
BCCS 2008/09: Graphical models and complex stochastic systems:
Lecture 7: Hidden Markov models and State space models

These classes of models, which are often treated as distinct, are really two flavours of a
similar idea, and they collectively provide a flexible way of modelling dependent random
systems evolving in ‘time’, where ‘time’ may be time, or linear position, or location in a
genome, or . . . The linear structure means that short cuts can often be taken in computing
inferences.

The key idea is that there are two sequences – a ‘hidden’ one {xt, t = 0, 1, 2, . . .} and an
observed one {yt, t = 0, 1, 2, . . .}. The structure in the system is provided by assuming that
{xt} is a Markov chain, and the simplicity from assuming that only xt has a direct influence
of yt; loosely, yt is a ‘noisy version’ of xt.

What this means essentially is that the dependence is in the system, rather than the
observation process, and this is realistic in very many applications.

In the language of graphical modelling, these models are represented by this generic DAG:

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

7.1 Hidden Markov models

In HMM’s as usually defined, the distinctive feature is that xt has a finite state space. Some-
times the states are known, but not always. Usually, the transition probabilities between
the states are unknown. In a finite HMM, the values of yt are also in a finite set, so that
everything is discrete. In a normal HMM, the distribution of yt given xt is normal.

Examples .

• communication channels

• DNA and protein sequencing

• ion channels

• speech recognition

7.2 State space models

As usually defined, the term state space models covers cases where the process xt is continuous-
valued. The classic version is the gaussian linear state space model

xt+1 = axt + rut

yt = bxt + svt

1

where a, r, b, s are constants (known or unknown) and ut and vt are independent sequences
of i.i.d. normal random variables. In many applications, these quantities are all vectors and
matrices.

Examples .

• automatic control, signal processing

• time series, econometrics

• tracking

7.3 Conditional independences

These can be read off the DAG above, straightforwardly. The key properties are that for
any times s, t,

• ys ⊥⊥ yt | (xs, xt)

• yt ⊥⊥ xs | xt

(both of these extend to more than two time points).

7.4 Filtering, smoothing and prediction

In many applications, where t represents actual time, we will wish to make online inference,
that is to report what we know about the x process immediately after each yt is observed.
Filtering refers to estimating xt, given y≤t ≡ yt, yt−1, yt−2, . . . Smoothing refers to estimating
xs for some s < t, given y≤t. Prediction refers to estimating xs for some s > t, given y≤t.

Even when there is no requirement to do inference online, it may still be an attractive
option since it may be much cheaper to compute (say) p(xt|y≤t) (filtering) than p(xt|all y),
although this means throwing information away (since it is not true that xt ⊥⊥ y>t | y≤t).

7.5 Kalman filtering

For the gaussian linear state space model of section 7.2, and vector generalisations of it, there
is a well-known and long-standing algorithm called the Kalman filter for computing p(xt|y≤t);
because in a multivariate normal (gaussian) distribution, all conditional distributions are also
normal, all that the algorithm needs to do is compute the mean and variance of the filtering
distribution, that is mt = E(xt|y≤t) and wt = var(xt|y≤t). These can be calculated by the
following recursion:

mt =
s2amt−1 + (a2wt−1 + r2)byt

s2 + (a2wt−1 + r2)b2

wt =
s2(a2wt−1 + r2)

s2 + (a2wt−1 + r2)b2

There are many different equivalent ways of writing this, and of course in the vector case
the expressions involve matrices and look more complicated.

The Kalman filter is probably one of the most-often used algorithms in the whole of
electronic engineering.

2

If the state-space model is not gaussian, and/or not linear, there is no general recursive
formula for p(xt|y≤t). Various adaptations of the idea have been devised to solve the filtering
problem approximately. In recent years, the idea of particle filtering, where the distributions
are represented by large random samples, and the calculations are all done by simulation,
has become very popular.

7.6 Forwards/backwards recursions

We can read off the joint distribution of all variables from the DAG: letting x = (x0, x1, . . . , xT)
and y = (y1, y2, . . . , yT) (note that we begin x at t = 0), we have

p(x, y) = p(x0)
T∏

t=1

[p(xt|xt−1)p(yt|xt)],

assuming there are no unknown parameters. Once the data are observed, they are fixed, so
let us remove them from the notation, and abbreviate: g1(x0, x1) = p(x0)p(x1|x0)p(y1|x1)
and gt(xt−1, xt) = p(xt|xt−1)p(yt|xt), for t = 2, . . . , T , then

p(x, y) =
T∏

t=1

gt(xt−1, xt)

To calculate p(xt|y) = p(xt, y)/p(y) we need to sum this over all values of x0, x1, . . . , xt−1, xt+1, . . . , xT ,
i.e.

p(xt, y) =
∑

x0

· · ·
∑

xt−1

∑

xt+1

· · ·
∑

xT

T∏

t=1

gt(xt−1, xt)

We can permute the order of the sums and products to find that the right hand side is the
same as rt(xt)st(xt) where

rt(xt) =
∑

xt−1

gt(xt−1, xt)
∑

xt−2

gt−1(xt−2, xt−1) . . .

and
st(xt) =

∑

xt+1

gt+1(xt, xt+1)
∑

xt+2

gt+2(xt+1, xt+2) . . .

But note the recursive structure:

rt(xt) =
∑

xt−1

gt(xt−1, xt)rt−1(xt−1) and st(xt) =
∑

xt+1

gt+1(xt, xt+1)st+1(xt+1)

So we can make an enormous saving of computing effort by performing these two recursions,
starting from r0(x0) ≡ 1 and sT (xT) ≡ 1. Having found all the rt and st functions, you then
just set

p(xt|y) =
rt(xt)st(xt)∑
xt

rt(xt)st(xt)

This argument can be easily modified for specific filtering, smoothing or predicting tasks,
for example,

p(xt|y≤t) =
rt(xt)∑
xt

rt(xt)
.

You can view the junction tree probability propagation algorithms we saw in lecture 6 as
a generalisation of forwards/backwards recursion to graphs more general than linear chains.

3

7.7 Related algorithms: Viterbi and dynamic programming

There are also modifications in the same spirit to deal with other (static) parameters, and
with maximising or sampling rather than marginalising. For example the Viterbi algorithm
find the sequence (x0, x1, . . . , xT) that maximises p(x0, x1, . . . , xT |y1, y2, . . . , yT). All of these
exploit the same kind of trick – using the linear graph and conditional independence to
organise computation to avoid the workload growing exponentially with the length of the
sequence.

7.8 Reading

Cappé, Moulines and Rydén discusses everything you could possibly want to know about
these models, although it is written in a rather formal and rigorous style. Chapters 1 and 3
certainly cover everything in this lecture.

4

