BCCS 2008/09: Graphical models and complex stochastic systems: Exercises 3

- 1. Suppose that for three random variables x, y, z, the joint distribution factorises as a product of a function of x and z, and a function of y and z, i.e. p(x,y,z) = f(x,z)g(y,z) (where f and g are arbitrary functions, not assumed to be p.d.f.'s). Prove that $x \perp \!\!\! \perp y \mid z$, assuming that the random variables are discrete.
- 2. The following table gives the (fictitious) admission rates for different departments of a university by sex.

Dept.	Sex	no. applying	no. admitted
I	Male	100	25
	Female	300	75
II	Male	200	100
	Female	200	100
III	Male	300	225
	Female	100	75

Let X be the binary variable for sex, Y the binary variable indicating admission and Z the variable indicating the department. Investigate whether $X \perp\!\!\!\perp Y$ and or $X \perp\!\!\!\perp Y \mid Z$. Explain your results.

- 3. Consider a variant of the '10+1' coin tossing problem from the 1st lecture, where instead of a discrete choice between 2 biased coins, the parameter θ is supposed to be drawn from a Beta (α, β) prior: $p(\theta) = [\Gamma(\alpha + \beta)/\Gamma(\alpha)\Gamma(\beta)]\theta^{\alpha-1}(1-\theta)^{\beta-1}$. Write down the joint distribution $p(\theta, x, y)$. Integrate out θ to find p(x, y). Indicate how you would use this to find the conditional expectation E(y|x). Note that you get the answer much more easily by first finding the posterior $p(\theta|x)$, and then noting that $E(y|x) = P\{y = 1|x\} = E(\theta|x)$ (which we already know, or can easily find).
- 4. Consider the following possible factorisations for the joint distributions of all the variables mentioned. For each, if possible, draw the corresponding DAG. If not possible, say why.
 - i. p(a)p(b|a)
 - ii. p(b)p(a|b)
 - iii. p(b|a)p(c|b)p(a|c)
 - iv. $p(\mu)p(\sigma)\prod_{i=1}^n p(y_i|\mu,\sigma)$
 - v. $p(\theta)p(\phi)p(y|\theta)$
- 5. Consider the following model for failure time data. The are n similar but not identical pieces of equipments (pumps) in a factory. For $i=1,2,\ldots,n$, pump i is run for a total time t_i , and incurs y_i failures. We suppose that $y_i \sim \operatorname{Poisson}(\theta_i t_i)$. We put a prior $\operatorname{Gamma}(\alpha,\beta)$ on the θ_i . Finally, β is modelled as $\operatorname{Gamma}(\gamma,\delta)$. We treat α, γ and δ (and the $\{t_i\}$ of course) as known constants. Write down all necessary (conditional) independence assumptions you would make, not stated above, and hence write down the joint distribution of all random variables $(\beta, \{\theta_i\}, \{y_i\})$. Draw the corresponding DAG.
- 6. Suppose that conditional on θ , x and y are independent Bernoulli(θ), and that θ is random. Find $P\{x=1\}$, $P\{y=1\}$ and $P\{x=1,y=1\}$ in terms of $E(\theta)$ and $E(\theta^2)$. Hence show that $P\{x=1,y=1\} \geq P\{x=1\} \times P\{y=1\}$. Now consider two 0/1 random variables (w,z) such that $P\{w=0,z=0\} = P\{w=1,z=1\} = 0.1$ and $P\{w=0,z=1\} = P\{w=1,z=0\} = 0.4$ Can w and z be represented as conditionally independent given some other variable? Contrast this with de Finetti's theorem: do you see why we have to say infinitely exchangeable in section 4.5?