
BCCS 2008/09: Graphical models and complex stochastic systems:
Exercises 3

1. Suppose that for three random variables x, y, z, the joint distribution factorises as a product
of a function of x and z, and a function of y and z, i.e. p(x, y, z) = f(x, z)g(y, z) (where f
and g are arbitrary functions, not assumed to be p.d.f.’s). Prove that x ⊥⊥ y | z, assuming
that the random variables are discrete.

2. The following table gives the (fictitious) admission rates for different departments of a uni-
versity by sex.
Dept. Sex no. applying no. admitted
I Male 100 25

Female 300 75
II Male 200 100

Female 200 100
III Male 300 225

Female 100 75
Let X be the binary variable for sex, Y the binary variable indicating admission and Z the
variable indicating the department. Investigate whether X ⊥⊥ Y andor X ⊥⊥ Y | Z. Explain
your results.

3. Consider a variant of the ‘10+1’ coin tossing problem from the 1st lecture, where instead of
a discrete choice between 2 biased coins, the parameter θ is supposed to be drawn from a
Beta(α, β) prior: p(θ) = [Γ(α + β)/Γ(α)Γ(β)]θα−1(1 − θ)β−1. Write down the joint distri-
bution p(θ, x, y). Integrate out θ to find p(x, y). Indicate how you would use this to find
the conditional expectation E(y|x). Note that you get the answer much more easily by first
finding the posterior p(θ|x), and then noting that E(y|x) = P{y = 1|x} = E(θ|x) (which we
already know, or can easily find).

4. Consider the following possible factorisations for the joint distributions of all the variables
mentioned. For each, if possible, draw the corresponding DAG. If not possible, say why.

i. p(a)p(b|a)
ii. p(b)p(a|b)
iii. p(b|a)p(c|b)p(a|c)
iv. p(µ)p(σ)

∏n
i=1 p(yi|µ, σ)

v. p(θ)p(φ)p(y|θ)

5. Consider the following model for failure time data. The are n similar but not identical pieces
of equipments (pumps) in a factory. For i = 1, 2, . . . , n, pump i is run for a total time ti,
and incurs yi failures. We suppose that yi ∼ Poisson(θiti). We put a prior Gamma(α, β) on
the θi. Finally, β is modelled as Gamma(γ, δ). We treat α, γ and δ (and the {ti} of course)
as known constants. Write down all necessary (conditional) independence assumptions you
would make, not stated above, and hence write down the joint distribution of all random
variables (β, {θi}, {yi}). Draw the corresponding DAG.

6. Suppose that conditional on θ, x and y are independent Bernoulli(θ), and that θ is random.
Find P{x = 1}, P{y = 1} and P{x = 1, y = 1} in terms of E(θ) and E(θ2). Hence show
that P{x = 1, y = 1} ≥ P{x = 1} × P{y = 1}. Now consider two 0/1 random variables
(w, z) such that P{w = 0, z = 0} = P{w = 1, z = 1} = 0.1 and P{w = 0, z = 1} = P{w =
1, z = 0} = 0.4 Can w and z be represented as conditionally independent given some other
variable? Contrast this with de Finetti’s theorem: do you see why we have to say infinitely
exchangeable in section 4.5?


