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ABSTRACT. We investigate the relationships between Dirichlet process (DP) based models

and allocation models for a variable number of components, based on exchangeable

distributions. It is shown that the DP partition distribution is a limiting case of a Dirichlet±

multinomial allocation model. Comparisons of posterior performance of DP and allocation

models are made in the Bayesian paradigm and illustrated in the context of univariate

mixture models. It is shown in particular that the unbalancedness of the allocation distribu-

tion, present in the prior DP model, persists a posteriori. Exploiting the model connections, a

new MCMC sampler for general DP based models is introduced, which uses split/merge

moves in a reversible jump framework. Performance of this new sampler relative to that of

some traditional samplers for DP processes is then explored.
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1. Introduction

Models incorporating Dirichlet process (DP) priors have played an important role in recent

developments in Bayesian applied statistics. The apparent ¯exibility of these models has found

application in diverse areas: density estimation, non-parametric regression, autoregression,

survival analysis, etc. In many applications, DP priors are not used directly for continuous data

because of a discreteness problem: a distribution realized from a DP is almost surely discrete, so

a random sample drawn from that realized distribution has positive probability of ties.

Exploiting this discreteness, rather than combating it, DP mixtures (MDP) are used instead,

providing a ¯exible model for clustering of items of various kinds in a hierarchical setting:

random effects, parameters of sampling distributions, etc.; an early example of this is found in

Lo (1984). Many modern applied non-parametric Bayesian methods use this clustering property.

The central role of the DP/MDP models in Bayesian non-parametrics, and the various lines of

research stemming from it are recounted in the recent article by Walker et al. (1999). An

inherent dif®culty of the DP model is that a single parameter controls variability and coagula-

tion, creating dif®culties for prior speci®cations. This has motivated much of the recent work on

generalizations of DP, including the construction of non-parametric priors based on more

¯exible control of the variability of the chosen partitioning of the space, as in Polya tree priors.

In a hierarchical framework, a natural alternative to DP mixtures is to use mixtures based on

multinomial allocations, thus increasing the ¯exibility of the allocation model; see Richardson

(1999) and Richardson et al. (2000) for examples of this in the context of measurement error

problems.

The purpose of this article is generally to relate the DP based models and associated

clustering methods to more explicit multinomial allocation variable approaches. By relating the

MDP model to a special case of a simple and familiar parametric model for mixtures, we throw
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a different light on the claimed non-parametric nature of the MDP model. Distribution theory

for this connection between model classes is explored in section 2. In section 3, we then

investigate some of the statistical implications of DP models compared to the corresponding

more ¯exible allocation variable approaches and illustrate these comparisons in a univariate

mixture context. We show in particular that the lack of balance of the allocation distribution

which exists in the prior DP model persists a posteriori.

Not least of the attractions of using the DP as a model component is the fact that Gibbs

samplers for both prior and posterior are readily derived. We go on in section 4 to compare

MCMC samplers for the two classes of models, and, motivated by this connection, introduce a

new sampler for general DP based models using split and merge moves. In section 5, we

compare the performance of new and old samplers for DP based univariate mixture models.

Finally, in the appendix, we begin to explore wider classes of models for partition and allocation

from a more axiomatic standpoint.

2. Distribution theory

Various non-parametric Bayesian hierarchical models have a structure which includes a n-vector

ö of p-dimensional variables (ö1, . . ., ön), with an exchangeable prior distribution giving

positive probability to ties and speci®ed, sometimes indirectly, in terms of a parameter á, and a

continuous distribution G0 on R p. Usually, but not necessarily, the variables (ö1, . . ., ön) are

not directly observed but parametrize the distributions for observables (y1, y2, . . ., yn), respec-

tively. We give concrete motivating examples for this set-up in section 2.3.

In these settings, a realization of such a ö provides simultaneously a partition of the n items

into groups, and a parameter value öi equal for all items in a group. Alternatively, we can view

ö as providing a set of distinct parameter values, together with an allocation of the n items to

those values. These viewpoints are not quite equivalent, since the second implies a labelling of

the groups.

2.1. Dirichlet process priors

One formulation for such a random vector ö is that using a Dirichlet process prior (see Ferguson

(1973) for the de®nition and properties of the DP process).

The DP model for ö is de®ned in two stages:

(a) a random distribution G is drawn from the Dirichlet process: G � DP(á, G0), where á
is a positive real number and G0 is a distribution on a space Ù, then given G,

(b) ö � (ö1, . . ., ön) consists of n i.i.d. draws from G.

Since in the DP, G0 is the prior expectation of G, the öi are marginally drawn from G0.

Let us examine the distributions of partition and allocation induced by the DP model. The

pattern of ties among the entries of ö determines a partition of I � f1, 2, . . ., ng, an unordered

set of d disjoint non-empty subsets of I , whose union is I ; the number d of subsets is the degree

of the partition; here we will call the subsets groups, denoting them generically by g. If we label

the groups 1, 2, . . ., d, we impose an ordering on them: g1 , g2 , � � � , gd . Then we can write

zi � j if i 2 gj, and de®ne è by öi � èzi
, i � 1, 2, . . ., n. We could use various possible rules to

order the groups, for example, (i) ordering the gj according to minfi : i 2 gjg, or, (ii) given an

order on Ù, ordering according to the values fè jg. Under the DP model and using (ii), all

allocations giving the same partition are equally likely.

We ®nd (e.g. Antoniak, 1974)
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p(g) � p(g1, g2, . . ., gd) �
ádÃ(á)

Yd

j�1

(nj ÿ 1)!

Ã(á� n)
�

ád
Yd

j�1

(nj ÿ 1)!

á(á� 1) � � � (á� nÿ 1)
(1)

where nj � #gj, j � 1, 2, . . ., d. It is sometimes useful to express this conditionally on d; we

have

p(gjd) �

Yd

j�1

(nj ÿ 1)!

jS(d)
n j

(2)

and

p(d) � ád jS(d)
n j

á(á� 1) � � � (á� nÿ 1)
, (3)

where

jS(d)
n j �

X
g

Yd

j�1

(nj ÿ 1)!

is the absolute value of a Stirling number of the ®rst kind (see Abramowitz & Stegun, 1972,

p. 824). These well-known relationships will be useful for establishing our limiting results in

section 2.4.

2.2. Explicit allocation priors

A more explicit formulation that arises naturally, particularly in mixture models:

(a) draws the number of groups k from an arbitrary distribution p(kjæ); then, given k, it

(b) draws an n-vector of allocation variables z, with zi 2 f1, 2, . . ., kg, from some distribu-

tion exchangeable over items;

(c) draws è � (è1, . . ., èk) as k i.i.d. variables from G0; and ®nally

(d) sets öi � èzi
.

Our canonical example of step (b) in this second formulation is to ®rst draw w from an

appropriate distribution on the k-dimensional simplex and then given k and w, draw fzig i.i.d.

with p(zi � j) � wj. We usually take w to have the symmetric Dirichlet distribution

D(ä, . . ., ä), so that the allocation variables are also exchangeable over groups; we then refer to

this set-up as the Dirichlet/multinomial allocation (DMA) model. A default choice is to take

ä � 1, making the weight distribution uniform on the simplex.

Note that the multinomial distribution allows the possibility of empty components (a

component j is empty if zi 6� j8i). Another possible allocation model, not further explored here,

would have been to draw z given w conditional on there being no empty components. This

model has been discussed by Wasserman (2000), in the context of non-informative priors for

mixture models with ®xed k. It would be straightforward to implement in a ®xed-k context

using rejection sampling, but a little more cumbersome with variable k as some normalizing

constants, depending on n and k, would need to be evaluated.

To ®nd the allocation distribution induced by the DMA model means marginalizing over the

weights w. We have p(zjw, k) speci®ed by

p(zi � j) � wj independently for j � 1, 2, . . ., k,
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and

p(wjk) � Ã(kä)

fÃ(ä)gk

Yk

j�1

wäÿ1
j

on the simplex fw: wj > 0,
Pk

j�1 wj � 1g, where this latter expression can be interpreted as the

density of any (k ÿ 1) of fw1, w2, . . ., wkg with respect to Lebesgue measure.

Integrating out w, we ®nd

p(zjk, ä) � Ã(kä)

fÃ(ä)gk

Yk

j�1

Ã(ä� nj)

Ã(kä� n)
� Ã(kä)

Ã(kä� n)fÃ(ä)gd

Y
j : nj . 0

Ã(ä� nj)

where nj � #fi : zi � jg.
For comparison with the DP model, it is helpful to express this as a distribution over

partitions. Since the groups are labelled 1, 2, . . ., k, there are k(d) � k!=(k ÿ d)! allocations z

giving the same partition g of the items 1, 2, . . ., n, where d is the degree of the partition,

d � #f j : nj . 0g. These allocations are equally probable under the DMA model, so we have

p(gjk, ä) � k!

(k ÿ d)!

Ã(kä)

Ã(kä� n)fÃ(ä)gd

Y
j : nj . 0

Ã(ä� nj) (4)

2.3. Using the DP and DMA speci®cations in hierarchical models

In Bayesian modelling of structured data, the speci®cation of a random n-vector ö in terms of æ,

ä and G0 in the DMA model, or á and G0 in the DP model, will form only a part of a full

hierarchical model. Other nodes will be added to the directed acyclic graph representing the

model, both ancestors of á, ä and G0 and descendants of ö.

As introduced in section 2, a typical data generating mechanism is that observables

(y1, y2, . . ., yn) are available, conditionally independent given ö and other parameters in the

model, with distributions of known form parameterized respectively by (ö1, ö2, . . ., ön). For

instance, all six of the applications listed in MacEachern & MuÈller (1994) include this feature.

In the DP case, this set-up frequently enjoys the misleading appellation of a `̀ mixture of

Dirichlet processes'' (MDP) model, the terminology of DP mixture models used by West et al.

(1994) being clearer. See O'Hagan (1994, pp. 288ff.) for further discussion.

At the top of the hierarchy, the parameters æ, ä and G0 could in principle be ®xed or random,

and if random possibly modelled hierarchically, depending on the context. Let us consider one

example, that of Bayesian density estimation using a ¯exible class of multivariate normal

mixtures, which has recently been discussed by MuÈller et al. (1996). Here the (y1, y2, . . ., yn)

are observed random quantities independently drawn from an uncertain distribution, to be

estimated. A hierarchical model is de®ned in which yi � N(ìi, Ùi), where the pairs of

parameters öi � (ìi, Ùi) are chosen to be dependent, but are marginally identically distributed

according to a product of normal N (a, B) and inverse Wishart densities W (s, S). Thus

G0(ì, Ùjç) � N(ì; a, B)W (Ùÿ1; s, S) and above G0 the hyperparameters ç � (a, B, s, S) are

also given prior densities.

In application to univariate normal mixtures, as implemented by Richardson & Green (1997),

æ is ®xed, and G0 set to be normal (î, k) 3 inverse-gamma (ã, â) where only â is random, with

a gamma hyperprior. We return to this set-up in more detail later in the paper; it provides a

running example, used to illustrate the calculations needed to implement MCMC methods for

these models, and the basis for our experimental comparisons.
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2.4. Connections between the DP and DMA models

The DP partition distribution arises from the corresponding distribution for the DMA model

under two different limiting regimes, as can be seen by comparing (1) and (4); in both cases, n

is ®xed. For the ®rst, suppose that in (4), ä! 0 and k !1 in such a way that kä! á. 0.

Then k!=(k ÿ d)! � (á=ä)d and Ã(ä) � äÿ1, so the right hand side of (4) converges to that of

(1). Formally, the consequence is that

pDMA(ö, yjk, ä, G0)! pDP(ö, yjá, G0)

as k !1 with kä! á. 0.

Thus, so far as the occupancy of non-empty components is concerned, the DP model arises as

a limit in which the number of components in the DMA model goes to1 while the total of the

Dirichlet parameters for p(w) remains ®xed at á. This limiting case of the DMA model was

studied by Neal (1992), see also Neal (1998); in some sense this seems to have been `̀ generally

known'', but we have been unable to ®nd a prior statement of this precise connection to the DP

process.

Alternatively, consider the DMA partition distribution (4) under the condition that there are

no empty components; we stress that this perspective is purely for drawing comparisons between

the models, and is not adopted in our proposed methodology. By analogy with the DP case, we

use the term degree and the symbol d for the number of non-empty components in the DMA

case. The event fnj . 08 jg that there are no empty components can then be written fd � kg.
We ®nd

pDMA(gjk, ä, d � k) �

Yd

j�1

Ã(ä� nj)

X
g

Yd

j�1

Ã(ä� nj)

:

On letting ä! 0, this converges to the right hand side of (2).

Thus the DP also corresponds to taking the explicit allocation Dirichlet/multinomial distribu-

tion for p(w, zjk), and both conditioning on nj . 08 j (that is, there are no empty components)

and letting ä! 0 (that is, favouring more unequal allocations). In this limiting regime we must

also set the p(d) distribution to be that given in (3).

In both models, the distinct öi, that is fè j, j � 1, 2, . . ., kg are drawn i.i.d. (given á or æ, and

G0) from G0 � G0(�jç).

It is instructive to see numerical values for the partition and allocation distributions for the

two models, for small n. See Tables 1 and 2. For example, compare the probabilities assigned

Table 1. Partition and allocation distribution for DP model, n � 4. All probabilities should be divided by

(á� 1)(á� 2)(á� 3). The notation hmi means that to save space, other cases of similar pattern and equal

probability have been omitted; there are m such cases in all.

Degree Partition Allocation

d p(d) g p(g) z p(z)

1 6 (1234) 6 1111 6

2 11á (123)(4) h4i 2á 1112 h2i á
(12)(34) h3i á 1122 h2i á=2

3 6á2 (12)(3)(4) h6i á2 1123 h6i á2=6

4 á3 (1)(2)(3)(4) á3 1234 h24i á3=24
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under either model to the partitions (123)(4) and (12)(34). Under the DP model, each partition

of the pattern (123)(4) is twice as likely as any of the pattern (12)(34), while under the DMA

model the ratio of probabilities is b=c � (ä� 2)=(ä� 1), or 1.5 in the uniform case ä � 1.

Thus, relatively, the DP model favours more unequal allocations. This is a general phenomenon,

and indeed is much more dramatic numerically as n increases. For example, for 100 items

partitioned into four groups, both models give astronomically more probability to each partition

with n1 � 97 and n2 � n3 � n4 � 1 than to one with n1 � n2 � n3 � n4 � 25, but the ratio is

about 4000 times greater for the DP than for the DMA with ä � 1.

3. Statistical comparisons between DP and DMA models

In this section, we explore comparative posterior performance of the DP and DMA models. Our

discussion is centred on marginal comparisons, whether of a global measure of ®t or of the

implied allocation distribution given by the two models. We focus entirely on properties

following from the joint posterior of the föig, rather than, say, from that of G, their unknown

distribution in the DP model.

On the face of it, such a basis for comparison may seem unfair to the DP model, which

through including G explicitly in the model, allows inference about G, and hence also uses a

different basis for prediction many steps ahead. Such features clearly differentiate the DP from

the DMA model in principle. However, it is precisely such aspects of DP-based inference which

we ®nd most untenable from an empirical perspective, since as already explained, G is discrete

with probability 1 a priori and hence a posteriori. Further, these additional opportunities for

posterior inference in the DP setting seem very seldom to be used in practice.

The ability of each model to ®t a dataset is crucially dependent on the number of components

allowed by the prior structure. Comparisons between the models must therefore take account of

this. It would be tempting to try to calibrate p(kjæ) and p(djn, á) a priori to have the same

impact on the respective models, but this seems not to be possible. In any case, a more general

and robust basis for comparison is to condition on the actual number of components. This is

aided by the fundamental conditional independence properties in each model:

(i) in the DP model, conditional on d, the hyperparameter á is independent of all other

parameters and the data;

(ii) in the DMA model, conditional on k, the hyperparameter æ is independent of all other

parameters and the data. However, this assertion is not exactly true with k replaced by d.

Table 2. Partition and allocation distribution for DMA model, n � 4. All probabilities should be divided by

(kä(kä� 1)(kä� 2)(kä� 3). The notation hmi means that to save space, other cases of similar pattern and

equal probability have been omitted; there are m such cases in all. Abbreviations: a �
ä(ä� 1)(ä� 2)(ä� 3), b � ä2(ä� 1)(ä� 2), c � ä2(ä� 1)2, d � ä3(ä� 1), e � ä4, k(r) � k!=(k ÿ r)!.

Degree Partition Allocation

d p(d) g p(g) z p(z)

1 ka (1234) ka 1111 hki a

2 k(2)(4b� 3c) (123)(4) h4i k(2)b 1112 hk(2)i b

(12)(34) h3i k(2)c 1122 hk(2)i c

3 6k(3)d (12)(3)(4) h6i k(3)d 1123 hk(3)i d

4 k(4)e (1)(2)(3)(4) k(4)e 1234 hk(4)i e

360 P. J. Green and S. Richardson Scand J Statist 28

# Board of the Foundation of the Scandinavian Journal of Statistics 2001.



Thus, by respectively conditioning on d and k, and exploiting these conditional independences,

we have a nearly perfect basis for the elimination of the effect of hyperparameters.

The only dif®culty is that in DMA, conditioning on d rather than k maintains a better parallel

with DP. Thus, in each of the comparisons we make below, we have tried to exercise our best

judgement about whether to use k or d in the DMA model, speci®c to that comparison.

3.1. Density estimates and deviances

For observables (y1, y2, . . ., yn), we summarize the quality of ®t of a point estimate h of their

density by de®ning the associated deviance

D(h) � ÿ2
Xn

i�1

log(h(yi)): (5)

(Note that we depart from the usual sense of the term `̀ deviance'' in not subtracting from this

twice-negative-log-likelihood some baseline value corresponding to a saturated model, because

in this non-parametric setting, such a baseline would be ÿ1.)

We base our comparisons between the DP and DMA models on the density estimates

produced by each, and statistics derived from these, for example global goodness-of-®t measures

such as D. In the Bayesian setting, the density estimate is simply the predictive distribution for

the next observation and so that is what we use here; note that we are not interested in prediction

per se, and so prediction more than one step ahead is not a relevant issue.

Note that several kinds of predictive densities for a new observation, corresponding to

different conditionings, can be constructed.

Let us ®rst consider as density estimate the unconditional predictive density for a new

observation y� given the data, p(y�jy, k). Using the event that y and y� are conditionally

independent given è, z and z�, it can be shown that

p(y�jy, k) � E
X

j

wj f (y�jè j)

����y, k

" #
: (6)

It will be convenient to write this function as ĝ k(y�), a quantity which can be computed on a

grid of y� values by averaging across the MCMC run, conditional on ®xed values of k. For the

DP model, we condition on the degree d and on the fact that the new observation does not create

a group by itself to de®ne the corresponding expression to (6):

ĝd(y�) � E
X

j

nj

n
f (y�jè j)

����y, d

" #
: (7)

To get a global measure of quality of ®t of the density estimates ĝ k and ĝd given by the DMA

and DP models, we thus compute respectively D( ĝ k) and D( ĝd) as de®ned in (5).

It is also of interest to understand the variability around these point estimates of density. Thus

instead of taking expectations, we condition at the highest level at which the models are

compatible, and consider the quantities g(y�) � p(y�jy, z, è, k) and the associated deviance

D(g) as de®ned in (5). Note that we have integrated out fwjg to facilitate comparability between

DMA and DP. Similarly to (6), it can be shown that for the DMA model

g(y�) �
X

j

nj � ä

n� kä
f (y�jè j): (8)

For the DP model, we use p(y�jy, è, d) and the expression (8) with ä � 0. It will be interesting

to compare the distribution of D(g) given k or d, in particular its mean and variability. Note
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that, by Jensen, we always have E(D(g)) > D( ĝ k) and that the difference E(D(g))ÿ D( ĝ k)

will be larger if g is more variable. This measure of variability is equivalent to pD, introduced

as a measure of complexity by Spiegelhalter et al. (1998), with a particular choice of

parameterization. We intend to explore the role of pD in mixture model determination in later

work.

3.2. Model and data speci®cation

Our comparisons will be made in the context of a distribution G0 corresponding to univariate

normal mixtures. We have used three data sets, enzyme, acidity and galaxy, described in

Richardson & Green (1997), as well as four simulated data sets of 100 points. These latter

correspond to a unimodal leptokurtic mixture (`lepto'): 0:67N(0, 1)� 0:33N(0:3, (0:25)2), a

bimodal mixture (`bimod'): 0:5N (ÿ1, (0:5)2)� 0:5N (1, (0:5)2), an asymmetric separated

mixture (`sep'): 0:1N(5, 1)� 0:4N (12, 1)� 0:3N (16, (0:5)2)� 0:2N (20, (1:5)2), and a sym-

metric strongly overlapping platykurtic mixture (`platy'): 0:2N(ÿ4, 1)� 0:2N (ÿ2, 1) �
0:2N (0, 1)� 0:2N (2, 1)� 0:2N (4, 1). The four synthetic mixture densities are graphed, on a

standardized scale, in Fig. 1. Throughout we let R denote the interval of variation of the data

and we adopt the following speci®cation for the normal mixture model: è � (ì, ó ÿ2) and

G0 � N(î, kÿ1) 3 Ã(ã, â) with ®xed values of î � midrange, k � 1=R2, ã � 2, and a random

â which follows a Ã(g, h) distribution. This hierarchical mixture model and the choice of g and

h (g � 0:2, h � 10=R2) are discussed in Richardson & Green (1997). For the DP model, we set

á � 1. For the DMA model, we let ä � 1 throughout which corresponds to a uniform prior on

the weights, a natural choice in the absence of real prior information. In the analysis, a prior

uniform on f1, 2, . . ., 30g was assumed for k, although as usual this could be amended to any

other prior on this support by importance sampling in the output analysis. For the DP model, the

results presented correspond to runs of 100,000 sweeps (after a burn-in of 100,000 sweeps) of

the reversible jump algorithm described in section 4.1; similarly for the DMA model, 100,000

Fig. 1. Plots of the bimod, sep, lepto and platy normal mixture density functions translated and scaled to

have similar ranges.
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sweeps of the reversible jump algorithm presented in Richardson & Green (1997) were used

after a burn-in of 100,000 sweeps.

3.3. Posterior distribution of the number of components

Recall that for the DMA model there is a free choice of the prior distribution p(k) of the number

of components k, which include empty components; in contrast the prior p(d) on the partition

degree d of the DP model is completely determined by n and á. In order partially to `̀ factor

out'' the in¯uence of the priors, we thus chose to compare modi®ed posteriors

p�(kjy) / p(kjy)=p(k) and p�(djy) / p(djy)=p(d) corresponding to uniform priors for k and

d in the two models.

Figure 2 plots the cumulative distribution of p�(kjy) vs p�(djy) for the seven data sets. The

average number of empty components was small for most data sets, ranging from 0.07 to 0.15,

except for the `̀ sep'' data set (0.45) and the galaxy data (0.65). For the `̀ lepto'' data set, the

cumulative distributions are identical (diagonal line). For all the other data sets, except galaxy,

the plots show small convexity, indicating that the mixture models estimated with DMA priors

have fewer componentsÐa fortiori, fewer non-empty componentsÐthan those corresponding to

the DP priors. It is interesting to note that the single data set, galaxy, where this does not hold

has small clusters of outlying observations, which is well in keeping with the DP allocation

model.

3.4. Entropy and partitions

Our next concern is to investigate whether the DP model's prior emphasis on unequal allocation

persists in the posterior. A similar concern was expressed in Petrone & Raftery (1997) with

particular reference to change point models. We can summarize equality of allocation by the

Fig. 2. Modi®ed cumulative posterior distributions for the number of components, compared for the DMA

and DP models using PP plots.
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entropy, de®ned by ÿP j(nj=n) log(nj=n), and look at the conditional posterior of entropy given

degree d.

We found that the mixtures with a DP prior have systematically lower entropy, the difference

being noticeable for any value of d above 3 (see Fig. 3). This difference is accentuated for larger

samples drawn from the same simulated models (results not shown). The persistence of unequal

allocations can also be seen when one compares mean group sizes for the two models. Figure 4

presents a typical comparison; the lack of balance is more noticeable as the degree increases.

Hence, as was also noted by Petrone & Raftery (1997), in most cases the unbalancedness of the

prior allocation model is still noticeable in the posterior.

It is also of interest to investigate posterior classi®cation for the data conditional on d or k.

Of course, this requires choosing an unambiguous labelling. When the components are labelled

according to the order of their means, we have found that the DP model treats outlying

observations differently. For example, in the classi®cation of the acidity data into four groups,

the left hand outlying observation constitutes a single component under the DP, whereas for the

DMA model it is regrouped with observations belonging to a component with a large variance

(results not shown).

3.5. Deviances

We computed D( ĝ k) and D( ĝd) as de®ned in (6), (7) and (5) for the 7 data sets and values of k

or d well-supported a posteriori. We found nearly identical values for simple well-separated

mixtures (`̀ bimod'' and `̀ sep''), and slightly lower values in general for D( ĝ k) but with few

differences exceeding 1 (see Fig. 5). The only notable difference in ®t concerns the enzyme data

(see Table 3), a data set for which we have noticed that the induced partitions and classi®cation

(not shown) differ markedly between the DMA and the DP models.

Fig. 3. Conditional distribution of entropy given degree, for DMA and DP mixture models applied to four

data sets. In each pair of boxplots, DMA is on the left.
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4. MCMC methods for DP and related models

The interest in DP and MDP models for practical Bayesian analysis has generated much

research into the ef®cient implementation of MCMC methods for computing the resulting

posteriors. Signi®cant contributions to this effort are MacEachern (1994), Escobar & West

Fig. 4. Mean group sizes for DMA (left panel) and DP mixture models, enzyme data.

Fig. 5. Distributions of deviance D(g): comparison between DMA and DP models. In each pair of boxplots,

DMA is on the left.
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(1995), Bush & MacEachern (1996), and MacEachern & MuÈller (1994, 1998); these make use

of the constructive incremental nature of the DP process (see appendix) leading to natural Gibbs

samplers for allocation variables or parameters. Convergence rates for these Gibbs samplers

have recently been investigated by Roberts et al. (2000). In contrast, Richardson & Green

(1997) developed reversible jump Metropolis±Hastings samplers for their DMA representation

of the ®nite mixture models.

In view of the intimate correspondence between DP and DMA models discussed above, it is

interesting to examine the possibilities of using either class of MCMC methods for the other

model class. We have been unsuccessful in our search for incremental Gibbs samplers for the

DMA models, but it turns out to be reasonably straightforward to implement reversible jump

split/merge methods for DP models.

For the necessary dimension-jumping, Richardson & Green used empty-component birth/

death moves in addition to the splits and merges (and Phillips & Smith (1996) implemented

general birth and death of components in their mixture methods), but we do not pursue that line

here. Instead, we focus on the split/merge mechanism; this seems to be an idea with general

applicability, which has been much used in implementations of reversible jump methods,

although not without some problems in multivariate mixtures. In discussing this, in the next

subsection, we do not need to be speci®c to the DP setting, but work with general allocation

models.

Later, in subsection 4.2, we draw some comparisons between this new sampler and two

existing methods, one of which is also suitable for non-conjugate MDP models.

4.1. Split/merge samplers for allocation models

Consider a general DP model, with a p-dimensional parameter è 2R p. A MCMC sampler set

in the reversible jump framework (Green, 1995) will comprise a collection of reversible moves,

some of which will be routine ®xed-dimension transition kernels, but including at least one

move that changes d, the degree of the partition. We follow usual practice in attempting only

rather modest changes to the parameter space. A split/merge move is one that increases d by

taking one group, say gj, and its corresponding parameter è j and splits it into two non-empty

groups g jÿ and g j� with corresponding è jÿ and è j�; the reverse merge move merges the

groups, and produces a single parameter è j. As always, we use intuition to specify the details of

these mechanisms and ensure that detailed balance is obtained with respect to the required target

(posterior) distribution by correctly calculating the Metropolis acceptance ratio, which deals

with the split and merge as a pair.

In terms of counting parameters, note that we are jumping between (K � p) and (K � 2 p)-

dimensional parameter spaces, where K denotes the number of other parameters of the model,

not altered by this move. How can this be accomplished?

We need to generate è jÿ, l and è j�, l, l � 1, 2, . . ., p. Intuitively, proposed values will be well-

supported in the posterior if they provide similar explanatory power as fè j, lg. We follow the

pattern of the applications in Green (1995) and Richardson & Green (1997) by aiming to

conserve p conditions of the form

Table 3. Enzyme data: deviances associated with density estimates derived from DMA or DP models.

k or d 2 3 4 5 6

D( ĝ k ) for DMA 107.0 93.2 84.0 80.5 79.4

D( ĝd) for DP 106.9 93.6 88.7 86.0 83.5
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ml(è j) � wÿml(è jÿ)� w�ml(è j�), (9)

for suitably chosen `̀ mock weights'' wÿ, w� summing to 1, choice of which is to be discussed

shortly. We assume the vector function m : R p !R p is invertible. (For example in mixture

density estimation, ml(è) might be the lth moment of the density speci®ed by è.) Then in

merging, (9) de®nes è j. In splitting, we have considerable freedom, but it may be useful here to

sketch out some generic methods. Which is most suitable will depend on the detail of the model,

and the form of the matching functions fml(�)g.
The general pattern is to draw a p-vector of auxiliary random numbers u � (u1, u2, . . ., up),

and set up a bijection between (è j, u) and (è jÿ, è j�) using the fml(�)g.
For example, if the fml(�)g vary freely over R, we might use (9) together with

ul � w�ml(è j�)ÿ wÿml(è jÿ):

This provides an invertible transformation between (è j, u) and (è jÿ, è j�) whose Jacobian can

be simpli®ed to the form���� @(è jÿ, è j�)

@(è j, u)

���� � j=m(è j)j
j=m(è jÿ)k=m(è j�)j(2wÿw�) p

,

where = denotes the gradient operator.

Alternatively, if the fml(�)g are positive but free of any other constraints, then we might draw

ul � U (0, 1) independently (or indeed use any other continuous distribution on [0, 1] p) and use

ml(è jÿ) � ul ml(è j)

wÿ
and ml(è j�) � (1ÿ ul)ml(è j)

w�
,

and this time the Jacobian reduces to���� @(è jÿ, è j�)

@(è j, u)

���� � j=m(è j)jÐ ljml(è j)j
j=m(è jÿ)k=m(è j�)j(wÿw�) p

In fact for the normal mixture application Richardson & Green (1997) use neither of these, as

their matching functions are the mean and mean square of the corresponding components, and

of course, the mean square must exceed the square of the mean.

Now, we must discuss allocating items into the groups g jÿ and g j�. Having chosen to split

gj, and given the new parameter values è jÿ and è j�, we suppose we distribute i 2 gj between

g jÿ and g j� according to the natural conditional probabilities

P(i! g jÿ) � wÿ p(yjzi � jÿ)

wÿ p(yjzi � jÿ)� w� p(yjzi � j�)
:

It remains only to de®ne the mock weights wÿ, w�. Their purpose is to allow uneven

splitting, and adjust for unequal nj in merging. On splitting, we propose to generate

wÿ � U (0, 1); on merging, wÿ � Be(n jÿ � ù, n j� � ù) for a simulation parameter ù, in our

experiments taken to have the value 5.

There is no additional contribution to the Jacobian from either these weights, or the remaining

K unchanged parameters.

For de®niteness, let us now complete the speci®cation of the move probabilities by saying that

when we split we choose each group with equal probability, and that when we merge we choose

each pair of groups with equal probability. This can easily be modi®ed. The move is now fully

speci®ed. For the sake of comparison with eq. (11) of Richardson & Green (1997), we give the

complete acceptance probability, in the context of the univariate normal mixture problem using

split and merge moves de®ned by Richardson & Green.

The probability for the split move is min(1, A), where A is
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(likelihood ratio) 3
áB(nÿ, n�)

(k � 1)

3 (k � 1)

������
k

2ð

r
exp ÿ 1

2
kf(ì jÿ ÿ î)2 � (ì j� ÿ î)2 ÿ (ì j ÿ î)2g

� �

3
âã

Ã(ã)

ó 2
jÿó

2
j�

ó 2
j

 !ÿãÿ1

exp(ÿâ(óÿ2
jÿ � óÿ2

j� ÿ óÿ2
j ))

3
d k�1

bk Palloc

3
gù�nÿ ,ù�n� (wÿ)

g1,1(wÿ)g2,2(u1)g1,1(u2)

3
ó j(wÿó 2

jÿ � w�ó 2
j�)

(wÿw�)3=2

Note that by comparison to eq. (11) of Richardson & Green, the new terms are

áB (nÿ, n�)=(k � 1), the prior ratio for (k � 1) vs k, the additional factor gù�nÿ,ù�n� (wÿ) in

the proposal ratio, and that the Jacobian has been expressed differently in the ®nal line in the

expression. The notation ga,b(�) refers to the Beta(a, b) density. As usual, the acceptance

probability for the merge move, providing the reverse of this split, is min(1, Aÿ1).

4.2. Comparison of samplers

The split/merge procedure de®ned above differs quite fundamentally from the approaches

customarily used for computing MDP models, so it is of interest to draw comparisons. The

methods we choose to compare are the `̀ incremental'' sampler of Bush & MacEachern (1996),

and what we call the `̀ augmentation'' sampler, which is a variant on the proposals of

MacEachern & MuÈller (1994, 1998) and which avoids the need for integration.

There is much current interest in comparing the performance of different variants of the

augmentation sampler (Neal, 1998). Here we do not aim to be comprehensive in our compari-

sons and, building on the work of Neal, deliberately focus on comparing our split/merge

reversible sampler to one version the augmentation sampler, chosen to represent the family of

samplers introduced by MacEachern & MuÈller. Empirical comparisons are made in section 5,

but some general points can be made here.

Each of the three methods: split/merge, incremental and augmentation are examples of hybrid

MCMC methods, in which a portfolio of reversible moves, each maintaining detailed balance

with respect to the target (posterior) distribution, is available, and these are used in cyclic

fashion to form a sampler that is irreducible. In each case, one of the moves involves updating è
by sampling from its full conditional, thus conditioning in particular on k and z; this Gibbs

update being available because of conjugacy.

The methods differ in their approaches to updating k and z, and in their amenability for use in

a hierarchical setting, in which hyperparameters governing the prior for è need to be updated.

In the incremental sampler, in place of the split/merge and allocation moves, k and z are

updated implicitly, by drawing each öi in turn from its full conditional. Since this step may lead

to either or both of a component being created or destroyed, irreducibility is attained. Also, è is

gradually updated during this process. Note that no separate move updating è would be

necessary for irreducibility, but that such a move is included in the portfolio to improve

performance.

However, the full conditional for öi involves an off-line integration (see West et al. 1994),

sometimes approximated by a Monte Carlo estimate; this integral (over the prior for a single è j)

of course depends on values of hyperparameters for è. Unless, therefore, conjugate hyperpriors
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are used, the incremental method is cumbersome to use in the context of variable hyperpara-

meters.

This dif®culty is circumvented in the approach of MacEachern & MuÈller (1994, 1998). The

idea is to draw one or more potential additional values of è j ®rst, and only then to compute the

probability that an observation is reassigned to such a new componentÐthis probability does

not involve any integral. In the `̀ no-gaps'' variant of their algorithm, a single additional

component is created, while the `̀ complete'' variant uses a full set of n potential components.

They do not propose simulating the additional fè jg anew for each observation considered.

We propose another variant on this idea, aimed at correctly simulating from the posterior

distribution conditional on d < dmax, where dmax is a ®xed suf®ciently large integer (we used

dmax � 30). We augment the è vector once each sweep by generating (dmax ÿ d) additional è j

independently from G0. The probabilities of assigning observation i to component j are

analogous to eq. (9) of MacEachern & MuÈller (1994), but with n replaced by dmax.

Neal (1998) suggests yet another variant in a similar spirit. His uses a ®xed number m of

additional components è j, which are re-simulated for every observation considered. There are

complex trade-offs between the costs of generating extra variables, or introducing more serial

dependence, which we will not pursue here.

Both the incremental and augmentation methods have the apparent disadvantage that new

components are formed by moving one observation at a time, in contrast to the split/merge

approach, in which a large but heterogeneous component can be split into two more homo-

geneous parts in one go. The augmentation method appears to carry an overhead, through the

state space being extended to include fè jg not currently in the model. But it is dif®cult to

quantify these factors in the abstract, and we therefore conduct comparative numerical

experiments on the three samplers in the next section.

Finally, we observe that since all the moves mentioned maintain detailed balance, there is the

potential for new methods to be devised that pool the best features of each of the current ones.

5. Comparative performance of the MCMC samplers for the DP model

We compare the performance of the MCMC samplers described in the previous section in the

case of univariate normal mixtures. What summaries from a multidimensional posterior

distribution are most useful is a matter for debate. We have chosen to concentrate our discussion

on the output of two functionals: the degree of the partition and the deviance,

D(g) � ÿ2
Xn

i�1

log
X

j

nj

n
f (yijè j):

Monitoring the change in the degree against the number of sweeps is clearly an important

characteristic of the samplers, while the deviance is used as a meaningful global function of all

the parameters. Visual assessment of the burn-in period is helped by plotting the ergodic

averages of the cumulative frequencies of degree of partition. The ef®ciency of the samplers in

their stationary regime is characterized by computing, for each monitored functional, an

estimate of the integrated autocorrelation time ô �P1l�ÿ1r l, where r l is the lag-l autocorrela-

tion of the realized values of the functional. For the results below, we have used an adaptive

window estimate of ô due to Sokal (see Besag & Green, 1993) which was calculated on the last

25,000 sweeps of long runs thinned by subsampling at the rate 1/20. For our comparisons, we

have used three data sets, enzyme, acidity and galaxy, as well as the simulated data sets.
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5.1. Comparison of the three samplers in the case of ®xed hyperparameters

As commented by several authors, one of the shortcomings of the incremental sampler is the

necessity of computing an integral of f (:jè) with respect to G0(è), which restricts its use mostly

to ®xed hyperparameter cases. For our comparison of the three samplers, we thus consider the

following speci®cation for the normal mixture model: á � 1, è � (ì, ó ÿ2) and G0 � N

(î, kÿ1) 3 Ã(ã, â) with ®xed values of î � midrange, k � 1=R2, ã � 2, â � 0:02R2. We

computed the required integral by adaptive 15-point Gauss±Kronrod quadrature.

Figure 6 shows a typical output for the cumulative frequencies of partition degrees of the

galaxy data for the three samplers: incremental, augmentation and reversible-jump. Stability to

the same posterior levels is achieved quickly for the three samplers, the incremental sampler

having the shortest burn-in. In terms of running times, the incremental sampler ± which does

not separately update the allocations ± is the fastest. The other two samplers update the

allocations; unsurprisingly, we found the augmentation sampler to be approximately 4 times

slower than the reversible-jump sampler. Our display plots correspond to approximately equiva-

lent running times for 250,000, 50,000, and 200,000 sweeps of the incremental, augmentation

and reversible-jump samplers respectively. On the three data sets (enzyme, acidity and galaxy),

we found similar integrated autocorrelation times for the three samplers (between 0.9 and 1.7)

on the deviance output. For the partition degree, we found a somewhat higher value of ô for the

reversible-jump sampler (3 to 4) than for the other two samplers (1 to 1.7).

5.2. Comparisons between augmentation and reversible-jump samplers for a hierarchical

DP model

It is of interest to compare the performance of our proposed reversible-jump sampler with that

of the augmentation sampler in a situation with random hyperparameters. We thus modify the

setting de®ned above to assume a random â which follows a Ã(g, h) distribution with g � 0:2,

h � 10=R2 as before.

These two samplers are constructed on radically different principles. The augmentation

sampler proposes new components containing only single observations, these will be accepted

conditional on all other allocations if there is support from that data point and a prior which is

not too tight. This construction suggests a mixing behaviour which could be in¯uenced by the

value of á (small ás correspond to tighter priors on low partition degree), in interaction with the

shape of the mixture (well-separated or not). On the other hand, the proposal of the reversible-

jump sampler is not in¯uenced by á, its performance should not deteriorate for small ás, but

with a high number of components containing fewer observations, the random splits might be

less effective.

Figure 7 displays values of the integrated autocorrelation time for the `̀ lepto'' data set and

values of á ranging from 0.1 to 2. We see clearly the dif®culties encountered by the

Fig. 6. Cumulative frequencies of partition degrees of the galaxy data for the three samples.
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augmentation sampler when á is small and the data are not well-separated, which leads to high

ôs. (See also Figure 8 for an illustration of the differences in burn-in induced by small values of

á). On the other hand, the reversible-jump sampler has somewhat opposite behaviour with

higher ôs for larger ás. Even then, the loss of ef®ciency is compensated by the faster running

time of the reversible-jump sampler. Thus the reversible-jump sampler is competitive, not

Fig. 7. Integrated autocorrelation time for `̀ lepto''data set.

Fig. 8. Cumulative frequencies of partition degrees for `̀ lepto'' data set (number of sweeps adjusted for

equivalent run time).
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markedly superior overall, but mixes well in particular situations where it is known that DP type

samplers become trapped.

As a ®nal point, we recall that there is some freedom in designing the reversible-jump sampler

which can be usefully exploited for tuning its performance. In particular, the Beta parameter ù
of the `̀ mock weights'' can be adapted. All the results reported correspond to a default value of

ù � 5. For a model with a large number of components, this value might be too large. For

example, with ù � 1, we found for á � 2 and the `̀ lepto'' data set that the values of ô were

more than halved.

Ef®cient sampling of DP processes is an active area of research. Effective recursive

approximations have been proposed by Newton et al. (1998) which are particularly useful in

high dimensional space. The development of sequential importance sampling (MacEachern

et al., 1999) in connection with incremental type samplers is another way forward. Our

simulations support our belief that the reversible-jump sampler, which derives from a different

principle than incremental-like samplers, has the potential to be a useful addition to the menu of

samplers for DP. It could be used in conjunction with other moves and/or importance sampling

ideas.
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Appendix

General aspects of partition and allocation models

Here we attempt a more axiomatic approach to the speci®cation of partition and allocation

distributions.

There are two key properties possessed by both the DP and DMA models for partitions, that

should also hold for any alternative model, namely:

(a) exchangeability: the probability of any partition should be invariant to any relabelling

of the items;

(b) heritability: the model should remain self-consistent as the number of items increases,

the probability assigned to a partition of a set of items being the same whether these

are all the available items, or just a subset.
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The ®rst of these properties seems essential; the second is less vital, but desirable, the more

so for some applications (eg. mixture modelling) than for others (eg. clustering).

The simplest way to ensure exchangeability is to work with a notation in which it is

automatic. The maximal invariant of a partition under relabelling of the items is the set of group

sizes, called here the signature. The signature can be written in a standard order, say listing the

sizes in decreasing numerical order, to avoid double-counting. Thus the partitions

ff1, 2g, f3g, f4gg and ff1g, f2, 4g, f3gg both have signature (2, 1, 1) and are assigned the

same probability q(2, 1, 1). Note that the signature (n1, n2, . . ., nd) determines both the degree

of the partition d and the number of items n �P j nj. Thus any exchangeable model for

partitions is equivalent to a speci®cation of the probabilities q(n1, n2, . . ., nd) of any single

partition with this signature. The only consistency condition required is that the probabilities

sum to 1 for each number of items n. Let m(n1, n2, . . ., nd) denote the number of partitions of

n �P j nj items with signature (n1, n2, . . ., nd), then for each n we needX
m(n1, n2, . . ., nd)q(n1, n2, . . ., nd) � 1, (10)

where the sum is over all sets of positive integers n1 > n2 >. . .> nd summing to n.

There is obviously great ¯exibility in choosing such models. The only constraint, (10), is

easily imposed, especially as there is an explicit formula for the counts m(n1, n2, . . ., nd),

namely

m(n1, n2, . . ., nd) � n!

n1!n2! . . . nd !

1Y
r

(# j : n j � r)!
:

For an exchangeable partition distribution, the necessary and suf®cient condition on the qs

for heritability is that for all signatures (n1, n2, . . ., nd), the effect of adding one item maintains

consistency, that isXd

j�1

q(n1 � ä j1, n2 � ä j2, . . ., nd � ä jd)� q(n1, n2, . . ., nd , 1) � q(n1, n2, . . ., nd) (11)

where ä is the Kronecker symbol (and note that addition of these may have disrupted the

standard order in the signature). Any set of non-negative numbers q(n1, n2, . . ., nd) satisfying

(11) and the initial condition q(1) � 1 automatically satis®es (10): nothing else is needed to

guarantee a proper, exchangeable, partition distribution.

We see that the heritability condition is much more demanding than exchangeability, as it

imposes much more stringent constraints on the qs.

The DP and DMA models form familiar examples of allocation models that are both

exchangeable and heritable. A third class possessing both properties is that of the partition

models of Consonni & Veronese (1995), in which the degree d is drawn from a distribution of

convenience (in fact, they use the form p(d) / dÿ1 for d � 1, 2, . . ., n), and then partitions

drawn uniformly given d: p(gjd) � constant.

Recursive construction of partition distributions, and incremental samplers

A heritable exchangeable partition distribution can be constructed recursively, by considering

the placement of the (n� 1)th item conditional on the partition of the ®rst n items, for

n � 1, 2, . . .. The recursion is started trivially with q(1) � 1. Given the partition g with

signature (n1, n2, . . ., nd) for the ®rst n items, the additional item may join one of the existing
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groups j � 1, 2, . . ., d, or form a new group by itself. The probabilities a1, a2, . . ., ad , b, say,

of these options are given by the corresponding terms on the left hand side of (11), divided by

the sum.

For the DMA model we have

aj � ä� nj

kä� n
, b � (k ÿ d)ä

kä� n
, (12)

on substituting from (4) into (11). For the DP model, we have

aj � nj

á� n
, b � á

á� n
,

which can either be obtained explicitly from (1), or from (12) by letting ä! 0, k !1 and

kä! á. 0.

Another simple model is obtained by letting ä!1 in (12); we obtain

aj � 1

k
, b � 1ÿ d

k
:

This corresponds to the symmetric multinomial model in which the zi are drawn i.i.d. from the

uniform distribution on f1, 2, . . ., kg, that is, the items are allocated independently, equally

likely to each of the groups.

Because of exchangeability, these recursive probabilities are equally appropriate for condi-

tional distributions such as p(zi � jjzi9, i9 6� i), which are needed in MCMC sampling item-by-

item, such as in the `̀ incremental'' method, described in section 3.2. Unfortunately, we have not

been able to derive incremental methods using these recursive probabilities for posterior

simulation, except for the DP case.
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