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Abstract

Carlin and Chib proposed a Markov chain Monte Carlo method for
exploring alternative models. We show that, contrary to a claim by
Carlin and Chib, it is not. necessary to sample from the pseudo-priors
which are a feature of their approach. Although this may improve
the efficiency of the Carlin and Chib method, examination of one of
their examples suggests that the reversible jump method of Green is
considerably better. For this example, we also calculate the fractional
Bayes factor, which avoids the specification of artificial proper priors,
which are needed by both the Carlin and Chib method and reversible
jump.

1 General framework

A fundamental problem in statistics is the comparison of alternative mod-
els, often for the purpose of choosing a most appropriate model. Within
the Bayesian framework the key tool for comparing models is the Bayes fac-
tor. Recently, two Bayesian methods based upon Markov chain Monte Carlo
methodology have been proposed, by Carlin and Chib (1995) and Green
(1995), to compute Bayes factors. We consider first the method of Carlin
and Chib, and demonstrate that their device of pseudo-priors is unnecessary.
We then compare their method with that of Green, using one of Carlin and
Chib’s example datasets. Finally, we also exhibit the fractional Bayes factor



of O’Hagan (1995) for this example, and remark on the relative computa-
tional costs of the different approaches.

In Carlin and Chib’s product-space approach to MCMC computation for
Bayesian model choice, artificial “pseudo-priors” have to be specified, both to
define their hierarchical model, and for use in updating model parameters. In
this note, we show that their approach can be modified to avoid using pseudo-
priors for this second purpose, while still maintaining the required equilibrium
distribution. The consequences are both that considerable computer time
can be saved, and that there is no need to conduct pilot runs tuning these
pseudo-priors to achieve reasonable statistical efficiency.

As do Carlin and Chib, we address the model choice problem by means
of a hierarchical formulation in which there is a model indicator k£ € K, a
parameter vector 0, for each k, and data y. We will write 8 for the extended
vector with components (6;,7 € K). Carlin and Chib’s approach is to operate
on the product space containing k and all 8, simultaneously; it is therefore
necessary to specify the distribution of each parameter vector whatever the
value of the model indicator, in order to define fully the joint distribution of
unknowns and data. Thus, we assume given the model probabilities p(k) for
k € K, priors p(0k|i) for all k,i € K, and likelihoods

p(ylk,€) = p(ylk, Ok); (1)

this identity, which is quite natural, is equivalent to assuming that, given the
model indicator k, y and 05 are independent of 0; for 7 # k. In terms of these
ingredients, the joint distribution of all variables is

p(k,8,y) = p(k) [ [ p(6:l%)p(ylk, 0). (2)
ik
In contrast to Carlin and Chib’s formulation, there will be no practical ob-

jection to defining p(6;]k) independently of k in our approach.
To sample from the posterior distribution

p(k, Oxly) o< p(k, Bly) o< p(k,8,y), (3)

we propose MCMC moves of two types: an update of k, and an update of the
0 only for the current value of the model indicator k. Fach of these moves
preserves the target distribution

p(k,8ly) o< p(k,0,y)
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individually, as we shall see below, and the moves can therefore be used alter-
nately, completely at random, or by some means of restricted randomisation.
Carlin and Chib use only alternate updates.

To update k, any standard method can be used. At least for a small
number of candidate models, it will be convenient to use a Gibbs kernel (as
do Carlin and Chib), that is to sample from the full conditional

(k) [ Licxc (O:lR)P(Ylk,0) ()
> ow P(E) [Tiex p(OslKp (YK, 6)’

alternatively, a Hastings kernel would be even easier to use, and remains

p(kl6,y) =

practical for any number of models.

To update @ when k is the current value of the model indicator, all
0; for i # k are left unchanged, in contrast to the method of Carlin and
Chib, who propose to update all ¢; from their full conditionals, and thus
need to simulate from pseudo-priors. The “active” 6y is updated using any
MCMC kernel, Qx (6, — 6},) say, that satisfies detailed balance with respect
to p(frlk)p(ylk, Or) (or, equivalently, with respect to p(0x|k,y)). Note that it
is exactly such kernels that would be used in a reversible sampler for compu-
tation for model k on its own. A valid example would be the Gibbs kernel,
that draws the new value from p(|k,y)) itself. Whether or not Gibbs is
used, the complete kernel for the 8 update can then be written

PO —0)=> Ik=1Qi0: — 0) ) [ ] 106 = 6],

ek J#£4

where I[] denotes the indicator function. The detailed balance condition we
are assuming on ); says that

p0:|i)p(yli, 0:)Q:(0: — 6) = p(6:li)p(yli, 0;) Qs (0; — 65)
for all 0;,0;. This can be rewritten using (1) as

p(0:li)p(yli, 0)Q:(0; — 0;) = p(0;]9)p(yli, 8")Q:(0; — 6.).
Multiplying by p(k) [ 1. p(0;k) x Ilk = 4[], ., 1[6; = 6}], and summing

over all © € K, we obtain

p(k,6,y)P(0 — 0') = p(k,0' ,y)P(6' — 0),



that is, we have detailed balance for P, as required.
Essentially the same proof shows that if the Q; satisfy only global balance,

[ 0:1)pto1 00100 — 80, = p(@IIP(s150)
then this is also inherited by P:
/p(k,@,y)P(B — 8)d6 = p(k,0',y).

This is therefore sufficient to ensure that the target distribution (3) is left
invariant by P, even though P is no longer reversible.. _

In drawing information from the realised values of (k,8), note that from
(2), both the marginal distribution of k alone and the conditional distribution
of 6 given the model indicator takes the value k, are correct for each k € K.
They are not affected by the form of the pseudo-priors, which only influence
the transitions updating k.

An example of the procedure we have described, in which both £ and 6
updates use Gibbs kernels, is mentioned by Carlin and Chib in the last para-
graph of their section 2 as a “tempting alternative”. There it is apparently
suggested that the algorithm might not converge to the correct distribution,
or at least, that conventional Markov chain convergence theory is insuffi-
cient to establish this. As we see from the proof above, this suggestion is
unfounded.

In practice, it should be adequate to set p(6;|k) = p(6;]¢) for all k; an
advantage of this is that these terms then all cancel from (4). In contrast,
in the method of Carlin and Chib, it would seem necessary to set p(6;|k)
approximately equal to p(6;|i,y) for k # 7 to ensure good mixing.

2 Example

Carlin and Chib present an example in which there are two alternative regres-
sor variables to explain a single dependent variable. For n = 42 specimens
of radiata pine, the maximum compressive strength parallel to the grain y;
was observed, along with the specimen’s density x; and its density adjusted
for resin content z;. The two competing models seek to explain strength by



regression either on density or on adjusted density. Thus, Model 1 asserts
that
yi:a’_l—/g(a;’i—a—:)—*_ﬁ'i? EiNN(O>UQ)>

whereas Model 2 asserts that
yi =9 +6(z—2) te, e ~ N(0,7%),
fori=1,...,n. Hence 8; = (o, 8,0%) and 65 = (7,6,7%). Carlin and Chib

assume independent normal priors for «, 8, 7, 6, 0 and 7%, specified by

a ~ N(3000,10%), B~ N(185,10%), o ~ 60072,
v ~ N(3000, 10°%), § ~ N(185, 10%), 7% ~ 600%x5 2.

The distributions for ¢ and 72 have means and standard deviations equal to
300%2. We denote the prior probability for Model ¢ by P(M = ¢) = m;. Then
the posterior is

mo " Cexp(—Q(y,x,01)if M =1,
oo lva o e SN o e, O

where

Qy,x,61) = o {600+ 3" (3 —a—plai— )}
+107%(a — 3000)% + 107%(8 — 185)?,

The full conditional distributions are easily derived. Those of «, 3, v and ¢
are normal and those of o2 and 72 are inverse chi-square. The full conditional
distribution for M is just proportional to the two lines of (5). In our MCMC
runs we set m; = 0.9995, my = 0.0005, the same values as those used by Carlin
and Chib, who then found a posterior probability of 0.3114 for M = 1.

We ran a single chain with updating steps alternating between updating
the parameters 8, for the current model and updating M. For the M update
we used a Metropolis step with proposal to switch M, so that if for instance
the current model is Model 1 (M = 1), we update to M = 2 with probability

min {1, (ma/m)(* /7)" " exp [(Q(y, x,61) — Q(y, 2,62)) /2] } -

The Metropolis step is preferred to a Gibbs step here because it maximises
the chance of changing M. Nevertheless we found that the chain mixes very
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badly. In a run of 100,000 iterations (i.e. pairs of updates) the proposal to
change M was accepted only 6895 times. Furthermore, the distributions of
sojourn times in each model are extremely skewed. The 3448 sojourn times
in Model 2, for instance, had a mean of 22.65 but a standard deviation of 346.
Sojourn times of 11,230 and 15,802 iterations were observed. Essentially, the
ergodic estimate of the posterior distribution for M depends on the observed
mean sojourn times in the two models. The mean sojourn time in Model 1
was 6.356, and the resulting estimate of the posterior probability that M =1
gﬁ%%g = 0.2191. But because of the high variances of sojourn times
this is a poor estimate. Based on the sample variance of 346, in order to
estimate the mean sojourn time in Model 2 with a standard deviation of
0.05 (which is the kind of accuracy needed to match the accuracy claimed by
Carlin and Chib) we would need to observe (346/0.05)%, or about 5 million
sojourns. Figure 1 plots the cumulative relative frequency of Model 1, and
demonstrates the lack of convergence.

The reason for the problem is not hard to find. When the chain switches
out of Model 1, it is more likely to have done so at a value of 8; with a
relatively low posterior density. For the chain to switch back to Model ¢
it must go back to the same value of 8;, which therefore typically has a
low chance of occurring. The extremely long sojourns are associated with
trying to switch back to a parameter value with very low probability. The
Carlin and Chib method avoids this problem by updating the parameters of
the models that are not current, so that the chain is not always trying to
switch back to the same point. Of course, when there are very many models,
this efficiency is achieved at a high price, because the parameters of every
model are updated every iteration. Their method will not be viable when the
number of competing models is large, such as in complex mixture or partition
models, or in variable selection problems with many candidate explanatory
variables. In such models, it is a large overhead even to retain current values
of parameters in all the possible models.
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3 Reversible jump method

An alternative is the reversible jump MCMC method of Green (1995). This
method is generally significantly more flexible and more efficient than the
Carlin and Chib approach. In fact, their example of competing simple re-



gressions provides an elementary illustration of the reversible jump method.
In general, the reversible jump approach considers a move from (M =i, 6,)
to (M = j, 8;) where instead of 8; being the last visited value of that pa-
rameter it is a (possibly random) function of ;. The idea is that the value
of the 8; proposal should somehow represent a natural correspondence to
0;. In the present example, both 6; and 0y are parameters in identical re-
gression models using rather similar explanatory variables, and the natural
choice of correspondence between the parameters when a change of model
is proposed is simply 8, = 8,. We therefore run a chain which alternates
between a Gibbs update on the parameters 6; of the current model and a
Metropolis step proposing a switch from (M =1, 8;) to (M = j, 0, = 6;).
The acceptance probability for a step from Model 1 to Model 2 becomes

min {1, (my/m) exp [(Q(y, x,61) — Q(y, z,61)) /2]} .

A single run of 100,000 of these iterations produces vastly better mixing
than the chain in the previous section. Figure 2 plots the cumulative relative
frequency of Model 1, which now seems to be converging well. Figure 3 shows
the relative frequency of Model 1 in successive blocks of 100 iterations, which
indicates almost instant convergence and stability. The autocorrelations of
this sequence of 100-iteration means are all negligible. Their mean is 0.29063,
which is therefore the estimate of the posterior probability of Model 1. The
sample variance of these 1000 blocks is 0.0034543, and therefore the estimated
standard error of the estimate is 0.00186. This is as good as the accuracy
claimed by Carlin and Chib from a total of 250,000 iterations of their method.
Note also that their method takes twice as long per iteration, since both sets
of parameters must be updated each time, and this effect becomes much more
serious in problems with many competing models.

4 Resolution of computational discrepancies

There is, however, a computational discrepancy to be resolved here. Carlin
and Chib give an estimate of 0.3114 with s.e. of 0.00166 for the posterior
probability of model 1, whereas our reversible jump estimate is 0.29063 with
s.e. 0.00186. The difference of 0.0208 is 8 standard deviations from zero
(computing the standard deviation of the difference from the quoted s.e.s and
independence), so something is wrong with one or other of the computations.
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To resolve this, note that the Bayes factor is

Bia(y) = %

where

G(y) = / ply |0 p(6:) d0:.

Now both models are simple linear regression models, but this calculation
cannot be done analytically because the priors are not conjugate. Neverthe-
less, it is easy to integrate out the regression parameters from each model,
leaving a one-dimensional integration with respect to the error variance pa-
rameter to be done numerically. We obtain

oo ~0.5 -05 1 A
anly) =k / g~ (n+8) <£2 + 10_6> (Sm; + 10*6> exp <———Q3> do?
0 o} o 2

where

2 2

-1 -1 )
Qs = (6002 + Syy) g*2+<106 + ~G—> (g—3000)2+<106 +3 ) (B-185)

n

See = >.(z; — T)?, etc., G = S Says Syyw = Syy — San Say, &s usual, and k
is a constant. A similar formula applies for g(y), just replacing the z;s by
z;s (and in particular the same constant k appears). These integrals were
carried out by numerical integration using Simpson’s rule on 1000 equally
spaced ordinates. (As few as 100 function evaluations produced essentially
identical results, because of the nice smooth behaviour of the integrands.)

We found In By3(y) = —8.489. Combining this with the prior probability
for model 1 of 0.9995, we find the posterior probability to be 0.29135. We be-
lieve that this calculation is essentially exact, and certainly correct to three
decimal places. This suggests strongly that our reversible jump computa-
tion is correct, and that there must have been a flaw in Carlin and Chib’s
computation.

5 Fractional Bayes factor

In this example, we have used the same prior distributions as Carlin and Chib.
Specifically, they used weak, but proper, prior distributions. In the context
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of model comparison, O'Hagan (1995) argues that Bayes factors may be
highly sensitive to the specification of prior distributions on the parameters
of the competing models, when such prior information is weak. He proposes
an alternative method known as the fractional Bayes factor. The Bayes
factor is undefined if we use improper priors, which is why Carlin and Chib
propose proper priors, but this is the underlying cause of the resulting non-
robustness. The fractional Bayes factor (FBF) may be used with improper
priors, so avoiding an arbitrary and artificial specification of proper priors.
We computed the FBF for this example, using the improper priors p(«, §,0%) o

o~ 2 for model 1 and p(7,8,7%) o 772 for model 2. It is now possible to do
the calculation analytically, with the result that the fractional Bayes factor
using training fraction b is -

5. N\ ra-o/2
) = (522 -
vy.z

We find that the ratio Syy4/Syy.» of residual sums of squares is 1.501. Per-
haps the fairest comparison with the Bayes factor using proper priors is
obtained by setting b = 0, which is possible in this case and yields the factor
In BY,(y) = —8.529, and produces a posterior probability of 0.283 for model
2. We would generally prefer this sort of calculation rather than assuming
arbitrary weak priors. For this simple example where the FBF can be ob-
tained analytically, the contrast in computing effort is dramatic. The FBF-
is computed essentially instantaneously. The exact Bayes factor, using one-
dimensional integrations, is much slower (although on a modern computer
it is also almost instantaneous). The MCMC methods are massively slower,
although Carlin and Chib’s takes several times as long as reversible jump
(and apparently gets the wrong answer).

Note. This work was originally carried out in 1995-6. In view of the fact
that the reversible jump approach looked likely to be accepted very quickly as
the standard technique for model comparison by MCMC, making the Carlin
and Chib work of minor interest, it did not seem necessary for us to seek to
publish this paper. However, in view of several requests for details of our
work, we have prepared it in this limited publication form as a University of
Nottingham Research Report.
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Figure 1: Cumulative relative frequency of Model 1—Product space
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Figure 2: Cumulative relative frequency of Model 1—Reversible jump
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Figure 3: Relative frequency of Model 1 in blocks of 100—Reversible jump




