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The inner model hypothesis (IMH) and the strong inner model hypothesis
(SIMH) were introduced in [5]. In this article we establish some upper and
lower bounds for their consistency strength.

We repeat the statement of the IMH. A sentence in the language of set
theory is internally consistent iff it holds in some (not necessarily proper)
inner model. The meaning of internal consistency depends on what inner
models exist: If we enlarge the universe, it is possible that more statements
become internally consistent. The inner model hypothesis asserts that the
universe has been maximised with respect to internal consistency:

The Inner model hypothesis (IMH): If a statement ϕ without parameters
holds in an inner model of some outer model of V (i.e., in some model
compatible with V ), then it already holds in some inner model of V .

Equivalently: If ϕ is internally consistent in some outer model of V then it
is already internally consistent in V . This is formalised as follows. Regard
V as a model of Gödel-Bernays class theory, endowed with countably many
sets and classes. Suppose that V ∗ is another such model, with the same
ordinals as V . Then V ∗ is an outer model of V (V is an inner model of V ∗)
iff the sets of V ∗ include the sets of V and the classes of V ∗ include the
classes of V . V ∗ is compatible with V iff V and V ∗ have a common outer
model.

∗The first author was supported by FWF Grants P16334-NO5 and P16790-NO4.
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The IMH implies absoluteness for sentences which are Σ2 over H(ω1)
(equivalently, for sentences which are Σ1

3 in the sense of descriptive set the-
ory). This is because by Lévy-Shoenfield absoluteness, such a sentence is
true iff it is true in some inner model.

Theorem 1 ([5]) The inner model hypothesis implies that for some real R,
ZFC fails in Lα[R] for all ordinals α. In particular, there are no inacces-
sible cardinals, the reals are not closed under # and the singular cardinal
hypothesis holds.

Theorem 2 The IMH implies that there is an inner model with measurable
cardinals of arbitrarily large Mitchell order.

Proof. Assume not and let K denote Mitchell’s core model for sequences
of measures (see [6]). Let δ be the maximum of ω1 and the supremum of
the Mitchell orders of measurable cardinals in K. By Mitchell’s Covering
Theorem for K we have:

(∗) cof (α) ≥ δ, α regular in K → cof (α) = card (α).

Now normally iterate K by applying each measure of order 0 exactly once,
i.e., if Ki is the i-th iterate of K, Ki+1 is formed by applying the measure
of order 0 in Ki at κi, the i-th measurable cardinal of K. Let σ : K → K ′

be the resulting iteration map. Then:

Lemma 3 (∗) holds with K replaced by K ′.

Proof. It suffices to show by induction on i that (∗)i holds, where (∗)i is (∗)
with K replaced by Ki.

Base case: (∗)0 is just (∗).

Successor case: Suppose that (∗)i holds and that α is Ki+1-regular with
cofinality at least δ. Let πi,i+1 : Ki → Ki+1 be the ultrapower map resulting
from applying the measure of order 0 at κi.

We may assume that α is greater than κi, else α is Ki-regular and we are
done by induction. If α is at most πi,i+1(κi) then α has the same cardinality
as κ+

i of Ki, and, as Ki+1 and Ki contain the same κi-sequences of ordinals,
the same cofinality as κ+

i of Ki. So we are again done by induction.
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Now suppose that α is greater than πi,i+1(κi). Represent α in Ki+1, the
ultrapower of Ki, by [f ] where f : κi → Ord. We may assume that f is
either constant or increasing, and also that f(γ) is Ki-regular and greater
than κi for all γ < κi. If f is constant then α = πi,i+1(ᾱ) for some ᾱ which
is regular in Ki and greater than κi; but then ᾱ is a fixed point of πi,i+1 so
α = ᾱ and we are done by induction. So assume that f is increasing.

Now the Ki-cofinality of α is at least the supremum µ of the f(γ)’s, as
we can everywhere-dominate any set in Ki of f(γ)-many functions from κi

into
∏

γ′>γ f(γ′) by a single such function in Ki. As µ is Ki-singular, the
Ki-cofinality of α is in fact greater than µ. And the Ki-cardinality of α is
µκ = µ+ of Ki. It follows that α and µ+ of Ki have the same cofinality and
the same cardinality, so we are done by induction.

Limit case: Suppose that i is a limit and α is Ki-regular with cofinality at
least δ. For large enough j < i we can write α as πj,i(αj), where πj,i is the
natural embedding of Kj into Ki. Let κ∗ denote the supremum of the κj ,
j < i.

We may assume that each αj is at least κ∗, as if αj is less than κk,
j < k < i, it follows from the fact that κk is a fixed point of πj,k that α
equals πj,k(αj), which is regular in Kk, and so we are done by induction.
But if αj is at least κ∗ then αj is a fixed point of πj,i and therefore α = αj ;
so we are again done by induction. �

Lemma 4 If λ is a cardinal then cof K′
(λ) is not measurable in K ′.

Proof. If κ = cof K(λ) is not measurable in K then λ is a fixed point of
the map σ and therefore the result follows by elementarity. Otherwise, let
σ0 : K → K ′

0 be the iteration map that results from applying only the order
0 measures at cardinals less than κ. Then λ = σ0(λ) has cofinality σ0(κ) = κ
in K ′

0. As the ultrapower K ′
1 of K ′

0 by the order 0 measure at κ contains all
κ sequences of ordinals that belong to K ′

0, it follows that λ has cofinality κ
in K ′

1 and therefore also in K ′. As κ is not measurable in K ′ we are done.
�

Now after [2] define a function d : Ord → ω as follows. Fix a lightfaceK ′-
definable global �-sequence 〈Cα | α singular in K ′〉: Cα is closed unbounded
in α with ordertype less than α for each K ′-singular α and Cᾱ = Cα ∩ ᾱ
whenever ᾱ is a limit point of Cα. If α is not K ′-singular then d(α) = 0.
Otherwise define:
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α0 = α
α1 = ot (Cα0)
α2 = ot (Cα1)
· · ·
αn+1 = ot (Cαn),

as long as αn is K ′-singular, and let d(α) be the least n such that αn is not
K ′-singular. αd(α) is the K ′-cofinality of α.

Lemma 5 (Main Lemma, after [2]) For each n there is a ZFC-preserving
class forcing Pn that adds a CUB class Cn of singular cardinals such that
for all α in Cn of cofinality at least δ, d(α) is at least n.

Proof. We use the following.

Lemma 6 Suppose k < m, α ≥ δ, α is regular and C is a closed set of
ordertype α+m+1, consisting of ordinals ≥ α+m (where α+0 = α, α+(p+1) =
(α+p)+). Then (C ∩ {β | d(β) ≥ k + 1}) ∪ Cof (< δ) has a closed subset of
ordertype α+(m−k−1) + 1.

Proof. The proof is by induction on k, using Lemma 3.

Suppose k = 0. Let β be the α+(m−1)-st element of C. Then β is K ′-singular
since its cofinality (= α+(m−1)) is at least δ and less than its cardinality (≥
α+m). Similarly, each element of Lim (C∩β) of cofinality ≥ δ is K ′-singular
and therefore Lim (C∩β) is a closed subset of (C∩{β | d(β) ≥ 1})∪Cof (< δ)
of ordertype α+(m−1) + 1, as desired.

Suppose that the Lemma holds for k and let m+1 > k+1, C a closed set
of ordertype α+(m+1)+1 consisting of ordinals ≥ α+(m+1). Then µ = maxC
is K ′-singular, as its cofinality is at least δ and less than its cardinality.
Let β be the (α+m + α+m)-th element of C ∩ Cµ. β is K ′-singular as its
cofinality is at least δ and less than its cardinality. Let β̄ be the α+m-th
element of C. Then C̄ = {ot Cγ | γ ∈ C ∩ Lim Cβ ∩ [β̄, β]} is a closed set
of ordertype α+m + 1 consisting of ordinals ≥ α+m. By induction there is
a closed D̄ contained in (C̄ ∩ {γ | d(γ) ≥ k + 1}) ∪ Cof (< δ) of ordertype
α+(m−k−1) + 1. But then D = {γ ∈ C ∩ Lim Cβ | ot Cγ ∈ D̄} is a closed
subset of (C ∩ {γ | d(γ) ≥ k + 2}) ∪ Cof (< δ) of ordertype α+(m−k−1) + 1.
As m− k − 1 = (m+ 1)− (k + 1)− 1, we are done. � (Lemma 6)

Lemma 5 now follows: Let Pn consist of closed sets c of singular cardinals
such that
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α ∈ c, cof (α) ≥ δ → d(α) ≥ n,

ordered by end-extension. Lemma 6 implies that this forcing is κ-distributive
for every cardinal κ. �

Now for each n there is an outer model of V containing a real Rn such
that in L[Rn]:

(∗)Rn Rn codes a CUB class CRn of singular cardinals and an iterable,
universal extender model K ′

Rn
such that

a. dRn(α) ≥ n for α in CRn of sufficiently large cofinality, where dRn(α) is
defined in K ′

Rn
just like d(α) is defined in K ′.

b. α ∈ CRn → cof (α) in K ′
Rn

is not measurable in K ′
Rn

.

This is because we can use Lemma 5 to force a CUB class Cn of singular
cardinals such that d(α) ≥ n for all α in Cn of sufficiently large cofinality,
and then L-code the model 〈V,Cn,K

′〉 by a real Rn. The extender model K ′

is universal in the extension as successors of strong limit cardinals are not
collapsed and therefore weak covering holds relative to K ′ in the extension
at all such cardinals of sufficiently large cofinality.

Applying the IMH, there are such reals Rn in V . As each Rn codes a
CUB class of singular cardinals, the K of L[Rn] is universal and therefore
so is the KRn arising from (∗)Rn . Now co-iterate the KRn ’s to a single K∗,
resulting in embeddings πn : KRn → K∗. As singular cardinals in CRn of
sufficiently large cofinality are fixed by πn (as their KRn-cofinality is not
measurable in KRn), it follows that there is a single γ belonging to all of
the CRn ’s which is fixed by all of the πn’s. But then d∗(γ) ≥ n for each n,
where d∗(γ) is defined relative to K∗ just like d(γ) was defined relative to
K ′. This is a contradiction. �

For each real x let Mx, if it exists, be the minimum transitive set model
of ZFC containing x. Thus Mx has the form Lµ[x] for some countable
ordinal µ = µ(x). If d is a Turing degree we write Md, µ(d) for Mx, µ(x) (x
in d).

Theorem 7 Assume the existence of a Woodin cardinal with an inaccessible
above. Then the IMH is consistent. Moreover for all d in a cone of Turing
degrees, Md exists and satisfies the IMH.
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Proof. First we prove the consistency of the IMH by showing that Md

satisfies the IMH for some Turing degree d in a forcing extension of V .
Let κ be Woodin with an inaccessible above in V . Let G be generic over

V for the Lévy collapse of κ to ω. Work now in V [G]. Σ1
2 determinacy holds

and, as there is still an inaccessible, Md exists for each Turing degree d. It
follows that the theory of (Md,∈) is constant on a cone of Turing degrees
d. Let d be a Turing degree such that the theory of (Me,∈) is constant for
Turing degrees e at least that of d.

We claim that Md, endowed with its definable classes, witnesses the
IMH. Indeed, suppose that ϕ is a sentence true in some model M of height
µ(d) compatible with Md. By Jensen coding there is a real y such that d is
recursive in y, µ(y) = µ(d) and M is a definable inner model of My. Let e be
the Turing degree of y. Then for some formula ψ, Me satisfies the sentence

The inner model defined by ψ (with some choice of parameters) satisfies ϕ.

It follows that there is an inner model of Md which satisfies ϕ, as desired.
This proves the consistency of the IMH.

To say that a countable M , together with its countable collection of
definable classes, satisfies IMH is simply a Π1

1-statement with a real coding
M as parameter, since one only needs to quantify over outer models of M
of height M ∩ Ord. Thus the assertion that there exists a Turing degree d
such that Md (with its definable classes) satisfies IMH is a Σ1

2-statement and
hence absolute. So the existence of a Woodin cardinal with an inaccessible
above implies that such an Md exists in V (and indeed in L).

To prove the stronger statement that in V , Md satisfies the IMH for a
cone of d’s, one argues as follows. Say that a set of reals X is absolutely
∆1

2 iff there is a pair of Σ1
2 formulas ϕ(x), ψ(x) such that X consists of all

solutions to ϕ(x) in V and ϕ is equivalent to the negation of ψ both in V
and all of its forcing extensions.

Claim. Assume that there is a Woodin cardinal. Then determinacy holds
for absolutely ∆1

2 sets.

Proof of Claim. As before let G be generic for the Lévy collapse of the
Woodin cardinal to ω. Then Σ1

2 determinacy holds in V [G]. By the Moschovakis
Third Periodicity theorem, ([7] Theorem 6E.1), if X is Σ1

2 in V [G] there is
a definable winning strategy in V [G] for one of the players in the game GX .
By the homogeneity of the Lévy collapse, it follows that absolutely ∆1

2 sets
are determined in V . This proves the Claim.
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As there is an inaccessible in V , Md exists for each Turing degree d in
V . Now it follows from the Claim that in V , for any sentence ϕ, either for
a cone of Turing degrees d,

Md |= ϕ

or for a cone of Turing degrees d,

Md |= ¬ϕ,

since the relevant games are absolutely ∆1
2. Therefore in V the theory of

(Md,∈) is constant for a cone of Turing degrees d. We can then apply the
argument used earlier in V [G] to conclude that also in V , Md satisfies IMH
for d in a cone of Turing degrees. �

Parameters and the strong inner model hypothesis

How can we introduce parameters into the inner model hypothesis? The
following result shows that inconsistencies arise without strong restrictions
on the type of parameters allowed.

Proposition 8 ([5]) The inner model hypothesis with arbitrary ordinal pa-
rameters or with arbitrary real parameters is inconsistent.

So instead we consider absolute parameters, as in [4]. For any set x,
the hereditary cardinality of x, denoted hcard (x), is the cardinality of the
transitive closure of x. If V ∗ is an outer model of V , then a parameter p is
absolute between V and V ∗ iff V and V ∗ have the same cardinals ≤ hcard (p)
and some parameter-free formula has p as its unique solution in both V and
V ∗.

Inner model hypothesis with locally absolute parameters Suppose that p is
absolute between V and V ∗ and ϕ is a first-order sentence with parameter
p which holds in an inner model of V ∗. Then ϕ holds in an inner model of
V .

For a singular cardinal κ, a �κ sequence is a sequence of the form 〈Cα |
α < κ+, α limit〉 such that each Cα has ordertype less than κ and for ᾱ
in Lim Cα, Cᾱ = Cα ∩ ᾱ. Definable �κ is the assertion that there exists
a �κ sequence which is definable over H(κ+) with parameter κ. We will
be interested in the special case κ = iω, in which case the parameter κ is
superfluous.
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Theorem 9 The inner model hypothesis with locally absolute parameters is
inconsistent.

Proof. We first show that definable �κ fails, where κ is iω. Let 〈Cα | α <
κ+, α limit〉 be a �κ sequence definable over H(κ+) without parameters.
For each n let Sn consist of all limit α < κ+ such that the ordertype of Cα

is greater than in.

Claim. Let Pn be the forcing that adds a CUB subset of Sn using closed
bounded subsets of Sn as conditions, ordered by end extension. Then Pn is
κ+ distributive, i.e., does not add κ-sequences.

Proof of Claim. It is enough to show that Pn is i+
m+1 distributive for each

m < ω. Assume that m is greater than n. Suppose that p is a condition and
〈Di | i < i+

m+1〉 are dense. Let 〈Mi | i < κ+〉 be a chain of size κ elementary
submodels of some large H(θ) such that M0 contains κ ∪ {〈Cα | α < κ+, α
limit〉, p} and for each i < κ+, 〈Mj | j ≤ i〉 is an element of Mi+1. Let κi be
Mi ∩ κ+ and C the set of such κi’s. Then a final segment D of C ∩ Lim Cγ

is contained in Sn, where γ = κi+
m+1

. Write D as 〈καi | i < ordertype D〉.
We can then choose a descending sequence 〈pi | i < i+

m+1〉 of conditions
below p such that pi+1 meets Di and belongs to Mκαi+1 for each i. Then
the greatest lower bound of this sequence meets each Di. This proves the
Claim.

It follows that for each n the forcing Pn does not alter H(κ+). By
the inner model hypothesis with locally absolute parameters Sn has a CUB
subset Cn in V for each n. But this is a contradiction, as the intersection of
the Cn’s is empty.

Now we refine the above argument. As not every real has a #, there exist
reals R such that κ+ equals κ+ of L[R], where κ is iω. Let X be the set of
such reals and for each R in X let 〈CR

α | α < κ+, α limit〉 be the L[R]-least
�κ sequence. Now for limit α < κ+, define C∗

α to be the intersection of the
CR

α , R ∈ X. Then 〈C∗
α | α < κ+, α limit〉 is definable in H(κ+) without

parameters and has the properties of a �κ sequence with the sole exception
that C∗

α is only guaranteed to be unbounded in α if α has cofinality greater
than 2ℵ0 . Now repeat the above argument using 〈C∗

α | α < κ+, α limit〉 in
place of 〈Cα | α < κ+, α limit〉, to obtain a contradiction. �

To obtain the strong inner model hypothesis, we require more abso-
luteness. We say that the parameter p is (globally) absolute iff there is a
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parameter-free formula which has p as its unique solution in all outer models
of V which have the same cardinals ≤ hcard (p) as V .

Strong inner model hypothesis (SIMH) Suppose that p is absolute, V ∗ is
an outer model of V with the same cardinals ≤ hcard (p) as V and ϕ is a
first-order sentence with parameter p which holds in an inner model of V ∗.
Then ϕ holds in an inner model of V .

Remark. If above we assume that the sentence ϕ holds not just in an inner
model of V ∗ but in V ∗ itself, then in the conclusion we may demand that
in an inner model of V witnessing ϕ, p is definable via the same formula ψ
witnessing the absoluteness of p. (This inner model may, however, fail to
have the same cardinals ≤ hcard (p) as V .) This is because we can replace
the sentence ϕ by: “ϕ holds and p is defined by ψ”.

Theorem 10 ([5]) Assume the SIMH. Then CH is false. In fact, 2ℵ0 cannot
be absolute and therefore cannot be ℵα for any ordinal α which is countable
in L.

Theorem 11 The SIMH implies the existence of an inner model with a
strong cardinal.

Proof. Assume not, and let K be the core model below a strong cardinal
(see [8]). As in the proof of Theorem 2, we let K ′ denote the iterate of K
obtained by applying each order 0 measure exactly once. Then by Lemma 4,
if λ is a cardinal then the K ′-cofinality of λ is not measurable in K ′. And by
weak covering relative to K, if λ is a singular cardinal, then λ+ is computed
correctly in K (i.e., (λ+)K = λ+).

Lemma 12 For any singular cardinal λ, λ+ is computed correctly in K ′.

Proof of Lemma 12. This is clear if the K-cofinality of λ is not measurable
in K, for then λ is a fixed point of the iteration from K to K ′ and (λ+)K′

=
(λ+)K = λ+. Otherwise let 〈Ki | i ∈ Ord〉 result from the iteration of K
to K ′ and choose i so that the ultrapower map σi : Ki → Ki+1 applies
the order 0 measure at κ = cof Ki(λ). If 〈λj | j < κ〉 is a continuous and
increasing sequence in Ki with supremeum λ, then λ+ of Ki+1 is represented
in the ultrapower of Ki by 〈λ+

j | j < κ〉. In Ki, the product of the λ+
j ’s

contains a subset of size (λ+)Ki , consisting of functions well-ordered by
dominance on a final segment of κ. It follows that (λ+)Ki+1 has cardinality
λ+ and therefore Ki+1 computes λ+ correctly. As λ+ is a fixed point of
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the remaining iteration from Ki+1 to K ′, it follows that K ′ computes λ+

correctly. This proves Lemma 12.

We say that λ is a cut point of K ′ iff no extender on the K ′ sequence
with critical point less than λ has length at least λ (i.e., λ is not overlapped
in K ′). As we have assumed that there is no strong cardinal in K ′, there is
a closed unbounded class of cut points of K ′.

Let 〈λn | n ∈ ω〉 be the first ω-many limit cardinals of V which are cut
points of K ′, and let λω be their supremum. Then each λn, and of course
λω, has cofinality ω.

Lemma 13 Each λn, and λω as well, is an absolute parameter.

Proof of Lemma 13. We first show that λ0 is absolute. Let V ∗ be an outer
model of V with the same cardinals as V up to λ0. Note that for some real
R in V , no Lα[R] satisfies ZFC and therefore R# does not exist in V ∗. It
follows that for any singular cardinal λ of V ∗, λ is singular in V and λ+ is
computed correctly in V . In particular, V ∗ and V have the same cardinals,
and the same singular cardinals, up to λ+

0 .

It follows by Lemma 12 that for any singular cardinal λ of V ∗, λ+ is
computed correctly in both K ′ and (K∗)′, where (K∗)′ denotes the K ′ of
V ∗, obtained from K∗, the K of V ∗, by applying each order 0 measure
exactly once. Note that K is universal in V ∗, and therefore is a simple
iterate of K∗. It follows that K ′ is a simple iterate of (K∗)′, obtained by
lifting the iteration map from K∗ to K along the iteration from K∗ to (K∗)′.

Claim. The iteration from (K∗)′ to K ′ fixes singular cardinals of V ∗ which
are cut points either of K ′ or of (K∗)′.

Proof of Claim. Let λ be a singular cardinal of V ∗. If λ is a cut point of
(K∗)′ then as λ has non-measurable cofinality in (K∗)′, λ is fixed by the
iteration. If λ is a cut point of K ′ then as λ has non-measurable cofinality
in (K∗)′, λ can only move if an extender overlapping λ is applied. As by
assumption λ is not overlapped in K ′ it must be that the least extender
overlapping λ was applied. But then λ+ is not computed correctly in the
resulting ultrapower and therefore not computed correctly in K ′, the result
of the iteration, contradicting Lemma 12. This proves the Claim.

It follows from the Claim that λ0 is the least limit cardinal of V ∗ which is
a cut point of (K∗)′. As V ∗ is an arbitrary outer model of V with the same
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cardinals as V up to λ0, we have shown that λ0 is an absolute parameter.
The same argument shows that each λn is absolute, and therefore so is λω,
the supremum of the first ω limit cardinals which are cut points of K ′. This
proves Lemma 13.

Now let 〈Cα | α < λ+
ω , α limit〉 be the least �λω sequence of K ′; this is

also a �λω sequence in V , as (λ+
ω )K′

= λ+
ω . As in the proof of Theorem 9,

there are generic extensions of V preserving H(λ+
ω ) which add CUB subsets

to each Sn = {α < λ+
ω | ordertype Cα > λn}. It follows from the strong inner

model hypothesis (and the Remark immediately following its statement)
that for each n there is an inner model Mn, with the correct λ+

ω and λn, in
which SMn

n contains a CUB subset Cn, where SMn
n is defined using the least

�λω sequence of (K ′)Mn . The latter may of course differ from the least �λω

sequence of K ′. However as λ+
ω is computed correctly in each (K ′)Mn and

λω is a cut point of non-measurable cofinality in each (K ′)Mn , it follows that
the (K ′ | λ+

ω )Mn ’s compare to a common K ′′ of height λ+
ω with all ordinals

in some CUB subset C of λ+
ω as closure points. But if α is such a closure

point in the intersection of the Cn’s and αn is the image of α under the
comparison embedding of (K ′ | λ+

ω )Mn into K ′′, then Cαn as defined in K ′′

contains elements cofinal in α and therefore Cα as defined in K ′′, an initial
segment of Cαn , has ordertype at least that of Cα as defined in (K ′ | λ+

ω )Mn .
It follows that Cα as defined in K ′′ has ordertype greater than λn for each
n, which is a contradiction. �

Remarks. (a) It is likely that Theorem 11 can be improved to obtain an inner
model with a Woodin cardinal. But it is not possible to obtain an iterable
inner model with a Woodin cardinal and an inaccessible above it (unless the
SIMH is inconsistent): Otherwise every real would be generic for Woodin’s
extender algebra defined in an iterate of such an inner model, implying that
for every real R there is an inaccessible in L[R]; this contradicts Theorem 1.
(b) David Asperó and the first author observed that the consistency of the
SIMH for the parameter ω1 follows as in the proof of Theorem 7 from that
of a Woodin cardinal with an inaccessible above. In particular this yields
the consistency of the natural extension of Lévy absoluteness asserting Σ1

absoluteness with parameter ω1 for arbitrary ω1-preserving extensions. (c)
For any finite set of absolute parameters, the version of the SIMH where
V ∗ is required to be a set-generic extension of V is consistent for those
parameters.

Question. Is the strong inner model hypothesis consistent relative to large
cardinals?
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