
BCCS 2008/09: Graphical models and complex stochastic systems:
Lecture 5: Hierarchical models

Now we are going to put DAGs to good use in statistical modelling.

5.1 Motivation for hierarchical modelling

How to make inference on multiple parameters {θ1, . . . , θI} measured on I units (persons,
centres, areas, ... ) which are related or connected by the structure of the problem ?

The ‘surgical’ example

In 12 hospitals carrying out
cardiac surgery on babies, the
numbers of operations performed
and mortality rates are recorded.
What are the best and worst
hospitals? Are the differences
more than can be attributable to
chance? What rate do you expect
in the 13th hospital? Or in the
12th hospital, in a different year?
In this example, θi is the true
mortality rate in the ith hospital.
Let Yi and ni be the number of
deaths and the number of
operations, in the ith hospital.
We might assume
Yi ∼ Binomial(ni, θi).
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We can identify three different assumptions:

1. Identical parameters: All the θ’s are identical, in which case all the data can be
pooled and the individual units ignored.

2. Independent parameters: All the θ’s are entirely unrelated, in which case the results
from each unit can be analysed independently (for example using a fully specified prior
distribution within each unit)

→ individual estimates of θi are likely to be highly variable (unless very large sample
sizes)

3. Exchangeable parameters: The θ’s are assumed to be ‘similar’ in the sense that
the ‘labels’ convey no information

Lessons from the ‘surgical’ data set

In the 12 hospitals, the ‘raw’ mortality rates vary between 0/47 (hospital A) and 31/215=0.1442
(H); the aggregated rate is 208/2814=0.0739. What are the ‘true’ rates in hospitals A and
H?
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Non-Bayesian answer 1. Assume that in hospital i, the number of deaths Yi ∼ Bin(ni, θ).
The maximum likelihood estimator of θ is (

∑
i Yi)/(

∑
i ni) = 0.0739, which applies to both

A and H.

Non-Bayesian answer 2. Assume that in hospital i, the number of deaths Yi ∼ Bin(ni, θi),
independently. The maximum likelihood estimator of θi is Yi/ni = 0 for A and 0.1442 for H.

Could the θi all be equal? If θ is 0.0739, the chance that YH is as big or bigger than 31
is 0.000284. So, no!

Bayesian answer 1. Assume in addition that a priori, θ ∼ Beta(α, β) where α and β are
say 4 and 46. (This gives a mean and variance for the Beta distribution roughly comparable
to the sample mean and variance of the raw mortality rates). Then we get the posterior
mean = (

∑
i Yi + α)/(

∑
i ni + α + β) = 0.0740 (for both A and H).

Bayesian answer 2. Making a similar prior assumption on each θi, the posterior mean of
θi is (Yi + α)/(ni + α + β) = 0.0412, 0.1321 for A and H.

Which is best? Note that the Bayesian estimates are ‘shrunk’ towards the prior mean
α/(α + β) = 0.08, to an extent depending on the ‘denominator’ ni or n. This eliminates
ridiculous conclusions like θA = 0. However, it is still the case that only the data from
hospital i is used in estimating θi. Surely the other hospitals’ data carries information too?
(For example, suppose that YH was missing: would you be able to guess its value better after
having observed the other data?)

Our initial model 1 (Bayesian or non-Bayesian) revealed difficulty with the assumption
that there was a common mortality rate θ in every hospital; we asked:

• Does this model adequately describe the random variation in outcomes for each hos-
pital?

• Are the hospital failure rates more variable than our model assumes?

and concluded ’no’ and ’yes’, respectively.

Modelling the excess variation

Let’s look at Bayesian model 2 above in more detail: we have modified model 1 to allow for
a different failure probability, θi for each hospital i:

(yi | θi) ∼ Binomial(ni, θi) where θi ∼ Beta(α, β)

Interpretation:

• {θi}, the ‘true’ surgical failure rate in the hospitals are viewed as a random sample
from a common population distribution

⇒ hospital failure rates are assumed to be similar but not identical

– Beta(α, β) prior describes the distribution of surgical failure rates amongst the
‘population’ of hospitals

How would you specify values for α and β?
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Approximate ‘empirical Bayes’ approach

• Calculate crude failure rates yi/ni

• Calculate the observed mean and variance of the 12 values yi/ni

• Solve for α̂ and β̂ to obtain a beta distribution with this mean and variance

• Using Beta(α̂, β̂) as a prior, apply Bayes theorem to obtain posteriors for true failure

rates θi, p(θi|α̂, β̂, y1, y2, . . . , yI)

Potential problems with this approach:

• We are using the data twice:

– Once to estimate the prior

– Again to estimate θi for each hospital

⇒ overestimate precision of our inference

• Using any point estimate for α and β ignores some posterior uncertainty about the
population distribution of the θi’s

5.2 Bayesian hierarchical models

The methods discussed here will allow us to do better, because we will be able to assume
in advance that the true mortality rates across the hospitals are different (because the cir-
cumstances, patients, doctors, ... are different), but similar (because the operations, disease,
... are the same). The effect we will see is that the raw estimates are shrunk towards each
other.

To do this, we need to deal with more than two sorts of variable – the parameters and
data of ordinary Bayesian models. The hospitals problem has 3 levels of uncertainty – the
hazard of this type of operation, the variability between hospitals, and chance factors in an
individual patients’ operation. Such models are called hierarchical.

• Assume a joint probability model for the entire set of parameters (θ1, θ2, . . . , θI , α, β)
– requires us to assign known prior distributions to α, β, e.g.

α ∼ Exponential(1) and β ∼ Exponential(1)

• Apply Bayes theorem to calculate the joint posterior distribution of all the unknown
quantities simultaneously.

Level 1: yi ∼ Binomial(ni, θi), independently for each i

Level 2: θi ∼ Beta(α, β), independently for each i

Level 3: Prior for α, β

3



Advantages of this approach

The posterior distribution for each θi

• ‘borrows strength’ from the likelihood contributions for all hospitals, via their joint
influence on the estimate of the unknown population (prior) parameters α and β

• reflects our full uncertainty about the true values of α and β

Such models are also called Random effects or Multilevel models.
Graphical models (DAGs) for surgical example:
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5.3 Shrinkage and hierarchical models

To take a different example, suppose in each unit we observe a response xi assumed to have
a Normal likelihood

xi ∼ N(θi, τ
2
i )

Unit means θi are assumed to be exchangeable, and to have a Normal distribution

θi ∼ N(μ, σ2)

where μ and σ2 are ‘hyper-parameters’, for the moment assumed known, as are τ 2
i .

It can be shown that, after observing xi, Bayes’ theorem gives

θi|xi ∼ N(wiμ + (1 − wi)xi, (1 − wi)τ
2
i )

where wi = τ 2
i /(τ 2

i + σ2) ∈ (0, 1) is the weight given to the prior mean.
A Bayesian model therefore leads to inferences for each θi giving intervals that are nar-

rower than in the non-Bayesian approach, but shrunk towards the prior mean response. wi

controls both the ‘shrinkage’, and the reduction in the width of the interval: it depends on
precision of the individual unit i relative to the variability between units. When {τ 2

i } are
also given a prior, the same principles apply, although the solution is less explicit.

In a hierarchical model, μ and σ2 are random, and the effect of this is more complicated
again, and best seen numerically; the amount of shrinkage is not determined in advance – it
is discovered from the data (an automatic consequence of Bayes’ theorem). μ will also be
shrunk towards the data in its posterior distribution, so that the θi are now shrunk towards
a “typical” x value.
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5.4 Exchangeability and de Finetti’s theorem

‘Exchangeability’ is a formal expression of the idea that we find no systematic reason to
distinguish the individual random variables θ1, ..., θI – a judgement that they are ‘similar’
but not identical.

An infinite sequence of 0/1 random variables θ1, θ2, . . . is called (infinitely) exchangeable
if any finite subset has a joint distribution that is the same whatever the order in which the
variables are written. E.g. p(θ4, θ7, θ9) = p(θ7, θ9, θ4).

If the variables are independent Bernoulli(φ), they are obviously exchangeable. This
remains true if φ is random (as in the coin-tossing example, with two biased coins), since
e.g.

p(θ4, θ7, θ9) =

∫ 1

0

p(φ)φθ4(1 − φ)1−θ4φθ7(1 − φ)1−θ7φθ9(1 − φ)1−θ9dφ

(in the case φ has a continuous distribution), and this obviously only depends on θ4 +θ7 +θ9,
not the order they appear. The remarkable thing is that the converse of this is true – the
only way to get infinitely exchangeable 0/1 random variables is by Bernoulli trials with a
fixed or random φ. This is (a form of) de Finetti’s theorem. There are more general versions
of the theorem, not just for 0/1 variables.

It gives mathematical support for using hierarchical models: if your prior beliefs about
a set of parameters (e.g. the hospital mortality rates {θi}) are exchangeable (really just a
symmetry assumption), then without loss of generality you can model them as i.i.d. from
some distribution given φ, and then make φ random.

p(θ1, θ2, . . . , θI) =

∫
p(φ)

I∏
i=1

p(θi|φ)dφ

Thus, under broad conditions an assumption of exchangeable units is mathematically
equivalent to assuming the θ’s are drawn at random from some population distribution.

5.5 What else do hierarchical models address?

Real data about real systems are complex: classic statistical methods are not enough. Among
the features that real data might have that we could begin to handle are:

• repeated measures,

• heterogeneity between individuals,

• explanatory variables at individual and group level,

• measurement errors, multiple instruments,

• missing data, informative censoring,

• spatial or temporal structure.

5.6 Summary: why hierarchical?

Many interlinked arguments to favour the use of hierarchical models:

• by breaking down the problem in layers, able to separate structural judgments on
observables, on parameters and subjective information
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• reduces the arbitrariness of hyperparameter choice → “robustify” the inference

• natural structure for expressing dependence, prior correlations, ... in a plausible way
(see next lectures)

• through shrinkage and borrowing of strength, parameter estimates are stabilised

• by de Finetti, if our beliefs are exchangeable, then they can be expressed mathemati-
cally by a hierarchical model.

5.7 Reading

Chapter 5 of Gelman et al, chapter 2 of Gilks et al.
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