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19.1 Introduction

When Professor Mardia presented a seminar on protein stalibioinformatics in Bristol
in February 2003, | was fascinated by one of the problems serited, about matching and
alignment, impressed by his visual aids (the things youddol with overlaid acetates!),
but rather unsatisfied by the inferential approach he todle Basic problem (which is
properly introduced below) involves two key unknown qugesi — the matching between
unspecified subsets of two data clouds and the geometrmagformations the clouds
had each been subjected to — and it seemed to me essentiaatahese two things
simultaneously, not sequentially: if that is acceptednthds natural to use a Bayesian
treatment. | think | said something to this effect in diséossand followed it up later with
a proposed model framework, which Professor Mardia anddstigated, with the results
eventually becoming Biometrikapaper, Green and Mardia (2006).

Some subsequent developments of this idea appear in Mardih €2007) (using
the formal Bayesian fitting algorithm as a numerical techaidor refining a non-
Bayesian solution), Ruffieux and Green (2009) (extendieddba to alignment of multiple
configurations), Green et al. (2010) (largely a review &tibut describing broader classes
of biomolecular matching and alignment problems, and gaing extensions to the
modelling) and Fallaize et al. (2014) (employing a 'gap ptio use sequence information
when it is available).

| have also enjoyed robust, but friendly, conversationsuaiioe approach with both
of the Editors of this volume, each of whom has also made fagmnit contributions to
understanding and addressing the problem, including Keat. €2004) and Kenobi and
Dryden (2012).

This paper revisits inference based on the models like timoGeeen and Mardia (2006)
and Fallaize et al. (2014), using MAD-Bayes, a new perspeatn fast approximate
inference due to Broderick et al. (2013). This view mightphtel reconcile rival paradigms
applied to this problem: it turns out to nicely bridge the dagtween Bayesian and
optimisation approaches to inferring matching and aligmime
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19.2 Modelling protein matching and alignment

A mathematical abstraction of a certain problem in protdignanent involves a form of
unlabelled shape analysis: we observe two point configursti = {z; : j = 1,2,...,m}
andy = {yx : k =1,2,...,n} in R? (typically d = 2 or 3); unknown subsets of each
configuration are assumed to be matched, apart from noiseghéuwo configurations
have been subject to different unknown geometrical transitions. These transformations
are assumed to lie in prescribed families, e.g. translatiostations, rigid-body or affine
transformations, or perhaps there has been some nonligging. The problem is to make
simultaneous inference about the alignment and the (ve)atiansformations. In turn this
abstraction can be set up in various ways: to preserve syminethe treatment of and
y, Green and Mardia (2006) supposed both configurations toansformed from some
latent configuration in another space, after being subgebbth thinning and the addition
of noise.

For the case of affine transformations, Green and MardiagR@8sumed that the
x configuration lies in the samé-dimensional space as the latent points, while ghe
configuration needs transforming gy + 7 to lie in this space. The noise is assumed zero-
mean spherical gaussian with variancg independently for each point. The alignment
between the configurations is represented by the binary (@trix A/, whereM;, = 1 if
and only ifz; andy;, are matched. Each point can be matched at most once, soslare i
most one non-zero entry in each row and each columv ofVe will write {j ~ k} for the

set of(j, k) pairs matched according o, that is{(j, k) : M, = 1}.
In Green and Mardia (2006), a stochastic model for the painfigurations and their
alignment is derived, leading to a posterior distributiéthe form

pol(w; — Aye —7)/o/2}
Noy2)? ) (29.1)

p(M, 4,710, 2,5) o |A"p(A)p(r) [ (
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Y

over the unknown parameters = and M, assuming here that is fixed, wherep is the
standard normal density.

In the modelling, the distribution of the alignmemt arises indirectly through a thinned-
hidden-point formulation, and the induced prior faf has the form

p\L
p(M) (E) (19.2)
where L = ij My, is the number of matches. It follows that all feasible aligmin
matricesM with the same value fol have the same prior probabilityZ | L is uniformly
distributed. Of course the number of different with the same value of varies greatly
with the value ofL —in fact itism!n!/[L!(m — L)!(n — L)!] (Green and Mardia 2006).

Expressions similar to (19.1) can arise from other undegyfiormulations by other
authors, perhaps with/2 replaced by, and perhaps withh/Av expressed as a single
parameter.

Green and Mardia (2006) build a methodology using the piostdrstribution (19.1),
concentrating primarily on the case of a rigid-body motio2i or 3-dimensions, wheté
is a rotation matrix, modelled a priori by a matrix Fishertdimition. Posterior sampling
can be accomplished with a relatively straightforward Ma&r&hain Monte Carlo (MCMC)
sampler. This uses Gibbs updates é8rand r, Metropolis—Hastings updates faf (in
which addition, deletion, or switching of matches are psgm), and, in the 3-D case, a
novel Metropolis sampler for the matrix Fisher distributifor updatingA.

For Bayesian point estimation of the alignment, we can takdeaision theory
approach based on a loss function that is additive @¢yek) pairs and exchangeable
with respect to indexing. This turns out to require only thenpise posterior match
probabilities P{M;;, = 1|z,y}, which are readily estimated by direct enumeration from
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a MCMC sample. The resulting optimisation computation igiegjent to a mathematical
programming assignment problem, and standard methodsecasdldl to solve it.

These methodologies were illustrated by application tgnaient of 2-D protein gels,
and of 3-D configurations of active sites. The MCMC methodglds in principle
vulnerable to mixing problems caused by multi-modality ive tposterior distribution,
although such problems are not apparent in the examplesishow

19.3 Gap priors and related models

When sequence information is available, it is appealing tosicter using it, and an
attractive approach is to use a ‘gap prior’ of the form

p(M) o< exp(=U(M))

using the so-called gap penalty( M) given by

S(M)

UM)=gS(M)+h > (I —1), (19.3)

1=1
whereS (M) is the number of instances where a new gap in the alignmempteises/; is
the length of théth gap, ang, h are positive hyperparameters, with commonply; h. See
Rodriguez and Schmidler (2010) and Fallaize et al. (204yrinally, the effect of using
this prior withg > h > 0 compared tgs = h = 0 is that among alignments with the same
likelihood, preference is given to those where conseciytivembered atoms are matched,
and where this fails, preference goes to those where thetehethatoms are consecutive.

Using this prior in place of that used by Green and Mardia @0@ith other modelling
details unchanged, leads to the posterior

p(M, 4,70, 2,) o | A"p(A)p(r)e exp(~U(M)) T] <

J M

O (x; — Ay — T)/o\/2}>
CNDL |

(19.4)
Although the gap penalty is commonly expressed in the fo®3{1 this form is arguably
ambiguous, and it can helpful to express it more explichsllaize et al. 2014). Le¥/ be a
binarym x n matrix with L 1s, located in entrie§;, k;),i = 1,2, ..., L, where thejs and
ks are consistently orderefl; < jo < ... < jp andk; < ko < ... < kr. This represents,
of course the matching of;, andyy,, fori =1,2,..., L. Then the gap penalty can be

written
L+1

UM) = [f(ji — Gi1) + f (ki — ki—1)] (19.5)
i=1
where f(1) = 0 and forr > 2, f(r) = g + (r — 2)h. Here, we writej, = ko = 0 and
jryi=m=+1, kpy1 =n+1. We take U(M) = 400 if the js and ks cannot be
consistently ordered, that is, if the alignmétitis inconsistent with the sequence ordering;
suchM have zero prior probability under this model.

In Fallaize et al. (2014), the MCMC algorithm of Green and tar2006) is adapted to
sampling for the posterior distribution for the gap priordeb The resulting algorithm
relies upon proposing stepwise updatesMb corresponding to adding, removing, or
switching a match. These are particularly easy to implerf@rthe gap prior. If we insert
a new match(j*, k*) between(j;, k;) and (j;+1, ki+1), then the reduction in total gap
penalty is the sum of two terms, one from tfeeand one from thés. The term from thgs
is equal to

g if jig1 —Ji =2,
h if j;01—Jj; >2andj*=j;+1orj. —1, and
2h — g otherwise
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These three possibilities correspond to filling (and so ielating) a gap, shortening a gap,
or splitting a gap into two. The term from tls has the same form.

A feature of this gap model that some might feel unappealirtgitively is that,
conditional on the number of matches and the number of ghpsntices of the: and
y points forming those matches are a priori independent.dt) fhe penaltyU (M), and
hence the probability(A/), depends only o, and.S whereS is the total number of gaps
in the two sequences combinetljs the number of blocks of consecutive all-zero rows or
columns inM. To be explicit,

U(M) = (g — h)S + h(m +n — 2L). (19.6)

Thus, e.g., if there are 3 matches and:thedices arg4, 5,9), then under this model the
indices(7, 8,12) are exactly as probable 8,11, 12). Indeed, ifm = 9 andn = 15, this
probability is also the same as that thendices(1, 2, 3) matchy indices(2, j, 14), for any
j=4,5,...,12 as all of these situations give= 3 and.S = 5. The penalty (19.3) should
therefore more accurately termed a ‘gap-count’ penalty!

Changing the specification df (M) to better match intuition, or different scientific
judgement, about likely patterns of insertion and deletwould often still yield a
distribution amenable to posterior sampling using an gmpaitely modified MCMC
algorithm. This would be especially straightforward if thenalty remained a sum over
the individual gaps, but all that is really needed is thatdhange to the penalty when a
match is deleted, added or switched is cheaply computedhimga practice that it uses
only information that is local to the revision i . Two possibilities that come immediately
to mind are to use (19.5) but with a functignthat is strictly concave but still increasing
for positive gap lengths, or to use a form where the penaltydscreasing function of the
correlation between the matchégl k) indices — with the effect that in the first example
above, the: indices(4,5,9) are less likely to be matched to thendices(7,11,12) than
to (7,8,12).

19.4 MAD-Bayes

MAD-Bayes (MAP-based Asymptotic Derivations from Bayes)ai novel methodology
for fitting complex stochastic models due to Broderick et(2013). It was devised to
meet the sometimes contradictory desiderata of complyitigthe Bayesian paradigm and
delivering practical methodology that can be executed geigkly even on large data-sets.

MAD-Bayes is essentially a simple framework for deliversmall-variance asymptotic
approximations to MAPrbiaximum a posterioyiestimation, yielding results that, while not
usually of closed form, are neverthess typically amenabdelution using fast optimisation
techniques. It exploits the fact that in many statisticatlele, when the likelihood is taken
to a ‘small-variance’ limit, a non-trivial limit is obtaimefor the MAP estimator, provided
that hyperparameters in the prior are also taken to api@dimits. Except in the simplest
of cases, there may be more than one way to do this, givingrdift non-trivial limits, so
some judgement is needed.

Although MAD-Bayes was conceived as a perspective to takéhén presence of
nonparametric priors and models with discrete allocattoumctures such as mixtures and
clustering, the idea can be more simply illustrated and tstded with a toy example from
parametric Bayes. Suppoge- N (X 3, c?) with a normal prior;3 ~ N (3, 72I). Then of
course the posterior is

Bly ~ N ({U_QXTX + 712 Yo 2 X Ty + 17280, {02 XTX + 7'_2[}_1)
(29.7)
The posterior mean and mode are bot”X + al} '{XTy + afy}, the value
minimising ||y — X 3|2 + «||3 — Bo||* over 8, wherea = o2 /72. This is a nontrivial
combination of data and prior information, provididg< o2/72 < oo strictly. Unlike the
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other applications of the MAD-Bayes principle for approxitng the posterior mode and
later the posterior distribution, discussed later in thiapter, these results hold exactly for
any positives?2.

The canonical example of MAD-Bayes presented by Brodericid.e(2013) provides
an extension to the classic&-means clustering algorithm that they c@lP-means.
They propose clustering multivariate ddtey, zo, ..., z,) by partitioning the index set
{1,2,...,n} as a disjoint uniorUjK=1 C;, where K, {C;} and cluster mean§y;} are
chosen to minimise

K

DD M — il + (K = 1A%, (19.8)

j=14€C;
A being a regularisation constant. This approach, intujtiveasonable in itself, can be
derived by a MAD-Bayes argument approximating the MAP eatevof the clustering
under a Dirichlet/Chinese restaurant process mixture in@@e1984). As witha in the
normal linear model example above, the constehts the ratio of the variance? to a
function of a hyperparameter in the prior, so the asympfaimework again demands that
the prior concentrates as the variance decreases. Bridgra. (2013) further illustrate
the idea applied to feature learning, particularly exjgjtother Bayesian nonparametric
prior models such as the Indian buffet process, and varigtehsions. The idea has more
recently been used in feature learning for studying tumaiedogeneity by Xu et al.
(2014).

A different kind of recent application is to image segmentatPereyra and McLaughlin
(2014) apply a MAD-Bayes argument to the posterior arisiogifan image model based
on a hidden Potts—Markov random field. Computing the MAPr&st? in this problem is
NP-hard, but a convex relaxation is possible, leading @itéty to an objective function of
the form

K

> > Allyi =il P+ [lwi — w1} + Bl Vall, (19.9)

Jj=14€C;
to be minimised over, 11, {C;} and K, given a data image. Here ||Vz||; is the ¢,
norm of the 1st order discrete gradient of the hidden image convexification of the
[|Vx||p arising formally from the model. The minimisation overis equivalent to a
total-variation denoising problem, of a kind which has bestensively studied in the
recent optimisation literature and that can be solved véfigiently even in very high-
dimensional scenarios using parallel proximal splittingthods. The minimisation over
the other variables involve&-means clustering.

19.5 MAD-Bayes for unlabelled matching and alignment

To develop a MAD-Bayes method for matching and alignmentuse (19.1) to obtain,
ignoring additive constants in the log-posterior,

—40%log p(M, A, 7|0, z,y) = —40” log{|A|"p(A)p(7)}

— 40”Llog(p/X) + 40°dLlog(c/+/2) + 20 log 2m + Y _ |lz; — Ayy, — 7|[>.  (19.10)

ik
JIW

According to the MAD-Bayes approximation paradigm of Brmide et al. (2013),
we should examine this function in the small-variance linais o2 — 0. For a non-
degenerate limit in this asymptotic analysis, the priornmdnbe held fixed. Suppose
p/\ = exp(a/40?) for some real constamt. Then asr — 0 in (19.10) we obtain

—40?%logp(M, A, 7|0, x,y) — —aL + Z ||z; — Ayr — 7|2

i~k
j]ﬂ
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Thus finding the MAP estimate af/, A, 7, the values maximising the log posterior, is
asymptotically equivalent to minimising the penalised sofrsquares

—aL+ ) [la; — Aye — 7| (19.11)

i~k
j]\l

The similarity in general form between (19.11), and (19:8)10.9) is clear.

When « > 0 there is a non-trivial solution, and the optimisation ssrte limit the
number of matcheg; informally, with A andr held fixed for simplicity of the argument,
including an additional matcly’, &) will decrease the penalised sum-of-squares if and
only if ||£L’j/ — Ay — ’7'||2 < «.

The parametet controls the behaviour of the prior parameigh in the small variance
limit: positive o implies thatp/\ — oo aso? — 0, at a particular rate. This is easy to
understand qualitatively: if the noise variance is redusedhat matches become harder
to find, that must be compensated by concentrating the priab/f on higher numbers of
matchedl..

In summary, this simple analysis of MAP inference in our Bage model has reduced
to an optimisation problem, penalised least-squares, dtheafairly simple structure by
the standards of problems addressable by modern options&ihniques. For fixed, 7,
optimisation overM is an instance of a weighted matching problem for a bipagtigph,
for which the Hungarian algorithm (Jacobi 1890; Munkres7)9&rovides a solution; this
is usually posed as a maximisation problem and the weightiga(@, k) to be used would
be simplymax{0, « — ||z; — Ays, — 7||*}. For fixed M, optimisation overd andr (say,
in the case of rigid body transformation) is an example ofcRrstes analysis. It is easy
to see (since each step reduces the value of the criteriof1(1&nd because the set of
possible alignments is finite) that alternating betweeséhwo steps defines an algorithm
that converges to a possibly local optimum in a finite numbeteoations. We stress that
this may not be a global optimum as complex models often leacuiti-modal posteriors;
we comment futher on multi-modality in Section 19.11.

This simple idea could no doubt be improved using technifpoes modern optimisation
methodology. But even without such improvement, this atgor runs very quickly.
Without making any attempt to optimise coding of the outeploan implementation iR,
using functionsol ve_LSAP from package| ue and functionpr oc OPA from package
shapes provides an algorithm that runs in 0.03 seconds on a 3.20@btepsor for the
small problem in Section 4.2 of Green and Mardia (2006), todrepared to 10.85 seconds
for 10° sweeps of the MCMC sampler on the same problem (but whichurfseoprovides
a much richer inference).

Note that use of the Hungarian algorithm, or other code ferabksignment problem,
guarantees that the inferred alignment is feasible in theesthat no point is simultaneously
matched to more than one point in the other configuration,oimtrast to the formally
somewhat similar method using the EM algorithm to compugerttaximum likelihood
estimate of the alignment (see for example Kent et al. (2004)

There is a related approach called ‘Softassign Procrusteshis problem due to
Rangarajan et al. (1997). This proceeds by first relaxingctimstraint thaf\/ is a binary
matrix to set up an iterative deterministic annealing dtgor using Lagrange multipliers
that alternates between updating the geometrical parasreate updating/; the method
appeals to a theorem of Sinkhorn (1964) to deliver a soldtiamhich M is in fact binary.
The Softassign Procrustes algorithm has been given an EM#terpretation by Kent et
al. (2010).

19.6 Omniparametric optimisation of the objective functin

An interesting perspective on the optimisation of (19.1tbyes simultaneous consideration
of all « € (0, 00), delivering what is often called a ‘regularisation patt@r(&xample in the
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context of the Lasso (Efron et al. 2004)). Picture a two-disienal scatter plot of points,
each representing a possible alignm#fit with horizontal coordinatd.(1) and vertical
coordinatezj,ﬁk |z — Ay, — 7|2

The optimalM according to (19.11) corresponds to the point where a lirdagfea is
a lower tangent to the scatter of points, and the set af/athat are optimal for some is
represented by the lower convex hull of the configuratiorcaBee there are only finitely
many possible values af/, this lower convex hull is a polygonal line, so there exists
a finite grid of values ofy, sayag > a3 > a2 > -+, such that for alle € (@;y1,q4),
1=0,1,..., the optimalM is constant, say\?[i. Note thatL(]\?[i) will decrease withi.
One approach to constructing the and MZ;, following a suggestion of the referees, is
to proceed sequentially far= 0,1, ..., using eachy; as a starting point for determining
[O7AE N

The set-up also invites comparison with that of Lau and Gf@é07), who discussed
optimal Bayesian point estimation of a clustering (of gerpression profiles) based on
a pairwise-coincidence loss function. ‘Omniparametrigtimisation of the expected loss
over all values of the parameter in the loss function was émgnted in a fast heuristic
algorithm, which might be used to inspire a similar appro&zhhe present problem.
Following that paradigm would suggest iteratively refinthg grid («;), starting with an
initial pair of (low, high) values; the recursive step toisgh interval («;11, «;) would
search for a alignmen¥ whose representative point in this diagram lies outsidditiee
segment determined by the interval endpoints.

19.7 MAD-Bayes in the sequence-labelled case

In the sequence-labelled case, the points in each configni@te numbered in sequential
order (along a protein, in typical application) and we cam tinss numbering in specifying
a prior on the alignment matrid/. This leads to the posterior (19.4) instead of (19.1).
The ‘energy function’U (M) in the prior for M may take the gap penalty form (19.3)
or something more general, either with the same intentigorafoting or insisting upon
sequence order being maintained, or with some other purpose

For such a posterior, we obtain

— 402 logp(M, A, 7|o,z,y) = —40? 10g{|A\”p(A)p(T)vL}

+ 40%U (M) + 40%dLlog(c/+/2) + 202 log 27 + Z |z; — Ayr — 7|>. (19.12)

Ik

Since all of the other terms vanish@% — 0, we need for a non-trivial limit thal/ (1)
or its parameters scale in such a way thatU (M) has a non-trivial limit. For example,
in the case of the gap penalty (19.3)8i?h — a and40?(g — h) — (3, then according to
(19.6) the resulting optimisation problem is to minimise

—aL+BS+ Y |lz; — Ay, — 7% (19.13)

i~k
'7]\4

Intuitive interpretation of this objective function is kestraightforward: adding a match
always increased by 1, but the associated changeSnmay be+2,+1,0,—1 or —2.
Optimisation over the alignment for fixed and r is no longer a weighted matching
problem, taking this set-up out of reach of the Hungariammtigm; as suggested by the
referees, there may be a role here for dynamic programming.
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19.8 Other kinds of labelling

In their section 3.6, Green and Mardia (2006) propose a waxtend the model leading
to (19.1) to allow simultaneous model-based inference tahlignment when the points
in the observed configurations are recorded as belongindféoenht clusters, or ‘colours’,
and pairs of points where both belong to the same cluster are likely to be matched. An
example in protein bioinformatics arises when the amindsaicharacterising the observed
points are categorised as hydrophobic or hydrophilic (jpbssubdivided into charged,
polar and glycine). The model extension achieving this amsto modifying the prior on
the alignment matri¥\/ to favour like-coloured matches, so provides a general ar@sm
for handling ‘partially labelled’ configurations, wherélkss are not unique.

The modified prior onV/ that was proposed has the form

L
p(M) o () TT expodlry = sil + 02fr; # si)
Ik
wherez; is colouredr; andy;, colouredsy, instead of (19.2). This modification needs only
trivial changes to the Metropolis—Hastings updatingdin the posterior simulation.
It is easy to see that such modified priors lead also to a simalgified MAD-Bayes
objective function. The penalised sum-of-squares (19slfeplaced by

—al + Z {llzj — Ay — 71> + 7' I[rj = s] + 8'I[r; # skl }, (19.14)

ik
J}\/I

wherey’ = 402~ andd’ = 4026.

Numerical optimisation of (19.14) can again in principle dsidressed by alternating
between optimising ovel/ and overA andr, and again the former step is an instance of
a weighted matching problem, since the objective functemlze expressed as a sum over
{(. k) : My = 1}

The extensions in this section and the previous one can lyeddi combined,
simultaneously penalising gaps and favouring like-caddumatches, and giving the
objective function

—aL + (S + Z {lz; — Ay — 71> + ¥ I[rj = sp] + 6'I[r; # si]} -

]ZM

19.9 Simultaneous alignment of multiple configurations

Ruffieux and Green (2009) generalised the two-configuratiethodology of Green and
Mardia (2006) to handle the case of multiple configuratidimey argue that information is
lost by treating the configurations pairwise; the truth @ th most easily seen in the kind
of latent-true-configuration model they use (since we ghaunt to use all information at
once in the implicit inference about the positions of themdpoints), but the point will be
generally true. Kenobi and Dryden (2012) match multiplefignmations using a model that
considers them only two at a time. The ideas illustratedigxdthapter will continue to apply
mutatis mutandigo the multiple-configuration case, although | do not knowettler the
discrete optimisation algorithms that would be neededfigiémentation are still instances
of standard optimisation theory problems.

19.10 Beyond MAD-Bayes to posterior approximation?

The motivating example in the Gaussian case delivered ttobendosterior (19.7) not only
the posterior mode. Could we extend the MAD-Bayes persgatti deliver at least an
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approximation to the posterior, by slightly refining the mggotic argument? In this section
| attempt only a preliminary, speculative answer to thissjjio@, which seems a promising
subject for further investigation.

For the unlabelled case, leaving aside technicalitied#®moment, the argument leading
to the penalised least-squares objective function (1%etjiplly well delivers the formal
approximation, valid ag? — 0,

p(M, A, 7lo,z,y) ~ e*X/* exp{(—=1/40%) Y " |lz; — Ay, — 7]} (19.15)

ik
J}\/I

Our focus will be to investigate the form of the density on tight hand side. For
definiteness, we take the case of rigid-body transformstiemthatA is special orthogonal.

Itis possible to make some progress interpreting the ajipiaie joint posterior (19.15)
by considering the full conditionals for each 4f - and M in turn.

For A,
> ey = Ay = 7l?) = {llay — 7l + [ywll® — 2(Ag) " (5 — 1)}
j]\~4k jﬂk
= oy = 7P+ ) sl P = 2 { AT (@ — )yl }
J~k J~k j~k
M M M
(19.16)

This reveals that under the approximate distribution (3.4 givenT andM (andzx, y, o)
has a matrix Fisher distribution (Mardia and Jupp 2000, $.28s shown in Green and
Mardia (2006). The normalising constant of this distribatis known, so thatl can be
integrated out to give

p(M.7lo,2,y) = e/ exp{(=1/40%) 3 lla; — 711> + [lell*}o F1 (p/2, (1/160") FT F),
Ik
M
(19.17)
whereF =37, (z; — T)yi depends on both and), as well as the data. This does not
M

seem amenable to further analytic simplification.
Similarly, we can evidently extract from the right hand saf€19.15) the approximate
conditional forr given M and A as

T|M, A, z,y,0 ~ N(L* Z(x] — Ayy),20%/L),
Ik
while the approximate conditional fad givenr and A is also explicit but hardly tractable.

In an effort to gain more insight into the form of the approate posterior, we could
consider one of the approximations to the matrix Fisherridigion developed by Khatri
and Mardia (1977) and Bingham et al. (1992). However, theseengoo intricate to use for
practical statistical analysis.

So let us consider further approximation: we could try toauseormal approximation for
p(A|M, 7, z,y,0). Suppose thatl ~ MatrixFishef F') with F' non-singular; note that this
demands that thé/ in question matches sufficiently mary, y) pairs with coordinates
in general position. Now lei = (FT F)!/2 be the elliptical part of and N = FK~!
its polar part (Mardia and Jupp 2000, p. 286). LeAV T with A = diag(d1, 2, .. ., d4)
be the spectral decomposition &f. In the concentrated case, where &lbecome large
(many matches), we have (Peter Jupgrsonal communication

(A—N)~NVSVT
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wheresS is a skew-symmetrix matrix withs; + 6,;)*/%s;; ~ N(0, 1), independently.

It seems probable that the argument leading to this can meedetd yield a joint Normal
approximation fomp(A, 7|M, z,y, o), although | have not attempted to verify the details.
Under such an approximation, the approximate joint past¢i9.15) becomes a Normal
mixture distribution, and this seems to be the analysis 8f13) most likely to be useful
for numerical implementation. More work is needed here.

Returning to the mathematical basis for the approximatiorigorous analysis would
need to establish that the approximation of densities tleahawve investigated really does
imply convergence of the probability measures (say, in #ress of total variation norm)
under suitable regularity conditions.

19.11 Practical uses of MAD-Bayes approximations

It is hoped that the optimisation-based techniques sugdest this chapter could be
developed to make a practically-useful contribution to hmdblogy. They seem to offer
to supply some of the advantages of the Bayesian approactablypdreating uncertainty
about the alignment and the geometrical transformatiomsgtmically and simultaneously
— without having to pay the price of relying on Monte Carlo gartation.

However, even neglecting the fact that the Bayesian setagptd be approximated to
allow delivery of these optimisation solutions, there areeocaveats. In particular, they are
not a panacea for the problems of multi-modality that carelédCMC methods. The
MAD-Bayes perspective is really blind to the possibly exigte of modes other that the one
under consideration, and numerical optimisation methedslrio be special and carefully
chosen to deliver optima of multi-modal objective funcsoreliably, just as MCMC
methods have to be specifically designed to handle multiainadget distributions.

It may be useful to regard optimisation approaches as congary to posterior
sampling — for example, MAD-Bayes might provide a startinginp for a MCMC
simulation, from which perhaps a rather short MCMC run mibkt used to assess
variability; again this would demand some guarantee abamitnadality for reliable
inference. This is very much in the spirit of the work of Max@it al. (2007).
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