output’: the contents of the output tapemay have settled down to a fixed value, whilst
the machine is still churning away perhaps moving its head around and fiddling with the scratch
portion of the tape. Nevertheless on a given fixed input (some x∈ ω2may be written to a designated
portion of the tape, the ‘input tape’) any ITTM machine will eventually start to cycle - and by the
starting point of that cycling, designated ζ(x), if the output settles down, then it will have done so
by ζ(x).

Recursion in eJ 11

This last feature is in fact, quite fundamental for the study of ITTMs. We may regard a machine
Pe(x) in this context, as having come to a conclusion - the contents of the output tape - but has not
formally reached a halting state in the usual sense.

Definition 3.1. We shall say that a computation Pe(x) is convergent to y (and write Pe(x)|y) if it
enters a halting state in the usual sense, or if it has eventually settled output. We shall say that “y is
(eventually)-ittm-recursive in x”. If it does not have settled output, we shall write Pe(x)↑.

This enshrines our taking (eventually) settled output , as the criterion of a successful computation.
We shall be interested in eventual output of this sort, as well as the more restricted strictly halting
variety. Both types of computation, the usual halting, and the ‘eventually constant’ output tape out-
lined above, we shall regard, and term, as ‘convergent’ - thinking of ‘halting’ as only a special kind
of eventually settled output. Given a set A ⊆ ω ∪ ω2, this can be used as an oracle for an ITTM in
a familiar way: ?Is the integer on (or is the whole of) the current output tape contents an element of
A? and receive a 1/0 answer for “Yes”/“No”. We identify elements of ω as coded up in ω2 in some
fixed way, and so may consider such A as subsets of ω2. But further: since having A respond with
one 0/1 at a time can be repeated, we could equally as well allowA to return an element f ∈ω2 as a
response (we have no shortage of time). We could then also allow as functionals also A: ω2−→ ω2.
However for the moment we shall only consider functionals into ω. Some examples follow.

Definition 3.2. (The infinite time jump iJ)

iJ(e,m,x) = 1 if {e}(m,x)↓ (i.e. the e’th ittm-computable function with
inputm,x has a halting value)

= 0 otherwise.

Definition 3.3. (The eventual jump eJ)

eJ(e,m,x) = 1 if {e}(m,x)| (i.e. the e’th ittm-computable function with
inputm,x has an eventually settled value)

= 0 otherwise (for which we write {e}(m,x)↑).

These are both total functionals. We shall be interested in functions recursive in eJ. But first we
summarise some facts about ordinary ittm’s.

Fact 1 [5] shows:
(i) ThatΠ11-predicates are decidable: given a code x∈2N, there’s an ittm that will decidewhether

x∈WO or not.
(ii) There’s a program number e so that Pe(x) will halt with a code for (Lα, ∈) if x ∈WO ∧

‖x‖=α.
(iii) For z ∈ 2N, the set of ittm-writable-in-z reals, is the setWz⊆ 2Nwhere
Wz= {x∈ 2N| ∃ePe(z) halts with output x}.
(iv) The set of ittm-eventually-writable-in-z reals, is the set
EWz= {x∈ 2N| ∃e (Pe(z) has x written on its output tape from some point in time onwards)}.

12 Section 3

Fact 2 [19] shows:
(i) Let (ζ ,Σ) be the lexicographically least pair of ordinals so that Lζ≺Σ2LΣ. Let λ be the least

ordinal withLλ≺Σ1Lζ. Then (The “λ-ζ-Σ-Theorem”), Lλ∩2N=W , Lζ∩2N=EW . �s is easily
seen all three ordinals are limits of Σ2-admissibles, whilst λ is Σ1- but not Σ2-admissible, and Σ is
not admissible at all.

(ii) (a) �ny computation Pe(n) that halts (in the usual sense) does so by a time α<λ.
(b) �ny computation Pe(n) that eventually has a settled output tape, does so by a time α< ζ .
(c) Bothλ and ζ are the suprema of such fully “halting” times, and “eventual convergence” times,

over varying e, n∈ω, respectively.
(iii) Tλ

1 ≡1 h, and Tζ2 ≡1 h̃ where h = {e| Pe(e) reaches a halting state} and h̃ =
{
e|Pe(e)

eventually has settled output }.
(iv) It is a consequent of (iii) that a universal machine (on integer input) has snapshots of its

behaviour which, when first entering a final loop at stage ζ , will repeat with the same snapshot at
timeΣ; moreover (1-1) in those snapshots is the theory Tζ

2.
(v) Recursion, and Snm Theoremsmay be proved in the standard manner ([5]); there are appro-

priate versions of the Kleene Normal Form Theorems ([19]).

The usual argument shows:

Theorem 3.4. (The eJ-Recursion theorem) If F (e,m,x) is recursive in eJ, there is e0∈ω so that
ϕe0
eJ(m,x)=F (e0,m,x).

3.2.1 More on Extendability

�s Fact 2 (i) above shows, the relation of “Lζ has a Σ2-extension to LΣ” is fundamental to this
notion.

Fact 2 (contd.)
(vi)There ismoreover a theorymachine thatwrites codes forLα and theirΣω-theories, and hence

theirΣ2-theories,Tα2, in an ittm-computable fashion for any α<Σ, uniformly inα. If forLim(λ)we

write T̂λ=dfLiminfα→λTα
2, then there is a uniform index e∈ω that shows thatWe

T̂λ=Tλ
2, i.e. Tλ

2 is
r.e. in T̂λ uniformly inλ. (SeeLemma 2.5 of [22]. Moreover for thoseλwithLλ!Σ1-Sep,Tλ2= T̂λ.)

(vii) For the lexicographically least extendible pair (ζ , Σ), whilst ω1ck
Tζ
2

< Σ, it is the case that
λ(Tζ

2)>Σ.
We make some further definitions concerning extendability.

Definition 3.5. (The Σ2-extendibility tree) We let (T , ≺) be the natural tree on such pairs under
inclusion: as follows: if (ζ ′, Σ′),(ζ̄ , Σ̄) are any two countable Σ2-extendable pairs, then set (ζ ′,
Σ′)≺(ζ̄ , Σ̄) iff ζ ′≤ ζ̄ < Σ̄<Σ′.

• If we had allowed the inequality Σ̄≤Σ′ rather than a strict inequalitiy in the last definition we
could have defined a larger relation ≺′, and a larger tree (T ′,≺′); however this would not have been
wellfounded: if LΣ!Σ2-Sep then it is easy to see that (T ′ "Σ+1,≺′) is illfounded.

Lemma 3.6. Let δ be least such that Lδ ! Σ2-Sep. ; let α be maximal so that (T ′ " α, ≺′) is
wellfounded (where Field(T ′ "α)=df{(ζ ,Σ) extendible|Σ<α}). Then δ=α.

Recursion in eJ 13

Proof: (≤): Suppose δ > α. Then (T ′ " δ , ≺) is illfounded. So there is an infinite sequence of
extendible pairs (ζn,Σn)with (ζn+1,Σn+1)⊂ (ζn,Σn). Bywellfoundedness of the ordinals there is
an infinite subsequence (ζni,Σni)withallΣni equal to a fixedΣ, whilst ζni< ζni+1. Let ζ

∗=supiζni.
Thenwe haveLζni≺Σ2Lζni+1≺Σ2Lζ∗. Then ζ

∗ is notΣ2-projectible, and hence Lζ∗!Σ2-Sep. But
ζ∗< δ. Contradiction.

(≥):Lδ !Σ2-Sep. Then Sδ2 is unbounded in δ. Let δi< δi+1 be a cofinal sequence, for i < ω.
Then check that 〈(δi, δ)|i <ω〉 is a ≺-descending sequence in T ′ " δ+1. So α≤ δ. Q.E.D.

ForE a class of ordinals, let E∗ denote the class of its limit points.

Definition 3.7. Define by recursion on 0 < α ∈ On the class Eα the class of α(-Σ2)-extendible
ordinals:

E1= {1ζ| 1ζ is extendible but not a limit of extendibles};
Eα+1= {αζ| αζ ∈ (Eα)∗∩E0};
Eλ=

⋂
α<λ E

α∩E0.

E≥α=
⋃
β≥α E

β etc.

Here we decorate the variable ζ with the prefix indicating its level of extendability. We shall let
αΣ indicate that for some αζ, (αζ ,αΣ) is an α-extendible pair. Note that for any γ the least element
of E≥α greater than γ is always an element of Eα, i.e. is α-extendible.

3.3 The Lengths of computations

We analyse the tree of subcomputations to define the notion of absolute length of the linearised
absolute computation corresponding to some Pe

I(m ,x).

Definition 3.8. The local length of a computation PeI(m , x) in a type-2 oracle I, is the least σ0
(when defined) so that the snapshot at σ0 is the repeat of some earlier snapshot ζ0< σ0, and so that
the snapshot at σ0 recurs unboundedly in On.

The local length has all the relevant information then in the calculation: everything thereafter is
mere repetition (σ0 will be undefined if PeI(m ,x) is divergent, that is, has an ill-founded computa-
tion tree). �nother description of it is as the “top level” length of the computation, which disregards
the lengths of the subcomputation calls below it. We now describe a computation recursive in the
type-2 functional eJ. In fact we give a representation in terms of ITTM’s. PeeJ(m ,x)will represent
the e’th program in the usual format with appeal to oracle calls possible. We are thus considering
computation of a partial function ΦeeJ: kω × l(ω2)→ ω2. Such a computation may conventionally
halt, or may go on for ever through the ordinals. The computation of PeeJ(m , x) proceeds in the
usual ittm-fashion, working as TM at successor ordinals and taking liminf ’s of cell values etc. at
limit ordinals. �t time α an oracle query may be initiated. We shall conventionally fix that the real
being queried is that infinite string on the even numbered cells of the scratch type. If this string is
(f , y0, y1...,) then the query is ?Does Pf

eJ(y) have eventually settled output tape?, and at stageα+1
receives a 1/0 value corresponding to “Yes/No” respectively. We thus regard eJ as the “eventual
jump” and intend the following:

eJ=
{
〈〈f , y〉, i〉| i=1 and Pf

eJ(y)
∣∣ or i=0 and and Pf

eJ(y)↑
}

14 Section 3

Here, Pf
eJ(y)↑ denotes that the computation PfeJ(y) loops but has no settled output, it is not

the notation for a computation whose tree has an ill-founded branch. (Compare with above for
the type-2 recursion in J : divergence occurs if there is an illfounded-founded branch in the tree of
evaluations.) �s is intended, Pf

eJ(y) has the opportunity to make similar oracle calls, and we shall
thus have a tree representation of calls made. We wish to represent the overall order of how such
calls are made, and indeed the ordinal times of the various parts of the computation as it proceeds.
Overall we have a ‘depth first’ mode of evaluation of a tree of subcomputations. We therefore make
the following conventions. During the calculation of PeeJ(m,x) (the topmost node ν0 at Level 0, in
our tree T=T(e,m ,x)) let us suppose the first oracle query concerning Pf0

eJ(y0) is made at stage
δ0. We write a node ν1 below ν0, and explicitly allow the computation Pf0

eJ(y0) to be performed at
this Level 1. The ‘local time’ for this computation, of course starts at t= 0 - although each stage is
also thought of as one more step in the overall computation of the computation immediately above:
namelyPeeJ(m,x). SupposePf0

eJ(y0)makes no further oracle calls and the local length of Pf0
eJ(y0)

is σ1. Control, and the correct 1/0 bit is then passed back up to Level 0, and the master computation
proceeds.

We deem that δ0+σ1 steps have occurred so far towards the final absolute length of the calcula-
tionH =H(e,m,x), of PeeJ(m,x).

However if Pf0
eJ(y0) has made an oracle query, let us suppose the first such was ?Pf1

eJ(y1)?, then
a new node ν2 is placed below ν1. If this piece of computation at ν2 takes σ2 steps without oracle
calls, to cycle before control and the result is passed back up to ν1, (i.e. the local length of Pf1

eJ(y1)

is σ2) then those σ2 steps will have to be be part of the overall length of calculation for PeeJ(m,x)

- although those σ2 steps only counted for 1 step in the local length of Pf0
eJ(y0)’s calculation. If the

Pe
eJ(m,x) converges thenweshall have its computation treeT=T(e,m,x), a finite path tree (with

potentially infinite branching) and some countable rank. T will be labelled with nodes {νι}ι<η(T)
that are visited by the computation in increasing order (with backtracking up the tree of the kind
indicated). Thus νι is first visited only after all ντ have been visited for τ < ι. The β’th oracle call
to Level k will generate a node placed to the right of those so far at Level k (and thus to the right of
those with lesser indices α< β at that level). The tree will thus have a linear leftmost branch, before
any branching occurs.

Just as the Kleene equational calculus can be seen to build up in an inductive fashion a set of
indices Ω[I] for successful computations recursive in I , (see Hinman [8], pp. 259-261) so we can
define the graph of eJ as the fixed point of a monotone operator ∆ on ω×ω<ω× (ωω)<ω× 2.

∆(X)=
{
〈〈e,m,x〉, i〉

∣∣ PeX(m,x) is an ittm-computation making, and receiving, only oracle
calls 〈〈e′,m′,x′〉, i′〉∈X with i=1/0 if the resulting output is eventually settled or not

}
.

Let∆0=∅;∆α+1=∆(∆α);∆<λ=
⋃
α<λ ∆

α &∆λ=∆(∆<λ) in the usual way. Then the
least fixed point of∆ is the function eJ.

Definition 3.9. With eJ as just defined:
Pe
eJ(m,x) is convergent if 〈e,m,x〉 ∈dom(eJ). Otherwise it is divergent.

�ssuming PeeJ(m,x) convergent, we may define by recursion a function H(fi, yi) for 1≤ ι<
η(T), giving that absolute length of the calculation at node νι taking into account the computations at
nodes below it. Suppose the oracle queries made by PeeJ(m,x) at Level 0, were Pfιj

eJ(yιj) for j <θ,

and they were made at increasing local times δj for j < θ in PeeJ(m,x), then let δī be defined by:

Recursion in eJ 15

δ0̄= δ0;

δ̄ j+1= δj+1− δj;
δ̄λ= δλ− sup {δk | k <λ}.

then the absolute length of the calculation is the wellordered ordinal sum:

H(e,m,x)=
∑

j=0
θ (δ̄j+H(fιj, yιj)) if θ> 0

= Σ(x) otherwise;

of course assuming by induction that the absolute lengths of the computations H(fιj, yιj) have been
similarly defined.

We call the master computation PeeJ(m, x) together with all the subcomputations of the tree
explicitly performed, the absolute computation (as opposed to the top level ‘local computation’ with
simple 1-step queries).

• It is possible, and easy, to design an index f ∈ω, so thatPfeJ(0) has absolute lengthH(f ,0,∅)
greater than the looping length of the top level computation. Hence for performing a computation
together with all its subcomputations as a tree, and seeing how the absolute computation relates to
extendability in the L hierarchy, this has to be done in suitably large admissible sets.

Lemma 3.10. Suppose Pe
eJ(m,x) is a convergent computation with tree T∈M, and with x∈M,

where M is a transitive admissible set. Let θ = OnM. Suppose for every node νι in T that the
computation at the nodePfι

eJ(yι) has local length ψι< θ (this includes the local length of Pe
eJ(m,x),

being at ν0, is some ψ0< θ). Then H(e,m,x)< θ.

Proof: The required ordinal sum can be performed by an induction on the rank of the nodes in the
tree, setting 0= rank(νι), for those ι with νι a terminal point of a path leading downwards from ν0.
This can be effected inside the admissible setM . Q.E.D.

Better:

Lemma 3.11. Suppose Pe
eJ(m,x) is a convergent computation with its computation treeT∈M, and

with x∈M,whereM is a transitive admissible set, closed under the function x# x̃. Let θ=OnM.
Then H(e,m,x)< θ.

Proof: This is similar to the above. By induction on rk(T)= η< θ. Note first that the closure ofM
ensures that for all y∈M , thatΣ(y)<θ. Suppose true for all such trees of convergent computations
Pf(y) of smaller rank than η, for y ∈M. Suppose PeeJ(x) makes queries at local times 〈δi| i < τ 〉
to nodes at Level 1. Note that τ < θ as T∈M . Suppose the calls are to the subtrees 〈Ti| i< τ 〉 with
(fi, yi) passed down at time δi and yī is the real passed up at local time δi+1. Let the snapshot at
Level 0 at time γ be s(γ). (Thus we assume s(δi+1) contains the information of yī.) Now notice
that δ0<Σ(x) (because the computation prior to δ0 is (equivalent to) an ordinary ittm computation,
which of course eventually converges at time Σ(x).) If we set

δ0̄= δ0; s0= x

δ̄ j+1= δj+1− δj; sj+1= s(δj)

δ̄λ= δλ− sup {δk | k <λ} ; sλ= s(sup{δk | k <λ})

16 Section 3

then δ̄j+1 < Σ(sj) (as the time to the next query, if it exists, is always less than the least sj-2-
extendible by the same reasoning). Similarly δ̄λ<Σ(sλ). By assumption onM , all such Σ(sj) are
less than θ. Consequently ifH(fi, yi)= θi< θ, the whole length of the computation is bounded:

H(e,m,x)=
∑

i=0
<τ δ̄i+ θi≤

∑
i=0
<τ Σ(si)+ θi<θ.

Q.E.D.

Definition 3.12. (i) The Level of the computation PeeJ(m, x) at time α < H(e, m, x), denoted
Λ(e, (m,x),α), is the level of the node νι at which control is based at time α, where:

(ii) the level of a node νι is the length of the path in the tree from ν0 to νι.

Thus for a convergent computation, at any time the level is a finite number (‘depth’ would have
been an equally good choice ofword). � divergent computation is one inwhich T(e,m,x) becomes
illfounded (with a rightmost path of order type then ω).

Lemma 3.13. The computationPeeJ(x) converges if and only if there exists some x-Σ2-extendible pair
(ζ ,Σ) so that Λ(e, x, ζ)= 0.

Proof: Suppose PeeJ(x)
∣∣. If PeeJ(x)↓ conventionally then the conclusion is trivial as then for all

sufficiently large x-Σ2-extendible pairs (ζ , Σ), the machine has halted at Level 0. If otherwise,
then the computation PeeJ(x) will loop forever through the ordinals. But, using the definition of the
liminf behaviour at limit stages, it is easy to argue that there is a cub subset C ⊆ ω1 of points α, β
with the snapshots of the computation at these times identical, and withΛ(e,x,α)=Λ(e,x, β)=0.
Now find a pair (ζ , Σ′) both in C, with Lζ[x] ≺Σ2 LΣ′[x]. Now minimise Σ′ to a Σ > ζ with
Lζ[x]≺Σ2LΣ[x], thus (ζ ,Σ) is as required.

Conversely: if it is the case that PeeJ(x)↓ the conclusion is trivial, so suppose otherwise and that
(ζ ,Σ) is some x-Σ2-extendible pair satisfying the right hand side. By Σ2-extendibility,Λ(e, x,Σ)
is also 0. By the liminf rule the snapshot of PeeJ(x) - which we can envisage running inside LΣ[x]
- at time ζ is Σ2

Lζx. �gain by Σ2-extendibility, it is the same at timeΣ. Notice that any cell of
the tape, Ci say, that changes its value even once in the interval (ζ ,Σ), will, byΣ2-reflection, do so
unboundedly in both ζ and Σ. Consequently we have final looping behaviour in the interval [ζ ,Σ].
Hence we have our criterion for ‘eJ-convergence’. Q.E.D.

Lemma 3.14. Suppose we have a 2-nesting ζ0< ζ1<Σ1<Σ0. Suppose at time ζ0 of the absolute
computation of PeeJ(m) either PeeJ(m) or a subcomputation thereof, is not yet convergent and is at
level k of its computation tree. Then at time ζ1 it is not yet convergent and control is at a level ≥ k+1.

Proof: Suppose k = 0. By Σ2-reflection and the liminf rule, PeeJ(m) is still running, and control
is still at depth k at Σ0. This mean the snapshots at ζ0 and Σ0 are identical and thus PeeJ(m) has its
first loop at (ζ0,Σ0), and the computation is convergent, and is then effectively over. Suppose for a
contradiction that control is at level 0 also at ζ1 (and again also at Σ1). So again PeeJ(m) has looping
snapshots at (ζ1, Σ1). However this is a Σ1-fact about PeeJ(m) that LΣ0 sees: “There exists a 2-
extendible pair

(
ζ̄ , Σ̄) with PeeJ(m) having identical snaphots at level 0 at (ζ̄ , Σ̄).” But then there

is such a pair ζ̄ < Σ̄<Σ0 andPeeJ(m)’s computation is again convergent at Σ̄ contrary to assumption.
The argument for k ≥ 1 is very similar: if liminfα→ζ0Λ(e, m, α) = Λ(e, m, ζ0) = k, then

liminfα→Σ0Λ
(
Pe
eJ(m),α

)
= k also. �gain, if it entered the interval (ζ1,Σ1) at this same level k it

would loop there, and by the same reflection argument applied repeatedly would do so not just once
but unboundedly below ζ0 at the same level k. But after each successful loop at level k, control passes
up to level k− 1. However then liminfα→ζ0Λ(e,m,α)= k− 1. Contradiction! Q.E.D.

Recursion in eJ 17

Lemma 3.15. (Boundedness Lemma for computations recursive in eJ) Let β0 be the least infinitely
nested ordinal in some ill-founded modelM withWFP(M)=Lβ0. Letα0 be least withLα0≺Σ1Lβ0.
Then any computation PeeJ(m) which is not convergent by time α0, is divergent.

Proof: Let ζ0< ···< ζn< ··· β0 ···⊂sn⊂ ···⊂ s0 witness the infinite nesting at β0 inM . By the
definition of α0 no PeeJ(m) is convergent at a time α ∈ [α0, β0) as this would be a Σ1-fact true in
Lβ0; but then byΣ1-reflection, it is true in Lα0. But if Pe

eJ(m) is not divergent before β0, it will be
by β0: the previous lemma shows that Λ(e, m, ζn)< Λ(e, m, ζn+1) holds inM . But these level
facts are absolute to V , as they are grounded just on the part of the absolute computation tree being
built inLβ0 as time goes towards β0 (and are not dependent on oracle information from eJM which
perforce will differ from the true eJ); so PeeJ(m)’s computation tree will have an illfounded branch
at time β0. Q.E.D.

The above then shows that the initial segmentLα0 of theL-hierarchy contains all the information
concerning looping or convergence of computations of the form Pe

eJ(m). � computation may then
continue through the wellfounded part of the computation tree for the times β< β0 but if so, it will
be divergent. Relativisations to real inputs x" are then straightforward by defining β0(x") as the least
such that there is an infinite nesting based at that ordinal in the L[x"] hierarchy etc.

Lemma 3.16. Let x⊆ω. Then TΣ(x)
2 (x)=dfΣ2-Th(LΣ(x)[x]) is eJ-recursive in x.

Proof: There is an index e so that running Pe(x) asks in turn if ?n∈TΣ(x)2 (x)? for each n, and will
receive a 0/1 answer from the oracle eJ. Consequently Pe may compute this theory on its output
tape, and then halt. Q.E.D.

Remark: TΣ(x)
2 (x)≡1 x̃ (by Fact 2 (iii) above).

Lemma 3.17. Let x⊆ω. Then a code for LΣ(x)[x] is eJ-recursive in x.

Proof: There is a standard ittm program that on input x̃ will halt after writing as output a code for
LΣ(x)[x]. Thus, by the last remark and lemma, a code forLΣ(x)[x] is also eJ-recursive inx. Q.E.D.

Further:
• (i) For any e,x, the first repeating snapshot s(e,x) ofPe(x) is eJ-computable in x, as is a code

forLρ0[x], Lρ1[x] andLρ1+[x]where ρ0, ρ1 are the ordinal stages of appearance of the first repeating

snapshot s(e, x), and ρ1
+ is the least ρ̄> ρ1 which is a limit of s(e, x)-admissibles.

• We may thus have subroutines that ask for, and compute such objects during the com-
putation of some Pf

eJ(y) say. Since satisfaction is also ittm-computable, we may query simply
whether ?Lρ1[x]!σ? and receive an answer.

One may show:

Theorem 3.18. Any two of the functionalsE, eJ, and iJ are mutually ittm-recursive in each other.

Proof: This uses, in the direction to obtain iJ or eJ recursive in E, an appropriate version of the
Normal Form Theorem from [19]. Q.E.D.

18 Section 3

We collect together some of the above Facts and results, in order to abbreviate our descriptions
of algorithms This will help to have a library of basic algorithms which we shall simply quote as
being ‘recursive in eJ’ without further justification.

Definition 3.19. (Basic Computations-BC) (i) Any standard ittm-computation Pe(n, x) is Basic.
(ii) If a code for an α ordinal is given, then the computations that compute: a) for any x (a code

for)Lα[x] b) the satisfaction relation forLα[x] is Basic (in (the code for) α); (and shows those objects
are eJ-recursive, if α is).

The following are all eJ-recursive, and Basic:
(iii) The function x# x̃ ;
(iv) The function that computes x#Σ(x), the larger of the next extendible pair in x;
(v) The function that computes x#Σ(x)+;
(vi) Any others that we may need to add.

Stronger ordinals than simply Σ(x)+ can be eJ-recursive:

Lemma 3.20. There is a recursive sequence of indices 〈ei
∣∣0≤ i <ω〉 so that for any α<ω1 with a

code x∈ 2N, Pei
eJ(x) computes a code for the next i-extendible iζ >α.

Proof: For i= 0 this has been done using Basic Computations. Suppose ei has been defined, and
we describe the programme Pei+1

eJ . �ssume without loss of generality that α=0, x= const0. Then
Pei
eJ(0) computes a code for the least i-extendible, ζ0 := iζ say. By a basic computation let a slice

of the scratch tape R be designated to hold Tζ0
2 ; R: =Tζ0

2 . � code for ζ0 is recursive in Tζ0
2 . Now

compute Pei
eJ(R). This yields the next i-extendible ζ1= iζ1. Now, using Basic Computations, write

successively toR the theoriesTζ0
2 ,Tζ0+1

2 , ...,Tζ0+β
2 , ... for β< ζ1. We note that at limit stagesλ≤ ζ1,

Rwill contain “liminf” theories T̂λ=Liminfα→λTα
2 (by the usual automatic ittm liminf process) but

that Tλ
2 is uniformly r.e. in T̂λ. (For the latter see Fact 2. It is easy to argue that T̂λ⊇Tλ2, and that if

supSλ1=λ then we have equality, it is the bounded case of Sλ1 in λ that requires argument. The point
of this exercise of writing theories toR is to ensure continuability of the computation, and that we do
not start to loop too early. The ‘writing out’ of all levels of the theories to R, is a precautionary step:
in general wedo not have T̂i+1ζ= liminfiζ→i+1ζ T̂iζ.) �nd again a code for λ is then recursive in Tλ

2.

Set R := T̂ζ1; by the comments just made Tζ1
2 is r.e. in R and R ∈ Lζ1+1 (this is why we are

writing out these theories, to ensure that we loop at our desired target); now compute Pei
eJ(R) and

repeat this process. �s there is no means for the machine to halt, there is a least looping pair (ζ ,Σ)
of ordinals. Let (i+1ζ ,i+1Σ) be the least i+1-extendible pair. We claim that this is the pair (ζ ,Σ).
Suppose ζ < i+1ζ . By the repetition of the contents of R in the loop points, we have T̂ζ = T̂Σ, in
the above algorithm, hence Tζ

2 = TΣ
2, and thus Lζ ≺Σ2 LΣ. But then ζ is an extendible limit of i-

extendibles, as ζ is a limit point of this looping process. This contradicts the minimality of i+1ζ .
Hence ζ equals the latter, and Σ= i+1Σ follows.

Hence we may compute T̂i+1ζ,
i+1ζ by means of an eventually stabilizing looping programme.

We letPei+1
eJ be the programme just described followed by the basic comp. that finds a code for i+1ζ

by a method uniformly r.e. in T̂i+1ζ.
Finally note that the continuing description of the programme Pei+2

eJ from Pei+1
eJ merely repeats

the above but altering only a few indices. We may thus determine a recursive function i >→ ei+1.
Q.E.D.

Entirely similar is:

Lemma 3.21. There is a (Turing) recursive sequence of indices 〈ei′| i < ω〉 so that Pei′
eJ(x) writes a

code for iΣ(x), the least Σ2-extension of L iζ[x].

Recursion in eJ 19

4 The determinacy results

We shall assume a certain amount of familiarity of working with ittm’s and shortcuts amounting
to certain subroutines, so as not to overload the reader with details.

Theorem 4.1. For any Σ3
0 game G(A; T), (with T say recursive) if player I has a winning strategy,

then there is such a strategy recursive in eJ; if player II has a winning strategy, then there is such a
strategy either recursive in eJ, or else definable over Lβ0.

Proof of 4.1
Idea: We suppose A=

⋃
n Bn with eachBn∈Π20, with an initial game tree T . For expository

purposes we shall assume that T = <ωω - relativisations will be straightforward. We shall provide
an outline of a procedure which is recursive in eJ and which will either provide a strategy for I in
G(A;T) (if such exists) or else will diverge in the attempt to find a strategy for II . We wish to apply
the main Lemma 3 of [20] for the successive Bn. The control of the procedure will be at different
Levels of the initial finite path tree of the computation. �t Level 0 will be the main process, but also
the procedure for finding witnesses and strategies involved in the arguments for the Main Lemma
applied withB =B0. We first search for a level in the L-hierarchy whose code is eJ-recursive and
for which we can define a non-losing subtree T ′ ⊆ T , for which all p ∈ T ′ have witnesses T̂p to
p’s goodness in the sense of (i) and (ii) above. In fact we shall search for pairs of levels in the L-
hierarchy, in the sequel, betweenwhichwehaveabsoluteness of our non-losing subtrees. �fter having
found such, this data will be encoded as a real (these routine details, the reader will be pleased to
learn, we omit) and a subroutine call made to a process at the lower Level 1 which will attempt to
find the right witnesses etc. to apply the Lemma for B =B1. We now search for a further level of
the L-hierarchy which again has the right witnesses to goodness to all the possible relevant subtrees
associated with positions p2 of length 2. �s we search for such an Lα, wemay find that some of our
original witnesses to goodness at Level 0 no longer work in our new Lα, or even more simply that
our T ′ from Level 0 now has nodes p which have become winning for I in thisLα. We accordingly
keep testing the data handed down to see if any of it has become ‘faulty’ in this respect. If so, then
we throw away everything we have done at Level 1, but pass control back up to Level 0 together
with the ordinal height of the current Lαwe reached. We then go back to searching for an Lα′which
is ‘good’ in all of these previous respects at Level 0 for a new T ′, which we then shall pass down to
Level 1 for another attempt.

Eventually we shall reach a stage where we have a sufficiently large model where all the data and
our witnessing subtrees work at both levels 0 and 1. �ccordingly again all this data is passed down to
the subroutine at Level 2 for assessing potential subtrees for application in the Lemma to be applied
for B =B2. Proceeding in this fashion, testing as we go the validity of our data trees en route and
passing back up to the Level of the tree that has failed if so, we find we work at increasing depth -
that is at lower Levels n with increasing n. If II has a winning strategy then there will be an infinite
path descending through all the Levels and hence the computation will diverge. One point will be
to remark that if I has a winning strategy then this process will discover it: this requires us checking
that we don’t come up against a ‘wall’ in the ordinals α so that we cannot find a code for an ordering
of a longer order type - because our computation has stabilized, or in other words is in a loop, and
we are stuck below the length of that loop.

Hence if there is no such wall, and G(A; T) has a winning strategy for II only definable over
Lβ0. then we can theoretically keep computing ordinals up to β0.

20 Section 4

Our task now is to achieve a balance between giving enough of these details that the reader is
convinced, andwithout causing the eye to glaze overwith overwhelming (and unnecessary) minutiae.

In general: given a tree S in a model M , used in a game G(Ā, S), and without a strategy for
player I inM , thenweshall denote the subtreeof non-losing positions for II inM byS ′M (or justS ′).
ForR∈P(N), τ+(R) will denote the sup of the first ω many R-admissibles beyond τ . ByΣk(R)
we shall mean, where ζk(R) is the least k-extendible in the Lα[R] hierarchy, that Σk(R) is the least
ordinal withLζk(R)[R]≺Σ2LΣk(R)[R]. If k=1wedrop it andwrite simply ζ(R) etc.We note that if
LΣ+(R)[R] has no properΣ1-substructures, then TΣ+(R)

1 [R] =dfΣ1-Th(LΣ+(R)[R]) - in the language
of set theory with a predicate symbol forR - is not inLΣ+(R)[R]; moreover (ordinarily) recursive in
TΣ+(R)
1 [R] is a wellorder of type Σ+(R). We shall let the notation αM vary over structures of the
form LαΣ+[T].

[Commentary is provided in square brackets following a % sign.]

�s a warm-up we prove the following lemma using just Basic Computations.

Lemma 4.2. There is a computation that on input codes for T , 〈Bn〉 will halt either with a winning
strategy for I, or else with an encoded T ′ - the set of non-losing positions for II in G(A;T)- member-
ship of which is absolute between some Lζ[T] and LΣ+[T].

(0): Wecommence with cutting up recursive infinite disjoint slices of the scratch tape to be reserved
as ‘registers’ for the reals coding 〈Bn〉, T ,T ′,Σ+,... , (andmore such will be needed at lower Levels,
as data is passed down in the argument that follows, but we shall not mention these, rather leave it
to the reader to do the preparatory mental scissor work).

• Set: T ′: =T .

(1) • Compute: M : =LΣ+(T ′)[T
′], and set Σ+: =Σ+(T ′).

• ?T ′M = ∅? If T ′M = ∅ then (I has a winning strategy in G(A; T))M, and this may be
found in M and printed out on the output tape; then STOP. Otherwise CONTINUE.

[% �sM is a model of KPI such a winning strategy is winning in V .]

• ? Is T ′M =T ′ ?

(2) • If NO then T ′⊃ T ′M and then some winning strategies are newly available to I in M that
are for some p∈T ′\T ′M. Set T ′ := T ′M ; GOTO (1).

[% Note that the new T ′ is a proper subtree of the old.]

• If YES, then we may STOP with a suitable T ′ encoded in its register.

[% Of course in order to obtainM,Σ+, etc. this officially requires a call to a subcomputation at
the next level down, but the above is just a schematic description of the process, and so we suppress
that level of detail. The point is that the T ′ are a decreasing sequence of sets. Hence keeping track of
these T ′ at the top level suffices for the procedure to continue: we don’t need to keep track of, e.g.,
the ordinals heights of the structuresM , and the concomitant worries about the liminf action at limit
stages. Thus the above can be all effected using Basic Computations (and variants thereon).]

The determinacy results 21

Claim 1 Either theprogram halts with a winning strategy for I inG(A;T) or, at somepoint strictly
before the next 2-extendible above Σ+(T) in the cycle, the answer to the query ? Is T ′M = T ′ ? is
affirmative.

Proof: Note first that the computation uses only BC’s and each of these only require a computation
of length the next extendible pair at most. Suppose (ζ0,Σ0) is any extendible pair that is a limit of
such, above Σ+(T ′). We imagine the computation as being performed as a Σ2-recursion in T in
LΣ0. Then suppose, for a contradiction, that by the ζ0’th turn through the cycle, we have not had
an affirmative answer. In the ν’th turn through the cycle (for ν < ζ0) let T ′ be denoted by Tν′. Then
the Tν′, as remarked, are strictly decreasing. Now by an easy reflection argument, one sees that on a
tail of ν < ζ0, the Tν′ must be the same. [If “∀ν∃ν ′> ν∃p(p∈Tν ′′ \Tν ′+1′)” holds in Lζ0 it will also
hold in LΣ0. But if p0 ∈ Tν ′′ \Tν ′+1′ the ν ′ for which that happens is Σ2-definable in LΣ0 from p0;
but that implies ν ′< ζ0. This contradicts the quoted formula.] So an affirmative answer must have
occurred. Q.E.D. Claim 1 & Lemma]

We nowassemble these building blocks to form a programme based on the argument of the proof
of Theorem 2.7 surveyed above.

Proof of Theorem 4.1:

We outline the argument at the various levels of computation in the oracle calls of a master
computation at level Λ=0. We proceed by describing the actions of the programmes being called,
which the reader may reformulate as official queries to the eJ-functional as oracle. �t the end of the
description we justify the claim that this is a bona fide eJ-recursion.

(1) Λ=0.
•Themaster or control programme computes successively lengthening structures 1M=LΣ+[T

′]
until T ′ is seen to stabilize between one such structure 1M and the next, 1M ′.

[% This we saw done effectively by a machine in the proof of Lemma 4.2, with T ′ so stabilizing
before the next 2-extendible. This process involved oracle queries to Level Λ = 1, but again we
suppress these details.]
•With T ′ stabilized, the programme asks the following - when suitably formulated - oracle query

of eJ. The query sub-computationweview as enacted at Λ=1. We suppose that it is the computation
Pe0
eJ(x)where x= 〈1, 〈Bn〉n,T0, 1M 〉 (suitably coded), whose action is described below starting at

(2).

Q1: ? Defining T1 from the current T ′ in T0, do all the trees in T1 become eventually settled ?

[% Recall that the trees ofT
1
are of the form:

a) T̂p (=df the current 1M -least witness to the goodness of p∈T ′) and
b)

(
T̂p

)′ (=df its tree of non-losing positions for II); as well as (where T ∗(∅) is set to T̂∅)
c) T ∗(∅)p2 and ((T ∗(∅))p2)′ for relevant p2.
We adopt the convention, that “Tl becomes eventually settled ” or “Tl is stable up to ordinal τ”

to be a shorthandaffirming that all the constituent trees of the familyTl are stable per their definitions
up to τ .

Note also: that since T ′ has survived intact from one 1M structure to the next 1M ′ say, we can
deploy the ‘survival argument’ of Lemma 2.12; this means that both structures see that all p ∈ T ′
are good, and this is a sufficient criterion for the definition of T1 over 1M to instantiate all the
needed trees, which then exist in 1M (indeed (T1)

1M ⊆
(
L1ζ

)1M). Hence the query is therefore
immediately meaningful.]

22 Section 4

(2) Pe0
eJ(x) answers the query by first taking fromx the current data, and on seeing the initial flag

1, computes successive models 1M , and keeps a register of the successive theories Tα2, of increasing
ordinal height in the manner of the proof of Lemma 3.20. These operations are using our BC’s.

If (Case 0): �n 1M is reached that contains a winning strategy σ for I in G(A; T) then the
programme H�LTS and passes x′= 〈σ〉 back up to the master programme at Λ=0;

If (Case 1): T ′ changes from one structure 1M to the next (“T ′ becomes unstable”) then the
programme H�LTS and with the current T0 = 〈T , T ′

1M 〉, passes the current x′ = 〈1, 〈Bn〉n,
T0, 1M 〉 back up to the master programme at Λ=0; and RETURNS TO (1);

If (Case 2): T ′ remains stable but someS ∈T1doesnot by the endof the eventual loop inPe0
eJ(x),

then the answer to Q1 is “No” (or “0”) and x′ = 〈0〉 and control are passed back up to the master
programme at Λ=0.

In Case 0, the Master programme halts with this σ as output.
[% note that asM is closed under admissibles, σ is a w.s. for I in V .]

In Case 1, the Master programme continues to calculate successive models, re-starting from the
M passed up in x′.

In Case 2, the Master programme, on receiving “No”, and using BC’s, computes the length of
the loop just passed, call it Σ, and then continues calculating successive models, with the first such
in this series containing the ordinal Σ.

[% Note that: (�) T ′ must become eventually settled under the repeated calculation of longer
M ’s by the time of the next (or indeed any) larger element 2ζ ∈E2, or αζ (α ≥ 2) for that matter.
Hence the loop (1)−→(2) (Case 1)−→(1) will be broken out of by the time the length of the models
M approaches the next 2ζ .

(B) For Case 2: we cannot immediately deploy a shrinking argument on the trees to conclude
that we have stability of all trees in T1 by the next extendible, since the actual underlying trees
T̂p, T ∗(∅)p2 may be changing. However the eventual loop Σ whose length the Master programme
computes, is that of a 2-extendible in E2; this is ensured by the writing out of the theories Tα

2 in
the manner of the argument of the proof of Lemma 3.20. If the loop (1) −→(2) (Case 2) −→(1)
repeatedly occurs from some point on, then for all sufficiently large 2Σ below the next 3ζ (and so
also byΣ2-reflection, below the 3Σ corresponding to 3ζ).There isT1 so that (for all sufficiently large
1Σ< 2Σ

)
(T1=(T1)

L1Σ) and so we shall end up in Case 3 below.]

The last possibility is:

(Case 3): �ll S ∈T1 become stable between two successive 1M -structures,M1,M2.

The sub-computation now makes in turn a further query sub-computation which in turn we view as
enacted at Λ=2. We suppose that it is the computation Pe0

eJ(x) where we collect the current values
T1= 〈〈T̂p| p∈T ′〉, 〈

(
T̂p

)′| p∈T ′〉, 〈T ∗(∅)p2, (T ∗(∅)p2)′| p2 relevant〉〉
and set:

x= 〈2, 〈Bn〉n,T0,T1,M1〉;
and where the query is:

Q2: ? Defining T2 from the current T0, T1 of x, do all the trees S in T2 become eventually
settled ?

The determinacy results 23

[% Just as following Q1, the stability of all the trees
(
T̂p

)′ and (T ∗(∅)p2)′ from one model to
the next guarantees the existence of all the trees of T2 by the survival argument.]

(3) Pe0
eJ(x) is programmed so that when it takes fromx the current data, and sees the initial flag

2, it will continue to compute successive models 2M , (which it can by Lemma 3.21) and write out
theories as before, using Basic Comps, but now act as follows.

If (Case 0): � 2M contains a winning strategy σ for I in G(A; T) then this sub-computation
H�LTS and passes x′= 〈σ〉 back up to the programme at Λ=1;

If (Case 1): T ′ becomes unstable, then the subcomputation H�LTS and passes the current x′=
〈0, T , T ′, 2M 〉 back up to the programme at Λ=1;

If (Case 2): T ′ remains stable but some S ∈ T1 does not at some stage, between two succes-
sive models 2M1, 2M2, then the subcomputation H�LTS and the current x′ = 〈2, 〈Bn〉n, (T0,
T1)

2M2, 2M2〉 with the current values of the data, and control, are passed back up to Λ=1;
If (Case 3): T ′ and all S ∈ T1 remain stable but some S ∈ T2 do not, then the answer to Q2

is “No”.

In Cases 0,1 the relevant informationwill be passed up in turn to the master computation at Λ=0
and will be acted on appropriately.

In Case 2, the sub-computation at Λ=1, restarts using BC’s, and computes structures 1M as at
(2).

In Case 3, the sub-computation at Λ=1, is programmed to use BC’s, to compute the length of
the loop just passed, say to Σ, and then continues calculating successive models in the usual manner
as at (2), with the first such in this series containing the ordinal Σ.

[% Note that: the comments on the loops at (�), (B) will hold here. �dditionally:
(C) If the loop (2)−→(3) (Case 3) −→(2) occurs from some point on, then for sufficiently large

3Σ below the next 4ζ , (and so also byΣ2-reflection, below the corresponding 4Σ) there isT2 so that
(for sufficiently large 2Σ< 3Σ (T2=T2)

L2Σ) and so we shall end up in Case 4 below.

The last possibility is:

(Case 4): T2 becomes stable between two successive 2M -structures,M1,M2.

�gain, the current sub-computation makes a query sub-computation which in turn we view as
enacted at Λ=3. We suppose that it is the computation Pe0

eJ(x) where we set

T2= 〈T̂ (p2)p, T̂ (p2)p′ | p∈ (T ∗(∅)p2)′〉,〈T ∗(p2)p4, (T ∗(p2)p4)′| p4 relevant〉 and
x= 〈3, 〈Bn〉n,T0,T1,T2,M2〉

and where the query is:

Q3: ? Defining T3 from the current T0,T1,T2 in x, does T3 become eventually settled ?

We hope the reader will have seen the pattern emerging in this description of the programme
Pe0. However the reader is entitled to ask: have we described a genuine programme for such oracle
machines? �nd secondly, what is the outcome?

24 Section 4

� typical 3-nesting diagram is at Figure 1 below. T ′ is assumed to be stable up to Σ3. Thus
beyond the branch given, there are no winning strategies for I for any Tp′ for any p∈T appearing in
the interval beyond the branch point up to Σ3 (but such may appear in LΣ3+1). Because T

′ is this
long-lived at positions labelledP , wecan haveall the relevant trees

(
T̂p

)′, T ∗(∅)p2 and ((T ∗(∅))p2)′
(i.e. T1) occurring, and themselves are stable up to the end of the extendible loop below which they
occur. �t the first 2-nesting illustrated because all the ((T ∗(∅))p2)′ at P survive to the end of the
outermost nesting, and so beyond the top of the inner nesting, we may conclude that at a position
such as Q, all the relevant trees T ∗(p2)p4, (T

∗(p2)p4)
′ ofT2 occur below the inner extendible ζ that

starts the inner nesting loop. The analysis at the 3-nesting is similar: since T ′ survives beyond Σ2,
theT1 trees can be found at locations P ; as theT1 trees,

(
T̂p

)′, T ∗(∅)p2 and ((T ∗(∅))p2)′, survive
beyondΣ1, theT2 trees can be found at locations Q. If we had assumed that T ′ survived beyondΣ1
then we could have obtained a shift, with the T1 trees obtainable at R, the T2 trees at P and then
gone on to find the T3 trees at Q.

We could easily enough have written down Qk+1 which, given T0, ... , Tk from an x would
have formulated definitions for T ∗(p2(k−1)) =df T̂ (p2(k−1))∅, relevant p2k, and then asked if
trees T̂ (p2k)p (being the current k+1M -least witness to the goodness of p ∈ T ∗(p2(k−1))p2k

)′
and

T̂ (p2k)p
′ (the latter’s subtree of non-losing positions for II), that is the trees of Tk+1, became

eventually settled. The required definitions and stability questions are then entirely uniform in k.
Hence the instructions for the programme Pe0 on input an x coding some 〈k + 1, 〈Bn〉n,Ti (i ≤
k),kM 〉 may be effectively written down in terms of k and the given tuple of data. It is enacted by
considering successive k+1M structures, and by writing down theories Tα2 as before. The number
of Cases to be considered at query Qk+1 is k + 3: Cases (0)-(k) result in a H�LT at that level
Λ= k+ 1, with an effectively determined x′ to be passed up to the level Λ= k above; whilst Case
k + 2 requires returning to Λ= k and computing lengths of loops etc. The final Case k + 3 is the
one of eventual interest and triggers the query Qk+2. Each Qk+1 is officially a query of the form
?eJ((ek+1′ , x)) = 0/1? about how the next subcomputation loops, and we calculate the relevant x
from our data. The instructions that ek+1

′ codes include of course those for calculating ek+2
′ ready

for the next query. However we may argue as below, that these calculations may be assembled into,
or considered as, one whole calculation embodied in one ϕe0

eJ.

In the following we let “∀∗α<Σϕ(α)” abbreviate “For all sufficiently large α<Σϕ(α)”. We

shall say “T ′ is stable up to kΣ” to mean “T ′
Lζ(M)= T ′

LΣ+(M)” for all sufficiently large structures

M withΣ+(M)< kΣ. This can be equivalently written as “∃U(∀∗ k−1Σ< kΣ)
[
U ′=(T ′)L k−1Σ

]
.”

For 0< l < k we shall say “Tl is stable up to kΣ” to mean “∃Tl ∈LkΣ

(
Tl=Tl

LΣ+(M)
)
” for

all sufficiently large structuresM withΣ+(M)< kΣ, which, as we have indicated above, of course
is taken, by a convention, to be a shorthand affirming that all the constituent trees of Tl are stable
per their definitions up to kΣ.

In the above definition of the algorithm we are employing the following principle:

Suppose T ′ is stable up to some kΣ, then
for all sufficiently large k−1Σ< kΣ (T1 is stable up to k−1Σ &
for all sufficiently large k−2Σ< k−1Σ (T2 is stable up to k−2Σ & ...
···
for all sufficiently large 2Σ< 3Σ ,Tk−2 is stable up to 2Σ &
for all sufficiently large 1Σ< 2Σ ,Tk−1 exists)···)”.

The determinacy results 25

1

T, T 0
. . .

Q

R ⌃3⌃2P Q ⌃1

PPPPP

0

P

Figure 1 In this diagram T 0
is stable up to (but not beyond) ⌃3.

Less perspicuously but more formally we state this as:

Lemma 4.3. Suppose T ′ is stable up to some kΣ, then
(∀∗ k−1Σ< kΣ)(∃T1)(∀∗ k−2Σ< k−1Σ)[
T1=(T1)

L k−2Σ∧ (∃T2)(∀∗ k−3Σ< k−2Σ)
[
T2=(T2)

L k−3Σ∧ (∃T3)(...) ···

...(∃Tk−2)(∀∗ 1Σ< 2Σ)
(
Tk−2=(Tk−2)L 1Σ∧ (∃Tk−1)

(
Tk−1=(Tk−1)L 1Σ

)]]
···

]]
.

Proof: Formally by induction on k, but the readermay convince themselves of a representative case,
say with k=3. Q.E.D.

Note 4.4. The Lemma is really the formal counterpart of the description that precedes it. Note that
the hypothesis here is fulfilled whenever kΣ approaches some k+1Σ: for sufficiently large kΣ below
k+1Σ, T ′ will be stable even beyond kΣ.

�lso, by the usual Σ2-reflection arguments, the above principles are equivalent to those obtained
by replacing any string “< lΣ” by “< lζ”.

�s the program runs there will eventually be subcomputation calls to arbitrary levels, as it uses
various trees for as long as they survive fulfilling their role. But only after α0 stages will we be certain
thatT ′ really does stabilize to itsfinal value. Thereafter we shall haveΛ(e0,T ,α)>0. �t a later point
we shall have all the correct trees to apply the Main Lemma once, and these will survive. �fter such
a point Λ(e0, T ,α) is greater than 1. But only at β0 do we first have Liminfα→β0Λ(e0, T ,α)=ω
and so divergence.

It may already be apparent that the claim that there is an index number e0 for the above general-
ized ittm-recursion can be established readily from the eJ-Recursion Theorem. One may argue as
follows, somewhat schematically.

Let F (0, e) code the actions of the main programme at (1) above, searching through increasing
M -structures for a stable T ′. (The e is just a dummy parameter at this stage.) With T ′ stabilized, the
programme asks the oracle query ?eJ(i, x)=1/0? about x= 〈1, 〈Bn〉n, T ,T ′,M 〉with i=F (1, e)
to be defined next.

Let F (k+1, e) be the function that returns the index code of the following blocks of computa-
tions:

(1) The actions to do to fulfill the query Qk+1, as an explicit computation. �s indicated above
these can be listed effectively and the code of their formal instructions can be given as a function of
k - q(k + 1) say. This includes the actions to compute the increasing structures and what to do if
stability of any tree passed down subsequently fails. �lso included are, if a stability point is reached
that requires a new query to a lower subcomputation, the actions to collect together the current trees,
to form part of a new coding real x.

(2) “(x)0 := (x)0+1” [% Increase the initial index of x by 1 - here to k+2.]
(3) The code of the query instruction: “?eJ

(
ϕe
eJ((x)0), x

)
=0/1?”.

Let the two instructions (2) and (3) have code together t(e)∈N.
(4) The code of the post-query actions, on receipt of an answer (in the form of what to do if

information is received of a certain kind of tree from a lower subcomputation becoming unstable
etc). �gain these are effective in k. Let these be p(k+1) say.

We thus may loosely represent the total function F (k+1, e) as:
F (k+1, e)= q(k+1)$t(e)$p(k+1).

By the eJ-Recursion Theorem there is an index e0, so that
ϕe0
eJ(k+1)=F (k+1, e0)= q(k+1)$t(e0)$p(k+1).

Then our overall computation is: {e0}eJ(〈Bn|n<ω〉, T).

26 Section 4

�s for the outcome we have as a final claim:

Claim: For A=
⋃
n Bn∈Σ30 and T a recursive subtree of <ωω as above, the programme Pe0

eJ(〈Bn|
n < ω〉, T) will either halt with a code for a strategy for I, if such exists, or else will diverge. In the
latter case if it diverges after β steps, then a strategy for II is definable over Lβ.

Proof: We first observe that themaster programme (at Λ=0) cannot enter an eventual loop: suppose
(ζ , Σ) was its first looping pair of ordinals. Then the level of computation at times ζ and Σ is the
same: Λ(ζ) = Λ(Σ) = 0. But the argument of Claim 1 of Lemma 4.2, shows that we must have
stability of T ′ by any extendible ordinal ζ , and hence, by the specification of e0, must be at a level
>0 at time ζ:Λ(ζ)> 0. The same argument shows that even with Λ(ζ)= liminfα→ζΛ(α)=0, we
should have T ′ diminishing unboundedly below the 2-extendible ζ - which cannot happen.

So the computation either halts or diverges. However divergence can only happen if there is an
infinitely descending chain of query calls Qk. �nd such has been designed only to happen when we
have complete stability of all our definable trees necessary for the proof of the existence of a definable
winning strategy for II overLβ - as our proceduresmimic. Lastly the main programme can only halt
if it produces a winning strategy for I. Q.E.D. Theorem 4.1

Hence by the latter case of the last Claim, strategies for II in such games are in general not even
semi-recursive in eJ.

Corollary 4.5. There is a procedure Pe
eJ that only diverges at β0.

Proof: LetA=
⋃
n<ω Bn∈Σ30 be such thatG(A;T) is a win for II , but there is no winning strategy

in Lα0. Then the computation Pe0
eJ(〈Bn| n < ω〉, T) above can only diverge at β0 since a winning

strategy for II is definable over Lβ0 but no earlier. Q.E.D.

•�n example of such a game, of the typeabove, iswhere II must construct anω-model of “KP+
Det(Σ30)”, and I as usual must find a descending chain of ordinals in II ’s model. Then II has an
obvious winning strategy, but there cannot be one where II produces a model with wellfounded part
an ordinal smaller than β0. We saw in the proof of the theorem above that the computation in a game
of this type, continually constructs codes for the levels of the L-hierarchy unboundedly in β0, - and
hence is ultimately divergent. We thus have:

Corollary 4.6. There is a program code f so that (i) Pf
eJ(x) computes codes for levels for the L[x]-

hierarchy; (ii) Pf
eJ(0) is divergent , but is not divergent at any stage before β0, whilst computing codes

for levels Lα for α unbounded in β0. Q.E.D.

Corollary 4.7. η0= τ0 - that is Theorem 2.11 holds.

Proof: We have that α0= η0. Bymodifying the program of the last Corollary we can find programs
Pf
eJ(0) which halt cofinally in the admissible set Lα0, and hence with ranks of such computations

unbounded in α0. Hence τ0≥α0. By the Boundedness Lemma 3.15 τ0≤α0. Q.E.D.

Lemma 4.8. Let a⊆ω be in Lα0. Then a is eJ-recursive. Q.E.D.

The following answers a question of Lubarsky:

Corollary 4.9. The reals appearing on the tapes of freezing-ittm-computations of [12] are precisely
those of Lβ0; similarly the supremum of the ranks of the wellfounded parts of divergent computation
trees is β0.

The determinacy results 27

Proof:Freezing-ittmscomputations are, in the terms here, divergent iJ-computations. �s eJ is recur-
sive in iJ we shall have that the iJ-recursive reals and the eJ-recursive reals coincide. These will be
the reals of Lα0. By the Boundedness Lemma all such computations are divergent by β0, whilst at
the same time codes for levels of L forα< β0 appear on some PeeJ’s tape. Hence the reals appearing
on the divergent iJ-computations are those of Lβ0. Q.E.D.

Corollary 4.10. The complete semi-decidable-in-eJ set of integers
K= {(e,m)∈ω×ω| eJ(e,m)= 1}

is recursively isomorphic to a complete !Σ30 set.

Proof: If PeeJ(m) is convergent it must be so before β0: its convergence is a Σ1-fact true in Lβ0. By
Σ1-reflection, it is true inLα0. Hence theΣ1-fact of its convergence ismentioned in theΣ1-Th(Lα0).
That isK ≤1Σ1-Th(Lα0)≡1S where S is a complete !Σ30 set. The latter holds by Theorem 2.17.
For the converse, we have that n∈S if there is a certain strategy in Lα0 for a certain game which is
winning for I . Such can be found by inspecting the various Lα forα<α0. �nd Corollary 4.6 enables
us to run a computation which is convergent if such can be found. Hence S ≤1K. Q.E.D.

Proof of Theorem 2.9
The last Corollary proves the (a) (i) iff (iii) direction of the Theorem, andwehave already established
(a)(ii) iff (iii) (in the proof of Theorem 2.17). This leaves (b). But this follows from the usual char-
acterisation of the semi-recursive and co-semi-recursive sets as being recursive, the admissibility of
Lα0, and that α0= η0.

Q.E.D. Theorem 2.9
We may also recast the above arguments as showing:

Corollary 4.11. Both the theory Tα0
1 andK are !Σ30-inductive sets of integers.

Remark 4.12. The same considerations show that in fact the whole of dom(eJ)∩ω×ω<ω is!Σ30-
inductive.

The proofs of Theorems 2.7, 2.9, and 2.11 are now complete (and they cover the statements of
the Theorems 1.5-1.8 in Section 1 of the Introduction).

Bibliography

[1] K.J. Barwise. Admissible Sets and Structures. Perspectives in Mathematical Logic. Springer Verlag, 1975.

[2] �. Blass. Complexity of winning strategies. Discrete Mathematics, 3:295–300, 1972.

[3] M. Davis. Infinite games of perfect information. Annals of Mathematical Studies, 52:85–101, 1964.

[4] K. Devlin. Constructibility. Perspectives in Mathematical Logic. Springer Verlag, Berlin, Heidelberg, 1984.

[5] J.D. Hamkins and �. Lewis. Infinite time Turing machines. Journal of Symbolic Logic, 65(2):567–604, 2000.

[6] J.D. Hamkins andD. Seabold. Infinite timeTuringmachines with only one tape.Mathematical LogicQuarterly, 47(2):271–287, 2001.

[7] L. Harrington and �. Kechris. On characterizing Spector classes. Journal of Symbolic Logic, 40(1):19–24, March 1975.

[8] P. Hinman. Recursion-Theoretic Hierarchies. Ω Series in Mathematical Logic. Springer, Berlin, 1978.

[9] S. C. Kleene. Recursive quantifiers and functionals of finite type I. Transactions of theAmerican Mathematical Society, 91:1–52, 1959.

[10] S. C. Kleene. Turing-machine computable functionals of finite type I. In Proceedings 1960 Conference on Logic, Methodology and
Philosopy of Science, pages 38–45. Stanford University Press, 1962.

[11] S. C. Kleene. Turing-machine computable functionals of finite type II. Proceedings of the London Mathematical Society, 12:245–
258, 1962.

[12] R. Lubarsky. Well founded iterations of infinite time turing machines. In R-D Schindler, editor,Ways of Proof Theory. Ontos, 2010.

[13] D.�. Martin. Π2
1-monotone inductive definitions. In D.�. Martin �.S. Kechris and Y.N. Moschovakis, editors, Cabal Seminar 77-

79, volume 839 of Lecture Notes in Mathematics, pages 215–234. Springer, Berlin, New York, 1980.

28 Section

[14] Y.N. Moschovakis. The game quantifier. Proceedings of the American Mathematical Society, 31:245–250, 1971.

[15] Y.N. Moschovakis. Descriptive Set theory. Studies in Logic series. North-Holland, �msterdam, 1980.

[16] S. Simpson. Subsystems of second order arithmetic. Perspectives in Mathematical Logic. Springer, January 1999.

[17] L. Svenonius. On the denumerablemodels of theories with extra predicates. In TheTheoryofModels, pages 376–389. North-Holland
Publishing Co., �msterdam, 1965.

[18] P.D. Welch. Post’s and other problems in higher type supertasks. In B. Löwe, B. Piwinger, and T. Räsch, editors, Classical and
New Paradigms of Computation and their Complexity hierarchies, Papers of the Conference Foundations of the Formal Sciences III ,
volume 23 of Trends in logic, pages 223–237. Kluwer, Oct 2004.

[19] P.D. Welch. Characteristics of discrete transfinite Turing machine models: halting times, stabilization times, and normal form the-
orems. Theoretical Computer Science, 410:426–442, January 2009.

[20] P.D. Welch. Weak systems of analysis, determinacy and arithmetical quasi-inductive definitions. Journal of Symbolic Logic, Sep-
tember 2011.

[21] P.D. Welch. Gδσ-games. Preprint Series NI-12050, Isaac Newton Institute, Cambridge, July 2012.

[22] P.D. Welch. Some observations on truth hierarchies. Review of Symbolic Logic, 7(1):1–30, March 2014.

Bibliography 29

	1 Introduction
	2
	2.1 The location of strategies for Î£^0_3-games

	3 Recursion in eJ
	3.1 Kleene Recursion in higher types
	3.2 Infinite Time Turing Machine computation
	3.2.1 More on Extendability

	3.3 The Lengths of computations

	4 The determinacy results
	Bibliography

