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19.1 Introduction

When Professor Mardia presented a seminar on protein structural bioinformatics in Bristol
in February 2003, I was fascinated by one of the problems he described, about matching and
alignment, impressed by his visual aids (the things you could do with overlaid acetates!),
but rather unsatisfied by the inferential approach he took. The basic problem (which is
properly introduced below) involves two key unknown quantities – the matching between
unspecified subsets of two data clouds and the geometrical transformations the clouds
had each been subjected to – and it seemed to me essential to treat these two things
simultaneously, not sequentially: if that is accepted, then it is natural to use a Bayesian
treatment. I think I said something to this effect in discussion, and followed it up later with
a proposed model framework, which Professor Mardia and I investigated, with the results
eventually becoming aBiometrikapaper, Green and Mardia (2006).

Some subsequent developments of this idea appear in Mardia et al. (2007) (using
the formal Bayesian fitting algorithm as a numerical technique for refining a non-
Bayesian solution), Ruffieux and Green (2009) (extending the idea to alignment of multiple
configurations), Green et al. (2010) (largely a review article, but describing broader classes
of biomolecular matching and alignment problems, and anticipating extensions to the
modelling) and Fallaize et al. (2014) (employing a ’gap prior’ to use sequence information
when it is available).

I have also enjoyed robust, but friendly, conversations about the approach with both
of the Editors of this volume, each of whom has also made significant contributions to
understanding and addressing the problem, including Kent et al. (2004) and Kenobi and
Dryden (2012).

This paper revisits inference based on the models like thosein Green and Mardia (2006)
and Fallaize et al. (2014), using MAD-Bayes, a new perspective on fast approximate
inference due to Broderick et al. (2013). This view might help to reconcile rival paradigms
applied to this problem: it turns out to nicely bridge the gapbetween Bayesian and
optimisation approaches to inferring matching and alignment.
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19.2 Modelling protein matching and alignment

A mathematical abstraction of a certain problem in protein alignment involves a form of
unlabelled shape analysis: we observe two point configurationsx = {xj : j = 1, 2, . . . ,m}
and y = {yk : k = 1, 2, . . . , n} in Rd (typically d = 2 or 3); unknown subsets of each
configuration are assumed to be matched, apart from noise, but the two configurations
have been subject to different unknown geometrical transformations. These transformations
are assumed to lie in prescribed families, e.g. translations, rotations, rigid-body or affine
transformations, or perhaps there has been some nonlinear warping. The problem is to make
simultaneous inference about the alignment and the (relative) transformations. In turn this
abstraction can be set up in various ways: to preserve symmetry in the treatment ofx and
y, Green and Mardia (2006) supposed both configurations to be transformed from some
latent configuration in another space, after being subject to both thinning and the addition
of noise.

For the case of affine transformations, Green and Mardia (2006) assumed that the
x configuration lies in the samed-dimensional space as the latent points, while they
configuration needs transforming toAy + τ to lie in this space. The noise is assumed zero-
mean spherical gaussian with varianceσ2, independently for each point. The alignment
between the configurations is represented by the binary (0/1) matrixM , whereMjk = 1 if
and only ifxj andyk are matched. Each point can be matched at most once, so there is at
most one non-zero entry in each row and each column ofM . We will write {j ∼

M
k} for the

set of(j, k) pairs matched according toM , that is{(j, k) : Mjk = 1}.
In Green and Mardia (2006), a stochastic model for the point configurations and their

alignment is derived, leading to a posterior distribution of the form

p(M,A, τ |σ, x, y) ∝ |A|np(A)p(τ)
∏

j∼
M

k

(

ρφ{(xj − Ayk − τ)/σ
√

2}
λ(σ

√
2)d

)

(19.1)

over the unknown parametersA, τ andM , assuming here thatσ is fixed, whereφ is the
standard normal density.

In the modelling, the distribution of the alignmentM arises indirectly through a thinned-
hidden-point formulation, and the induced prior forM has the form

p(M) ∝
( ρ

λv

)L

(19.2)

where L =
∑

jk Mjk is the number of matches. It follows that all feasible alignment
matricesM with the same value forL have the same prior probability:M |L is uniformly
distributed. Of course the number of differentM with the same value ofL varies greatly
with the value ofL – in fact it ism!n!/[L!(m − L)!(n − L)!] (Green and Mardia 2006).

Expressions similar to (19.1) can arise from other underlying formulations by other
authors, perhaps withσ

√
2 replaced byσ, and perhaps withρ/λv expressed as a single

parameter.
Green and Mardia (2006) build a methodology using the posterior distribution (19.1),

concentrating primarily on the case of a rigid-body motion in 2- or 3-dimensions, whereA
is a rotation matrix, modelled a priori by a matrix Fisher distribution. Posterior sampling
can be accomplished with a relatively straightforward Markov chain Monte Carlo (MCMC)
sampler. This uses Gibbs updates forσ2 andτ , Metropolis–Hastings updates forM (in
which addition, deletion, or switching of matches are proposed), and, in the 3-D case, a
novel Metropolis sampler for the matrix Fisher distribution for updatingA.

For Bayesian point estimation of the alignment, we can take adecision theory
approach based on a loss function that is additive over(j, k) pairs and exchangeable
with respect to indexing. This turns out to require only the pairwise posterior match
probabilitiesP{Mjk = 1|x, y}, which are readily estimated by direct enumeration from
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a MCMC sample. The resulting optimisation computation is equivalent to a mathematical
programming assignment problem, and standard methods can be used to solve it.

These methodologies were illustrated by application to alignment of 2-D protein gels,
and of 3-D configurations of active sites. The MCMC methodology is in principle
vulnerable to mixing problems caused by multi-modality in the posterior distribution,
although such problems are not apparent in the examples shown.

19.3 Gap priors and related models

When sequence information is available, it is appealing to consider using it, and an
attractive approach is to use a ‘gap prior’ of the form

p(M) ∝ exp(−U(M))

using the so-called gap penaltyU(M) given by

U(M) = gS(M) + h

S(M)
∑

i=1

(li − 1), (19.3)

whereS(M) is the number of instances where a new gap in the alignment is opened,li is
the length of theith gap, andg, h are positive hyperparameters, with commonly,g > h. See
Rodriguez and Schmidler (2010) and Fallaize et al. (2014). Informally, the effect of using
this prior withg > h > 0 compared tog = h = 0 is that among alignments with the same
likelihood, preference is given to those where consecutively numbered atoms are matched,
and where this fails, preference goes to those where the unmatched atoms are consecutive.

Using this prior in place of that used by Green and Mardia (2006), with other modelling
details unchanged, leads to the posterior

p(M,A, τ |σ, x, y) ∝ |A|np(A)p(τ)vL exp(−U(M))
∏

j∼
M

k

(

φ{(xj − Ayk − τ)/σ
√

2}
(σ
√

2)d

)

.

(19.4)
Although the gap penalty is commonly expressed in the form (19.3), this form is arguably

ambiguous, and it can helpful to express it more explicitly (Fallaize et al. 2014). LetM be a
binarym × n matrix withL 1s, located in entries(ji, ki), i = 1, 2, . . . , L, where thejs and
ks are consistently ordered:j1 < j2 < . . . < jL andk1 < k2 < . . . < kL. This represents,
of course the matching ofxji

andyki
, for i = 1, 2, . . . , L. Then the gap penalty can be

written

U(M) =
L+1
∑

i=1

[f(ji − ji−1) + f(ki − ki−1)] (19.5)

wheref(1) = 0 and for r ≥ 2, f(r) = g + (r − 2)h. Here, we writej0 = k0 = 0 and
jL+1 = m + 1, kL+1 = n + 1. We take U(M) = +∞ if the js and ks cannot be
consistently ordered, that is, if the alignmentM is inconsistent with the sequence ordering;
suchM have zero prior probability under this model.

In Fallaize et al. (2014), the MCMC algorithm of Green and Mardia (2006) is adapted to
sampling for the posterior distribution for the gap prior model. The resulting algorithm
relies upon proposing stepwise updates toM corresponding to adding, removing, or
switching a match. These are particularly easy to implementfor the gap prior. If we insert
a new match(j⋆, k⋆) between(ji, ki) and (ji+1, ki+1), then the reduction in total gap
penalty is the sum of two terms, one from thejs and one from theks. The term from thejs
is equal to











g if ji+1 − ji = 2,

h if ji+1 − ji > 2 andj⋆ = ji + 1 or ji+1 − 1, and

2h − g otherwise.



368 MAD-Bayes matching and alignment for labelled and unlabelled configurations

These three possibilities correspond to filling (and so eliminating) a gap, shortening a gap,
or splitting a gap into two. The term from theks has the same form.

A feature of this gap model that some might feel unappealing intuitively is that,
conditional on the number of matches and the number of gaps, the indices of thex and
y points forming those matches are a priori independent. In fact, the penaltyU(M), and
hence the probabilityp(M), depends only onL andS whereS is the total number of gaps
in the two sequences combined;S is the number of blocks of consecutive all-zero rows or
columns inM . To be explicit,

U(M) = (g − h)S + h(m + n − 2L). (19.6)

Thus, e.g., if there are 3 matches and thex indices are(4, 5, 9), then under this model they
indices(7, 8, 12) are exactly as probable as(7, 11, 12). Indeed, ifm = 9 andn = 15, this
probability is also the same as that thex indices(1, 2, 3) matchy indices(2, j, 14), for any
j = 4, 5, . . . , 12 as all of these situations giveL = 3 andS = 5. The penalty (19.3) should
therefore more accurately termed a ‘gap-count’ penalty!

Changing the specification ofU(M) to better match intuition, or different scientific
judgement, about likely patterns of insertion and deletionwould often still yield a
distribution amenable to posterior sampling using an appropriately modified MCMC
algorithm. This would be especially straightforward if thepenalty remained a sum over
the individual gaps, but all that is really needed is that thechange to the penalty when a
match is deleted, added or switched is cheaply computed, meaning in practice that it uses
only information that is local to the revision inM . Two possibilities that come immediately
to mind are to use (19.5) but with a functionf that is strictly concave but still increasing
for positive gap lengths, or to use a form where the penalty isa decreasing function of the
correlation between the matched(j, k) indices – with the effect that in the first example
above, thex indices(4, 5, 9) are less likely to be matched to they indices(7, 11, 12) than
to (7, 8, 12).

19.4 MAD-Bayes

MAD-Bayes (MAP-based Asymptotic Derivations from Bayes) is a novel methodology
for fitting complex stochastic models due to Broderick et al.(2013). It was devised to
meet the sometimes contradictory desiderata of complying with the Bayesian paradigm and
delivering practical methodology that can be executed veryquickly even on large data-sets.

MAD-Bayes is essentially a simple framework for deliveringsmall-variance asymptotic
approximations to MAP (maximum a posteriori) estimation, yielding results that, while not
usually of closed form, are neverthess typically amenable to solution using fast optimisation
techniques. It exploits the fact that in many statistical models, when the likelihood is taken
to a ‘small-variance’ limit, a non-trivial limit is obtained for the MAP estimator, provided
that hyperparameters in the prior are also taken to appropriate limits. Except in the simplest
of cases, there may be more than one way to do this, giving different non-trivial limits, so
some judgement is needed.

Although MAD-Bayes was conceived as a perspective to take inthe presence of
nonparametric priors and models with discrete allocation structures such as mixtures and
clustering, the idea can be more simply illustrated and understood with a toy example from
parametric Bayes. Supposey ∼ N(Xβ, σ2) with a normal prior:β ∼ N(β0, τ

2I). Then of
course the posterior is

β|y ∼ N
(

{σ−2XT X + τ−2I}−1{σ−2XT y + τ−2β0}, {σ−2XT X + τ−2I}−1
)

(19.7)
The posterior mean and mode are both{XT X + αI}−1{XT y + αβ0}, the value
minimising ||y − Xβ||2 + α||β − β0||2 over β, whereα = σ2/τ2. This is a nontrivial
combination of data and prior information, providing0 < σ2/τ2 < ∞ strictly. Unlike the



MAD-Bayes matching and alignment for labelled and unlabelled configurations 369

other applications of the MAD-Bayes principle for approximating the posterior mode and
later the posterior distribution, discussed later in this chapter, these results hold exactly for
any positiveσ2.

The canonical example of MAD-Bayes presented by Broderick et al. (2013) provides
an extension to the classicalK-means clustering algorithm that they callDP-means.
They propose clustering multivariate data(x1, x2, . . . , xn) by partitioning the index set
{1, 2, . . . , n} as a disjoint union

⋃K
j=1 Cj , whereK, {Cj} and cluster means{µj} are

chosen to minimise
K

∑

j=1

∑

i∈Cj

||xi − µj ||2 + (K − 1)λ2, (19.8)

λ being a regularisation constant. This approach, intuitively reasonable in itself, can be
derived by a MAD-Bayes argument approximating the MAP estimate of the clustering
under a Dirichlet/Chinese restaurant process mixture model (Lo 1984). As withα in the
normal linear model example above, the constantλ2 is the ratio of the varianceσ2 to a
function of a hyperparameter in the prior, so the asymptoticframework again demands that
the prior concentrates as the variance decreases. Broderick et al. (2013) further illustrate
the idea applied to feature learning, particularly exploiting other Bayesian nonparametric
prior models such as the Indian buffet process, and various extensions. The idea has more
recently been used in feature learning for studying tumour heterogeneity by Xu et al.
(2014).

A different kind of recent application is to image segmentation. Pereyra and McLaughlin
(2014) apply a MAD-Bayes argument to the posterior arising from an image model based
on a hidden Potts–Markov random field. Computing the MAP estimate in this problem is
NP-hard, but a convex relaxation is possible, leading ultimately to an objective function of
the form

K
∑

j=1

∑

i∈Cj

{||yi − xi||2 + ||xi − µj ||2} + β||∇x||1, (19.9)

to be minimised overx, µ, {Cj} and K, given a data imagey. Here ||∇x||1 is the ℓ1
norm of the 1st order discrete gradient of the hidden imagex, a convexification of the
||∇x||0 arising formally from the model. The minimisation overx is equivalent to a
total-variation denoising problem, of a kind which has beenextensively studied in the
recent optimisation literature and that can be solved very efficiently even in very high-
dimensional scenarios using parallel proximal splitting methods. The minimisation over
the other variables involvesK-means clustering.

19.5 MAD-Bayes for unlabelled matching and alignment

To develop a MAD-Bayes method for matching and alignment, weuse (19.1) to obtain,
ignoring additive constants in the log-posterior,

− 4σ2 log p(M,A, τ |σ, x, y) = −4σ2 log{|A|np(A)p(τ)}

− 4σ2L log(ρ/λ) + 4σ2dL log(σ/
√

2) + 2σ2 log 2π +
∑

j∼
M

k

||xj − Ayk − τ ||2. (19.10)

According to the MAD-Bayes approximation paradigm of Broderick et al. (2013),
we should examine this function in the small-variance limit, as σ2 → 0. For a non-
degenerate limit in this asymptotic analysis, the prior cannot be held fixed. Suppose
ρ/λ = exp(α/4σ2) for some real constantα. Then asσ → 0 in (19.10) we obtain

−4σ2 log p(M,A, τ |σ, x, y) → −αL +
∑

j∼
M

k

||xj − Ayk − τ ||2.
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Thus finding the MAP estimate ofM,A, τ , the values maximising the log posterior, is
asymptotically equivalent to minimising the penalised sum-of-squares

− αL +
∑

j∼
M

k

||xj − Ayk − τ ||2. (19.11)

The similarity in general form between (19.11), and (19.8) or (19.9) is clear.
When α > 0 there is a non-trivial solution, and the optimisation serves to limit the

number of matchesL; informally, with A andτ held fixed for simplicity of the argument,
including an additional match(j′, k′) will decrease the penalised sum-of-squares if and
only if ||xj′ − Ayk′ − τ ||2 < α.

The parameterα controls the behaviour of the prior parameterρ/λ in the small variance
limit: positive α implies thatρ/λ → ∞ as σ2 → 0, at a particular rate. This is easy to
understand qualitatively: if the noise variance is reducedso that matches become harder
to find, that must be compensated by concentrating the prior for M on higher numbers of
matchesL.

In summary, this simple analysis of MAP inference in our Bayesian model has reduced
to an optimisation problem, penalised least-squares, one with a fairly simple structure by
the standards of problems addressable by modern optimisation techniques. For fixedA, τ ,
optimisation overM is an instance of a weighted matching problem for a bipartitegraph,
for which the Hungarian algorithm (Jacobi 1890; Munkres 1957) provides a solution; this
is usually posed as a maximisation problem and the weight on edge(j, k) to be used would
be simplymax{0, α − ||xj − Ayk − τ ||2}. For fixedM , optimisation overA andτ (say,
in the case of rigid body transformation) is an example of Procrustes analysis. It is easy
to see (since each step reduces the value of the criterion (19.11) and because the set of
possible alignments is finite) that alternating between these two steps defines an algorithm
that converges to a possibly local optimum in a finite number of iterations. We stress that
this may not be a global optimum as complex models often lead to multi-modal posteriors;
we comment futher on multi-modality in Section 19.11.

This simple idea could no doubt be improved using techniquesfrom modern optimisation
methodology. But even without such improvement, this algorithm runs very quickly.
Without making any attempt to optimise coding of the outer loop, an implementation inR,
using functionsolve_LSAP from packageclue and functionprocOPA from package
shapes provides an algorithm that runs in 0.03 seconds on a 3.20GHz processor for the
small problem in Section 4.2 of Green and Mardia (2006), to becompared to 10.85 seconds
for 106 sweeps of the MCMC sampler on the same problem (but which of course provides
a much richer inference).

Note that use of the Hungarian algorithm, or other code for the assignment problem,
guarantees that the inferred alignment is feasible in the sense that no point is simultaneously
matched to more than one point in the other configuration, in contrast to the formally
somewhat similar method using the EM algorithm to compute the maximum likelihood
estimate of the alignment (see for example Kent et al. (2004)).

There is a related approach called ‘Softassign Procrustes’to this problem due to
Rangarajan et al. (1997). This proceeds by first relaxing theconstraint thatM is a binary
matrix to set up an iterative deterministic annealing algorithm using Lagrange multipliers
that alternates between updating the geometrical parameters and updatingM ; the method
appeals to a theorem of Sinkhorn (1964) to deliver a solutionin whichM is in fact binary.
The Softassign Procrustes algorithm has been given an EM-like interpretation by Kent et
al. (2010).

19.6 Omniparametric optimisation of the objective function

An interesting perspective on the optimisation of (19.11) allows simultaneous consideration
of all α ∈ (0,∞), delivering what is often called a ‘regularisation path’ (for example in the
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context of the Lasso (Efron et al. 2004)). Picture a two-dimensional scatter plot of points,
each representing a possible alignmentM , with horizontal coordinateL(M) and vertical
coordinate

∑

j∼
M

k ||xj − Ayk − τ ||2.

The optimalM according to (19.11) corresponds to the point where a line ofslopeα is
a lower tangent to the scatter of points, and the set of allM that are optimal for someα is
represented by the lower convex hull of the configuration. Because there are only finitely
many possible values ofM , this lower convex hull is a polygonal line, so there exists
a finite grid of values ofα, sayα0 > α1 > α2 > · · · , such that for allα ∈ (αi+1, αi),
i = 0, 1, . . ., the optimalM is constant, sayM̂i. Note thatL(M̂i) will decrease withi.
One approach to constructing theαi andM̂i, following a suggestion of the referees, is
to proceed sequentially fori = 0, 1, . . ., using eachαi as a starting point for determining
αi+1.

The set-up also invites comparison with that of Lau and Green(2007), who discussed
optimal Bayesian point estimation of a clustering (of gene expression profiles) based on
a pairwise-coincidence loss function. ‘Omniparametric’ optimisation of the expected loss
over all values of the parameter in the loss function was implemented in a fast heuristic
algorithm, which might be used to inspire a similar approachto the present problem.
Following that paradigm would suggest iteratively refiningthe grid(αi), starting with an
initial pair of (low, high) values; the recursive step to split an interval(αi+1, αi) would
search for a alignmentM whose representative point in this diagram lies outside theline
segment determined by the interval endpoints.

19.7 MAD-Bayes in the sequence-labelled case

In the sequence-labelled case, the points in each configuration are numbered in sequential
order (along a protein, in typical application) and we can use this numbering in specifying
a prior on the alignment matrixM . This leads to the posterior (19.4) instead of (19.1).
The ‘energy function’U(M) in the prior for M may take the gap penalty form (19.3)
or something more general, either with the same intention ofpromoting or insisting upon
sequence order being maintained, or with some other purpose.

For such a posterior, we obtain

− 4σ2 log p(M,A, τ |σ, x, y) = −4σ2 log{|A|np(A)p(τ)vL}

+ 4σ2U(M) + 4σ2dL log(σ/
√

2) + 2σ2 log 2π +
∑

j∼
M

k

||xj − Ayk − τ ||2. (19.12)

Since all of the other terms vanish asσ2 → 0, we need for a non-trivial limit thatU(M)
or its parameters scale in such a way that4σ2U(M) has a non-trivial limit. For example,
in the case of the gap penalty (19.3), if8σ2h → α and4σ2(g − h) → β, then according to
(19.6) the resulting optimisation problem is to minimise

− αL + βS +
∑

j∼
M

k

||xj − Ayk − τ ||2. (19.13)

Intuitive interpretation of this objective function is less straightforward: adding a match
always increasesL by 1, but the associated change inS may be+2,+1, 0,−1 or −2.
Optimisation over the alignment for fixedA and τ is no longer a weighted matching
problem, taking this set-up out of reach of the Hungarian algorithm; as suggested by the
referees, there may be a role here for dynamic programming.
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19.8 Other kinds of labelling

In their section 3.6, Green and Mardia (2006) propose a way toextend the model leading
to (19.1) to allow simultaneous model-based inference about alignment when the points
in the observed configurations are recorded as belonging to different clusters, or ‘colours’,
and pairs of points where both belong to the same cluster are more likely to be matched. An
example in protein bioinformatics arises when the amino acids characterising the observed
points are categorised as hydrophobic or hydrophilic (possibly subdivided into charged,
polar and glycine). The model extension achieving this amounts to modifying the prior on
the alignment matrixM to favour like-coloured matches, so provides a general mechanism
for handling ‘partially labelled’ configurations, where labels are not unique.

The modified prior onM that was proposed has the form

p(M) ∝
( ρ

λv

)L ∏

j∼
M

k

exp(γI[rj = sk] + δI[rj 6= sk])

wherexj is colouredrj andyk colouredsk, instead of (19.2). This modification needs only
trivial changes to the Metropolis–Hastings updating ofM in the posterior simulation.

It is easy to see that such modified priors lead also to a simply-modified MAD-Bayes
objective function. The penalised sum-of-squares (19.11)is replaced by

− αL +
∑

j∼
M

k

{

||xj − Ayk − τ ||2 + γ′I[rj = sk] + δ′I[rj 6= sk]
}

, (19.14)

whereγ′ = 4σ2γ andδ′ = 4σ2δ.
Numerical optimisation of (19.14) can again in principle beaddressed by alternating

between optimising overM and overA andτ , and again the former step is an instance of
a weighted matching problem, since the objective function can be expressed as a sum over
{(j, k) : Mjk = 1}.

The extensions in this section and the previous one can readily be combined,
simultaneously penalising gaps and favouring like-coloured matches, and giving the
objective function

−αL + βS +
∑

j∼
M

k

{

||xj − Ayk − τ ||2 + γ′I[rj = sk] + δ′I[rj 6= sk]
}

.

19.9 Simultaneous alignment of multiple configurations

Ruffieux and Green (2009) generalised the two-configurationmethodology of Green and
Mardia (2006) to handle the case of multiple configurations.They argue that information is
lost by treating the configurations pairwise; the truth of this is most easily seen in the kind
of latent-true-configuration model they use (since we should want to use all information at
once in the implicit inference about the positions of the latent points), but the point will be
generally true. Kenobi and Dryden (2012) match multiple configurations using a model that
considers them only two at a time. The ideas illustrated in this chapter will continue to apply
mutatis mutandisto the multiple-configuration case, although I do not know whether the
discrete optimisation algorithms that would be needed for implementation are still instances
of standard optimisation theory problems.

19.10 Beyond MAD-Bayes to posterior approximation?

The motivating example in the Gaussian case delivered the whole posterior (19.7) not only
the posterior mode. Could we extend the MAD-Bayes perspective to deliver at least an
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approximation to the posterior, by slightly refining the asymptotic argument? In this section
I attempt only a preliminary, speculative answer to this question, which seems a promising
subject for further investigation.

For the unlabelled case, leaving aside technicalities for the moment, the argument leading
to the penalised least-squares objective function (19.11)equally well delivers the formal
approximation, valid asσ2 → 0,

p(M,A, τ |σ, x, y) ≈ eαL/4σ2

exp{(−1/4σ2)
∑

j∼
M

k

||xj − Ayk − τ ||2}. (19.15)

Our focus will be to investigate the form of the density on theright hand side. For
definiteness, we take the case of rigid-body transformations, so thatA is special orthogonal.

It is possible to make some progress interpreting the approximate joint posterior (19.15)
by considering the full conditionals for each ofA, τ andM in turn.

ForA,
∑

j∼
M

k

||xj − Ayk − τ ||2) =
∑

j∼
M

k

{||xj − τ ||2 + ||yk||2 − 2(Ayk)T (xj − τ)}

=
∑

j∼
M

k

||xj − τ ||2 +
∑

j∼
M

k

||yk||2 − 2tr{AT
∑

j∼
M

k

(xj − τ)yT
k }

(19.16)

This reveals that under the approximate distribution (19.15),A givenτ andM (andx, y, σ)
has a matrix Fisher distribution (Mardia and Jupp 2000, p.289), as shown in Green and
Mardia (2006). The normalising constant of this distribution is known, so thatA can be
integrated out to give

p(M, τ |σ, x, y) ≈ eαL/4σ2

exp{(−1/4σ2)
∑

j∼
M

k

||xj − τ ||2 + ||yk||2}0F1(p/2, (1/16σ4)FT F ),

(19.17)
whereF =

∑

j∼
M

k(xj − τ)yT
k depends on bothτ andM , as well as the data. This does not

seem amenable to further analytic simplification.
Similarly, we can evidently extract from the right hand sideof (19.15) the approximate

conditional forτ givenM andA as

τ |M,A, x, y, σ ∼ N(L−1
∑

j∼
M

k

(xj − Ayk), 2σ2/L),

while the approximate conditional forM givenτ andA is also explicit but hardly tractable.
In an effort to gain more insight into the form of the approximate posterior, we could

consider one of the approximations to the matrix Fisher distribution developed by Khatri
and Mardia (1977) and Bingham et al. (1992). However, these seem too intricate to use for
practical statistical analysis.

So let us consider further approximation: we could try to usea Normal approximation for
p(A|M, τ, x, y, σ). Suppose thatA ∼ MatrixFisher(F ) with F non-singular; note that this
demands that theM in question matches sufficiently many(x, y) pairs with coordinates
in general position. Now letK = (FT F )1/2 be the elliptical part ofF andN = FK−1

its polar part (Mardia and Jupp 2000, p. 286). LetV ∆V T with ∆ = diag(δ1, δ2, . . . , δd)
be the spectral decomposition ofK. In the concentrated case, where allδi become large
(many matches), we have (Peter Jupp,personal communication)

(A − N) ≈ NV SV T
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whereS is a skew-symmetrix matrix with(δi + δj)
1/2sij ∼ N(0, 1), independently.

It seems probable that the argument leading to this can be refined to yield a joint Normal
approximation forp(A, τ |M,x, y, σ), although I have not attempted to verify the details.
Under such an approximation, the approximate joint posterior (19.15) becomes a Normal
mixture distribution, and this seems to be the analysis of (19.15) most likely to be useful
for numerical implementation. More work is needed here.

Returning to the mathematical basis for the approximation,a rigorous analysis would
need to establish that the approximation of densities that we have investigated really does
imply convergence of the probability measures (say, in the sense of total variation norm)
under suitable regularity conditions.

19.11 Practical uses of MAD-Bayes approximations

It is hoped that the optimisation-based techniques suggested in this chapter could be
developed to make a practically-useful contribution to methodology. They seem to offer
to supply some of the advantages of the Bayesian approach – notably treating uncertainty
about the alignment and the geometrical transformation symmetrically and simultaneously
– without having to pay the price of relying on Monte Carlo computation.

However, even neglecting the fact that the Bayesian set-up has to be approximated to
allow delivery of these optimisation solutions, there are other caveats. In particular, they are
not a panacea for the problems of multi-modality that can bedevil MCMC methods. The
MAD-Bayes perspective is really blind to the possibly existence of modes other that the one
under consideration, and numerical optimisation methods need to be special and carefully
chosen to deliver optima of multi-modal objective functions reliably, just as MCMC
methods have to be specifically designed to handle multi-modal target distributions.

It may be useful to regard optimisation approaches as complementary to posterior
sampling – for example, MAD-Bayes might provide a starting point for a MCMC
simulation, from which perhaps a rather short MCMC run mightbe used to assess
variability; again this would demand some guarantee about unimodality for reliable
inference. This is very much in the spirit of the work of Mardia et al. (2007).
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