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Statistics and science

Ernest Rutherford (1871-1937)

Gene
networks

What has statistics to say
about science and
technology?

What has statistics to say
about the complexity of
modern science?

Functional categories of genes in the human genome

Venter et al, Science, 16 February, 2001




Gene expression using
Affymetrix microarrays
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Velocity of recession determines
‘colour’ through effect

Probabilistic expert systems
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Astronomy: redshifts
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Complex stochastic
systems

Problems in these areas — and many others
- have been successfully addressed in a
modern statistical framework of
structured stochastic modelling




Graphical modelling

Mathematics Semmmmmdl Modelling

Conditional independence

¢ X and Z are conditionally
independent given Y if, knowing Y,
discovering Z tells you nothing more
about X2 p(X|Y,Z) =p(X|Y)
eX1Z|y

Coin-tossing

‘so another
head is
much

1. Mathematics
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Coin-tossing

e You take a coin from your pocket,
and toss it 10 times and get 10
heads

e What is the chance that the next
toss gives head?

Now suppose there are two coins in
your pocket — a 80-20 coin and a 20-

80 coin — what is the chance now?
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Conditional independence

as seen in data on perinatal mortality vs.
ante-natal care....

‘it must be
the 80-20
coin’

Choice of coin more

likely’

Result of first 10 tosses Result of next toss

(conditionally independent given coin)
(the odds on a head are now 3.999986 to 1)

Clinic Ante

Survived Died % died

A less
more

B less
more

176 3 17
293 4 13
197 17 79
23 2 80
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Does survival depend on ante-natal care?

.... what if you know the clinic?




Conditional independence

survival and clinic are dependent

and ante and clinic are dependent

but survival and ante are CI given clinic
19

Mendelian inheritance - a
natural structured model
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Conditional independence

provides a mathematical basis

for splitting up a large system
into smaller components

Graphical models

Use ideas from graph theory to

* represent structure of a joint
probability distribution

* by encoding conditional @*Q\
independencies ‘ ><$/°
?

Where does the graph come
from?

* Genetics
— pedigree (family connections)

* Physical and biological systems
— supposed causal effects

* Contingency tables
— hypothesis tests on data

* Gaussian case

— graph determined by non-zeroes in inverse
variance matrix (i.e. non-zero partial
correlations)




2. Modelling

Modelling

T

Modular structure

Basis for
understanding the real system

capturing important characteristics
statistically

defining appropriate methods
computation

inference and interpretation

Building a model, for genetic
testing of paternity

Structured systems

A framework for building models, especially
probabilistic models, for empirical data
Key idea -
— understand complex system
— through global model
— built from small pieces
e comprehensible
* each with only a few variables
* modular

Building a model, for genetic
testing of paternlty using DNA probes

putative father

mother

... genes determine genotype

e.g. if child’s paternal gene is 10’ and maternal gene
- is ’12’, then its genotype is ’10-12’




Building a model, for genetic

testing of paternity o Wlerdells koo

the gene that the child gets from the
father is equally likely to have come from
the father’s father or mother

Building a model, for genetic

testing of paternity .- with mutation

there is a small probability of
a gene mutating

Building a model, for genetic

.. using population data

(=

we need gene frequencies
relevant to assumed population
for founder’ nodes




Building a model, for genetic Building a model, for genetic
testing of paternity testing of paternity

* Having established conditional
probabilities within each of these local
models....

* We can insert ‘evidence’ (data) and draw
probabilistic inferences...
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Photometric redshifts Photometric redshifts
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magnitude = M (flux)

4000




Photometric redshifts
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Multiplicative model (on
flux scale), involving an
unknown mixture of
templates

magnitude = M|
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Gene expression using
Affymetrix microarrays

Zoom Image of Hybridised Array Hybridised Spot
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Slide courtesy of Affymetrix

Image of Hybridised Array

Photometric redshifts

filter response
template

Pei(z) = [u’f_, ((1+ 2)u)e(u)du

Photometric redshifts

good
agreement with
‘gold-standard’
spectrographic
measurement
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Variation and uncertainty

Gene expression data (e.g. Affymetrix™) is
the result of multiple sources of variability

* condition/treatment e within/between

* biological array variation
array manufacture ° gene-specific
imaging variability
technical

Structured statistical modelling allows
t8 considering all uncertainty at once




Single array model: motivation
(Hein, Richardson, Causton, Ambler & G, 2004)

Key observations:

PMs and MMs both increase
with spike-in
concentration (MMs
slower than PMs)

Spread of PMs increase with
level

Considerable variability in
PM (and MM) response
within a probe set

Probe effects
approximately additive
4((){1 log-scale

Conclusions:

MMs bind fraction of
signal

Multiplicative (and additive)
error; transformation
needed

Varying reliability in gene
expression estimation for
different genes

Estimate gene
expression measure
from PMs and MMs on
log scale

gene-specific varia

Multi-array
model: probes
within genes,
across several
conditions, with
replicates

(ss~hybridisation

noise variance

3. Algorithms
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BGX single array model

PMg; ~N( Sg + Hgj, ) .
~N(® S + H,

de
ene specific distribution
error tern

Single array model performance
11 genes spiked in at 13 (increasing) concentrations

Hein, Richardson, Causton,
Ambler & G, 2004

3
log{concentration)

log{concentration) logiconcentration)

Indication of good resolution at low Unlike competitors, method provides
concentrations and probably reduced bias confidence intervals

Algorithms for probability and
likelihood calculations

Exploiting graphical structure:

e Markov chain Monte Carlo

* Probability propagation (Bayes nets)
* Expectation-Maximisation

* Variational (mean-field) methods

Graph representation used in user
interface, data structures and in
-, controlling computation




Markov chain Monte Carlo

Subgroups of one or more variables
updated randomly,

— maintaining detailed balance with
respect to target distribution

Ensemble converges to equilibrium
= target distribution ( = Bayesian
posterior, e.g.)

Probability propagation

form junction tree

Lauritzen &
Spiegelhalter,
1987

57

Message passing
in junction tree - collect

Markov chain Monte Carlo
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56 Updating e - need only look at neighbours

/

Message passing
in junction tree

Message passing
in junction tree - distribute
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4. Inference
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or non-
Bayesian

Bayesian structured
modelling

‘borrowing strength’
automatically integrates out all sources
of uncertainty

... for example in forensic statistics with
DNA probe data

Bayesian

Bayesian paradigm in
structured modelling

‘borrowing strength’

automatically integrates out all sources of
uncertainty

properly accounting for variability at all levels
including, in principle, uncertainty in model
itself

avoids over-optimistic claims of certainty

11



Bayesian structured
modelling

* ‘borrowing strength’

* automatically integrates out all sources
of uncertainty

e ... for example in hidden Markov models
for disease mapping

Mortality for diseases of the circulatory

John Snow’s 1855 map of cholera cases system in males in 1990/1991

Disease mapping Hidden Markov models
e.g. Hidden Markov chain

Observe counts Yi of cases of rare, non-
infectious disease in regions |

Standard model:
y, ~ Poisson(4E;)

where Ei are adjusted populations at risk

hidden

Relative risks /li vary due to unmeasured
risk factors, assumed spatially correlated
Use space as surrogate to separate signal
and noise

1




Hidden Markov random Hierarchical mixture model for
fields disease mapping — a hidden MRF

Unobserved
) D —— dependent field
T | Observed
conditionally-
independent

(e.g. discrete)
field

Mapping of rare diseases Bayesian structured
using Hidden Markov model modelhng

* ‘borrowing strength’

* automatically integrates out all sources
of uncertainty

e ... for example in modelling complex

Larynx cancer in Posterior probability biomedical systems like ion channels
females in France, of excess risk

1986-1993
(standardised ratios)
75

transition

Ion channel g el
mOd el indicator \ 3 indicator \
l
e rates e rates
Hodgson and Green,
state state

Proc Roy Soc Lond A,
1999 ﬁ

binary binary
signal signal
levels & levels &

l variances variances
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Unknown physiological Truth and simulated data
states of channel,
unknown connections

Continuous time Markov
chain on this graph, with
unknown transition rates

Only open/closed status
of states is relevant to
observation

We observe only in
discrete time, with highly
correlated noise

Truth and 2 restorations Ion channel model choice .
posterior

probabilities

405

Structured systems’ Structured systems’
success stories inciude... challenges inciude...

7 CEIETEs &5 ol ey * Very large/high-dimensional data sets

— genomics, telecommunications, commercial
data-mining...

— DNA & protein sequencing,
gene mapping, evolutionary genetics

* Spatial statistics
— image analysis, environmetrics,
geographical epidemiology, ecology
* Temporal problems

— longitudinal data, financial time series,
signal processing




Summary

Structured stochastic modelling (the
‘HSSS’ approach) provides a powerful
and flexible approach to the challenges of
complex statistical problems
— Applicable in many domains
— Allows exploiting scientific knowledge
— Built on rigorous mathematics
— Principled inferential methods

Highly Structured
Stochastic Systems
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