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1. Introduction

Problems of imege processing have been discussed in the engineering liter-
ature for many years but, more recently, statisticians have become involved and
their journals are now showing indications of this involvement; see Besag (1986),
for instance. So far, most of the literature has concerned the restoration of a
single frame on which & scene is depicted. The frame is usually two-dimensional
and partitioned into a large number, N, of (usually) rectangular pixels; the
data consist of the colours, grey-levels or intensities observed on the pixels.
In general terms, the objective of any restoration algorithm is to make some
sort of inference about the true scene, given the data. Usually the inference
takes the form of a restored image, made up of an assignment of colours, grey-
levels or intensities to the pixels, and it is anticipated that the resulting
restoration will be a better representation of the true scene than was provided
by the original observed records.

Of course, image processing is concerned with many other problems besides
the direct restoration of a degraded image. Much of what follows may be applic-
able to such matters as classification, segmentation, tomographic reconstruction
and so forth, but for clarity we shall continue to use the terminology of rest-
oration.

So far, most of the work has concentrated on the analysis of a single
freme. The objective of this paper is to make a start on the development of
methods for the treatment of sequences of images which are assumed to be sequen-
tially related. Although such a framework would include, trivially, the case of
replicated observations of the same true scene, our principal target is to treat
& sequence of scenes that are not identical but that are temporally correlated.

Applications are multitudinous: they include sequences of overlapping
frames of remotely-sensed data, sequences of ultrasonic images of living organ-
isms, in which pulsations and other, more general, types of motion occur, films
of moving vehicles, and many other manifestations in medicine, the biological
sciences and elsewhere,

One specific example, that might be handled successfully using some of the
models proposed here, concerns a sequence of images recorded by gamma camera
showing the temporal progress of a radicactively tagged pharmaceutical from the
blood stream through the kidneys into the bladder.

The analysis of a sequence of frames, rather than a single one, is one
special feature of this paper. Another is the decision to consider recursive
methods. One approach would be to gather all the data, from the total of T
frames, for instance, and then undertake the analysis. Instead, we shall develg
methods that analyse the data frame by frame, in the order in which they are
obtained. Behind this decision lies the hope of being able to process the data
in real time, thereby creating the restoration of one frame before the next one
is considered. Clearly, if such a technique is to be feasible for the treatment
of movie film, the stage-by—stage analysis will have to be very fast. As a
result, we shall see that "approximations" to normative procedures are almost
inevitable and we are, no doubt, still some way from establishing a well-valid-
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ated method.

The recursive methods could also be applied to replicated, statistically
independent pictures of a constant scene, although an artificial ordering
would have to be imposed on the individual frames.

The plan of the paper is as follows. In Section 2 we establish the basic
structure of our models for the sequence of true scenes and observed records
thereof, and we identify the two problems of creating restorations of the true
scenes and estimating unknown parameters in the models. In some existing
methods, the latter problem is often ignored. The formulation then leads to
two, more specific types of model, both related to models already in use in the
analysis of single frames. These are Gibbs distributions (discussed in Section

3) and dynamic linear models (outlined in Section L). Section 5 describes
possibilities for further work.

We shall provide references, to existing work on the use of Gibbs distri-
butions and dynamic linear models, in the corresponding sections. Clearly, the
analysis of image sequences is closely related to motion analysis, and the lit-
erature on that topic contains reference to yet further general methods. Buxton,
Buxton and Stephenson (198k4), for instance, follow the motion of objects within
a sequence of images by detecting the movement of the edges of the objects; see
also Fang and Hwang (198k4), Yasumoto and Medioni (1986), Sethi and Jain (1987)
and Bresler and Merhav (1987). These authors typically consider the motion of
specific features of the scene, whereas our models are aimed at the whole scene.

2. Notation and Basic Structure

The fundamental structure of our problem consists of a sequence of unob-
servables{xt: t=1,2, ...}, of which x, represents the true scene depicted in

t
frame t and a corresponding sequence of cbserved {yt: t=1, 2, ...}, where Vs
is the record on frame t. The subscript t indicates the correct sequential

relationships among the frames. Normally, t will have a largest value, T,
corresponding to the end of the data. For modelling purposes, it is sometimes

convenient to commence the x sequence with X Both X, and Yy will be regarded

as vectors, with the pixels arranged in some convenient, fixed order, e.g.,
lexicographically.

We shall also use the following notation:
xst = {xs: s <t}

Xy = {xS: s < t},

with a corresponding notation for the y's.
In general terms, the problem of restoration is to make some inference
about x <T? given y<T If we adopt the recursive approach, then inference about

xt will be based on yst, t=1, ..., T.

2.1 A Markov model

In what follows, the letter p will be used generically to mean 'probabi-
lity density function" or "probability mass function" (for discrete random
variables), Any such function will usually involve parameters. For the time
being, mention of these will either be omitted, or be made generically, in terms
of the letter 0.
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Suppose we are at the point of considering frame t. We shall specify a
model for the joint distribution of the observed Y_, and the missing x__ ,
st st
namely, .

Such & model provides the following (normative) approaches to the object-
ives of restoration and estimation.

(i) Restoration. This should be based on
pe(xstlyst) = pe(xst’yst)/pe(yst) . (1)

(i1) Estimation. If we interpret "normative" estimation to mean
likelihood-based estimation, then we should use the likelihood
corresponding to the observed data, namely,

Pelve,) = J Po(xey¥eplax,, (2)

BN

Note that, if the domain of x is discrete, then the integral in (2)
should be replaced by a summation.

We make the following assumptions:

Pe(Vylx gy ) = pgly,lx,) (3)

Py (xlx ) Py (xglx, ;) (4)

Identity (L) corresponds to a Markov assumption about the sequence of true
scenes, whereas (3) reflects an independence between the noise associated with
a particular frame and any other random variable underlying scenes and previous
records. As a result, we have (omitting mention of 8),

t

Plx ) = 1 I p(y, |x )p(x

. l)}p(xo)
s—

|x
s'"g-

Although (1) shows how inference may be made about x from y<t, we have

<t
stated our aim to restore the frames recursively. Thus, of particular interest
is

p(xtlyst) = [ Plrgox, ) ly  Jax, )

*i-1

= J Plxg sk g oV Jax,
-1
« P(ytlxt) J p(xtIxt_l)p(xt_lly<t)dxt_l . (5)
-1
Assumptions (3) and (4) also have implications for

P(xt|x<t’yst>' (6)
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This is the probability function for x, given all the preceding true
scenes and all the past and present records. If (3) and (4) hold, then (6)
becames

plx Ix oy ) = plxglx o) ply,lx,) . (7)

Although, strictly speaking, (7) is unusable, it does stimulste a recur-
sive procedure if X, is to be restored after X, have been treated. To be

t
specific, suppose X o denotes the restored versions of X, Then, from (7)

e
PrglxepVey) = plxglx,p) plyglx,) (8)

might be used as the sources of a restoration of x,. This discussion is devel-
oped in the next section. Although the recursion 1s temporal and x,_ denotes a
whole frame of pixel values, this approach is similar to one cycle gf Besag's
ICM procedure for restoring a single frame by scanning through the individual
pixels and simplifying the formula with the help of a (spatially locally depen-
dent) Markov-random-field (MRF) assumption rather than the temporal Markov
assumption.

2.2 Recipes for restoration

As remarked in Section 2.1, the source of restorations will be either

p(xt|y<t), as defined in (5), ot p(xt]i<t,y<t), from (8). In principle, there

are two ways in which such a distribution might yield a single restoration. If
we write, temporarily, p(x,) for either (5) or (8), then we can either compute
a deterministic summary parameter, such as its mean or mode, and use that for
&t’ or simulate a value of x, from p(xt). The former method is similar to the

decision-directed (DD) approach to unsupervised learning problems, whereas the
latter is analogous to the technique known as learning with a probabilistic
teacher (PT); see, for instance, Chapter 6 of Titterington, Smith and Makov
(1985).

There is an element of PT in the use of simulated annealing by Geman and
Geman (1984) to approximate the mode of the posterior distribution of x.

In Section 4, we shall see that, in principle, calculation of the approp-
riate DD restoration is not difficult. In practical terms, things are not so
straightforward.

2.3 Recipes for estimation

At this juncture, we reinstate 8 to the notation. As remarked in Section
2.1, likelihood inference should be based on pe(yst), as given in (2). In meany
contexts, the parameter, 6, can be partitioned into 6 = (el, 62), where el

£ and 62 is associated with the dist-

One can interpret this in two ways. In the former, and as

defines the distribution of Yoy given X_
ribution of x__.
st
hinted in Section 2.1, one can treat the problem as an incomplete-data problem,

with the yt's observed and the xt's missing, so that 81 defines a conditional

distribution and 62 the marginal distribution for the xt's. Alternatively, the

Bayesian would regard 62 as defining the prior for the x's, whereas el are the

parameters in a "likelihood" for the data, y; see Geman and Geman (1984) and

Besag (1986). So far as 0, is concerned, maximisation of (2) in the Beyesian
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context would therefore constitute an empirical Bayes procedure. Such a proc-
edure is approximated, in the image-restoration context, by Geman and McClure

(1985).

For the time being, we shall concentrate on the frequentist interpretat-
jon and view the problem as one involving missing data. As a result, we can
consider using the EM algorithm of Dempster, Laird and Rubin (1977) to estimate
6 at stage t. This would require a sequence of double-step iteer%o to gen-
erate the maximiser, 8> of pe(yst), as the limit of a sequence 6, r', r=1,

2, ++. . The double step is as follows. (We assume that r iterations have
already been completed.)

Define
Blx ¥ y30) = LlogPolx sy )
- ) z (r)
E-step: Calculate Q{(8) = E{Q(xst’yst’e)‘yst’et }
(r+1)

M-step: Find 9 = 6 to maximise Q(8).

t

The sequence {Pé (r)( Y+ r=0,1, ...} 1is typically increasing, and
t

Vet
convergence to the globally maximised likelihood occurs under certain condit-
ions.

A full-blooded EM procedure at each frame is out of the question,
because of the familiar slow convergence of the algorithm and because of compl-
jcations incurred by the mutual correlations among the xt's.

The simplest version of the problem occurs if each x_ is scalar (one
pixel per frame!) and takes its values from a finite set. If the x,'s were
mutually independent, then the observed y 's would form a sample from a finite
mixture distribution (provided assumption (3) holds), and 6, would represent
the mixing weights. In many such cases, the E- and M-steps are explicit; see
Chapter L4 of Titterington et al (1985). If, however, the x_'s are mutually
correlated, the M-step may still be explicit but the E-step is complicated. In
a sense it is still explicit, but it requires time-consuming forward and back-
ward passes through the data. For the case where the x 's form a Markov Chain,
the example is discussed briefly as Example 4.3.10 of Titterington et al (1985);
see also Baum, Petrie, Soules and Weiss (1970) and, for details of the E-step,
Pickett and Whiting (1987).

Although we discount the idea of attempting a full EM algorithm at each
stage, we propose a one-step recursive approximation to the EM algorithm at
each frame, as follows. From our assumptions, (3) and (L), we have

Polx a¥ey) = Polxea¥ylx ¥ ) ol poyy)
= pe(vglxg) plxglxg ) polx ooy o)
t
= 1 exp{2 (8)},
s
s=0
where zs(e) = loge{p(yslxs)p(xslxs_l)}, s=1, ..., t, and 20(6) = loge{p(xo)}.
Thus , t
L(x .y .,0) = T2 (8).
st st 5=0
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. Our recursive procedure takes the following form. Define Lt(e) and

et_l, recursively, by
Ly(6) = E{a,(e)]y .8, 3 + L _,(0) (9)
-and 6t = arg max Lt(e), t =1, ... .
]

For the case where the x{ are independent, see Titterington and Jiang
(1983), Titterington (1984a) and Titterington et al (1985, Chapter 6). In some
simple problems of that case, reassuring asymptotic properties can be establi-
shed (Titterington, 1984a). 1In the case of non-independent X, » the asymptotic
properties are, as yet, unknown.

The complication of the E-step results from the (one-dimensional) temporal

correlation among the Xy In the single~-frame case, in which X, would be the

value associated with pixel t, correlations are spatial. Exact formulation of
the E-step in this case seems not only complicated but impossible, as pointed
out by Kay and Titterington (1986). So far, for the single-frame example,
parameter estimation has not been dealt with to a totally satisfactory extent.
For the Gibbs-distribution formulation (see Section 3), methods and theory are
discussed in Besag (1974, 1986), Geman and Graffigne (1986), Derin (1987),
Derin and Elliott (1987) and Possolo (1986). For the dynamic linear model
structure discussed in Section 4, see, for instance Tekalp, Kaufman and Woods

(1985, 1986).

2.4 Simultaneous, recursive restoration and estimation

In many 1ncomplete-data problems, maximisation of the complete—data like-

lihood, pe( t’y<t) is easy. This suggests that, if restorations, x <t exist,
then 6 might be estimated by maximising
Pe(xst :yst>

It is well known that, if the i<t have been generated by a DD-type method,

then the resulting estimators of 6, 6+%, say, tend to be biased; see for
instance, Little and Rubin (1983), Titterington (1984b) and Woodward et al (198W),
who point out that the use of robust estimators can remove much of the bias.
Less bias is likely if PT methods are used to "impute" the xt's although, for
the single-frame problem, DD restorations are likely to provide visually more
helpful segmentations of the image (Symons, 1981, Sclove, 1984).

It is not hard to formulate recursive versions of simultaneous restorat-
ion and estimation. For a simple case, examples are given in Titterington and
Jiang (1983). Detailed examination of their implementation on the present
problem is, however, beyond the scope of this paper; see also Kiiveri (1986).

3. Models based on Gibbs distributions

A class of processes that has been shown to be useful in the modelling of
single true scenes is that of Markov random fields with local spatial depend-
ence; see Geman and Geman (1984), Besag (1986), and Derin and Elliott (1987).
We start our brief discussion of such a formulation for image sequences with
assumptions (3) and (4), and the requirement of local dependency both within
a frame and between successive frames.

The connection with Gibbs distributions provided by the Hammersley-
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Clifford theorem (see, for example, Besag (1974)) will be applied to the cond-
itional distributions p(xt|x<t). Let I denote the set of all pixels of X, and

suppose we specify a graph with I as the set of vertices. A clique is a set of
vertices such that every distinct pair of vertices in the set are neighbours
with respect to the graph. We extend our notation for x and y to allow a second
subscript to indicate a pixel or set of pixels. Then the conditional distrib-
utions must have the representation

P(xtlx<t) = {Zt(x<t)}-lexp{- ZVC(x 3X )}

t,c’ <t
c
vwhere 2, is & normalising constant, and {Vc} a set of potential functions

indexed by cliques c¢. By virtue of assumption (4), these potentials must
depend on X., only through xt-l’ and, we will suppose, only on a subset there-

t
of, say xt-l,c*' Thus
-1
plxglxeg) = {2,(x,_))} Texnt ivc(xt,c’xt—l,c*>}
from which it follows that
. . = . . . 0
p(xt,l x<t’xt,I~1) p(xt,l xt-l,nl’xt,al) (10)

where mi = \J c* and 3i = Uc are, typically, small neighbourhoods of pixel 1,
cai cai

Local dependence would also be assumed in the 'noise' distribution (3):
for example, in the extreme case of independent records with no blurring, and
assuming that X, and ¥, are located on the same pixel grid I,

x,) = 1 x,L) . (11)
p(y, |x, B p(yt’ll 6.1
From (10) and (11) it follows that

p(xt,ilyst’x<t’xt,1~i) * p(yt,i'xt,i)p(xt,ilxt—l,ni’xt,ai)' (12)

Such & representation of the local conditional posterior distributions offers
the prospect of efficient algorithmsbased on local computations, much in the
spirit of Geman and Geman (1984) and Besag (1986).

4. The Linear Gaussian model

In one important special case, the ideas of Section 2 lead to explicit
end exact algorithms with no necessity for approximation or stochastic sampling
It is a case of some practical interest, and under additional assumptions we
shall see that it can lead to algorithms that are very fast indeed.

L.l Model assumptions

The Markov assumption (4) on the sequence of true scenes (x,) will ve
satisfied if we assume that this sequence follows a first-order matrix auto-
regression of the form

X = Gx + . (13)

t t-1 7 Mg

Here G is a fixed square matrix and (n,) is a sequence of innovations: random
vectors which we will take to have the multivariate Normal distribution
N(un,Vn), with n, independent of X .- Suppose we start with X, v N(u,v).

In a similar vein, we suppose that the noisy records (yt) are generated
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by

v, = th * ey (14)

g ™ N(uE,VE),lndependent of X

supposition ensures that our basic assumption (3) is satisfied.

where H is a fixed matrix, and ¢ and Yy This

When both of these linear Gaussian assumptions hold, the entire aggregate
(xsT’y<T) has & joint Gaussian distribution: we exploit this to derive explicit

algorithms.

This model has parameters (u,V, Gy s Vi sHopg sV ). Of these, G and V
govern the spatial and temporal contlnulty In the true scenes (x.), while H
determines the blurring and other deterministic degradation in the observed
records, and V. controls the variance and correlation in the noise. In an
application, some of these parameters may have known values, or be estimated
from training data; others will need to be estimated during the course of
(recursive) restoration of the sequence (xt).

4.2 The Kalman Filter

Models of the form (13,14) are of course well known in the control and
time-series literature, where they are known as general state-space models or
dynamic linear models; see, e.g. Jones (1966), Harrison and Stevens (1976). A
good general reference is Anderson and Moore (1979). In-such a setting, the
dimensions of x, and y, would typically be much smaller than is necessary in the
image-processing context, and H in (14) would represent the design matrix of a
regression model, with values typically known, and changing with t.

Whatever the setting, the consequence of the linear Gaussian assumptions
is that not only does the conditional posterior (7) take a simple form, but the
integral in (5) has a convolution structure. The result is that, conditional
on yst’ X, has a Gaussian distribution with

E(xtlyst) = m

var(xtlyst) =V,

where m, and Vt satisfy the recurrence relations

-1
T -1 T -1
= 1
Ve [(th_lG V)T EV H] (15)

T =1
= + + - - + . 16
m, (Gmt—l un) VtH V€ (yt M, H(Gmt-l un)) (16)
This is known as the Kalman filter; see e.g., Harrison and Stevens (1976). It
constructs not only the posterior mode/expectation, conditional on past data,
but also the variance of the posterior distribution, so that confidence state-
ments can be made.

This use of the dynamic linear model and the Kalman filter for a sequence
of images can be regarded as an extension of their application to a single
frame, treated as a sequence of individual pixels, or complete rows or columns,
visited recursively. For applications to a single frame, see for example Nahi
(1972), Katsyama and Kosaka (1978), Katayama (1979), Biemond and Gerbrands
(1979, 1980), Wu (1985) and, particularly relevant to the context of this paper,
Biemond, Rieske and Gerbrands (1983). There are also close connections with
Markov mesh models (Abend, Harley and Kanal, 1965; Kanal, 1980).
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At least when all the parameters are assumed known, the recurrence should
be initiated by setting m, =y and v_ = V° and running (15) and (16) fram t=1.

A possible alternative is to set Vo = », formally: then m is eliminated fram
(16), and m, is just a least squares estimate based on y,- We would often wish

to essume that, unconditionally, the process (x ) is stationary, so that its
parameters satisfy T
=Gu+un and V = GVG" + Vn .

Whether or not this holds, however, the recurrence (15) for the posterior vari-
ance converges: we do not need to place constraints on the eigenvalues of G.

Qur limited experlence with practically sensible values for the parameters,
suggests that in fact convergence occurs quite quickly: thus,although (15) and
(16) represents a non-stationary recurrence (correspondlng to the increase in
information about Xy in Yey 88 t increases), it may in fact be possible to

approximate this by a stationary recurrence. This and other approximations and
s1mp11fy1ng assumptlons are likely to be needed in practice: the explicit form
of (15) and (16) is deceptive sbout the amount of computing entailed. For
example, to handle 512x512 images means inverting matrices with 230 elements in
equation (15). ‘

4.3 Parameter estimation

In-practice, at least some of the parameters (u,V, Giolp sV sHaue V) may be
unknown. As in Section 2, we will use 6 to denote the unknown parameter,
generlcally, and consider estimation of 8 simulteneously with restoring (x, )
using its posterior distribution given N It will usually be appropriaté at
least to assume particular functional forms for any unknown variance matrices,
so that 6 will consist of only a moderate number of independent camponents.

There are a number of challenging estimation problems in the present cont-
ext. We will follow the spirit of recursive restoration and allow only & single
pass throughthe data, temporally. Thus at time t, given Vet Ve both restore
X, (and give a measure of its uncertainty) and update our SStimate of 8. In
the presence of unknown parameter values, the Kalman filter is no longer
strictly optimal, of course. Further, we are not allowing the revision of an
earlier restoration XSs 8 < t, in the light of information gained about 6 at
time t. This takes us still further from optlmallty, but the prohlbltlon we
have imposed will be realistic in much real-time image processing.

We therefore consider the recursive procedure defined by (9) as applied
to our model (13,14). We omit 20(6) as containing rather little information
about 9.

Suppose the Kalman filter recursion (15,16) is used to compute m_ and V
. . t t
before updating 6, so that

m = Elxgly s 0.) (17)
Ve = varlxglygse, ).
Then 8 = ét should be chosen to maximise
t -~
L(e) = SEIE(zs(e)IySS; 63_1) . (18)
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Omitting u_ and we for simplicity (the general case only adds notational diffi-
culty), we 'can write

) = -3 log det v, - 3 log det v,

E(zs(e)lysS;es_1

-} E{trtvs_l(ys_ Hxs)(ys_ Hxs)Tll Vgs? és-l}

-3 "Ly - . "y, s 3
3 E{trEYn (xs st_l)(xs st_l) 1 Vo' es_l} . (19)
Most of the expectations required can be simply expressed using (17). It re-
mains necessary to find
X le s 6 )
s-17s-1 'Ygs? "s-1
Some rather tedious algebra (c.f. Shumway and Stoffer, 1982, Appendix) leads to

E

T "
E(xs_lxs lyés, 85_1) and E(x

- T -
. - * * - * -
(xs~llyss’ es—l) ms-l * Vs—lG Z(ms Gms-l) ms—l’ say

: 8 = ¥ =
cov(xs,xs_l[ySS, 65_1) v ZGV_*. Vs,s—l’ say

var(x ;6 ) =V % - stlGTZGv *

s-l‘yss’ s-1 s-1 s-1
T ~
* * =
+ Vs-lG ZVSZGVS_l Vs—l’ say

~

]

)

* .
where m_*, E(xs—l‘yss—l’ 8.1

¥ = . 8
Veia var(xs-—lly$s-l’ 8 1)
T -1
- *
and Z = (GV_*,G + V)T

Kalman filter computed after updating the parameters.

Note that the asterisks label quantities from the

Substituting into (18), we find

t t
8 = = = -~
Lt( ) 5 log det V_ - 7 log det Vrl
I -1 - T _ T
ber(v. "{a, - HB - BH + HC,H]
1 -1 T T T
- - GE - 20
gtr[Vn {c, - GE,° - EG + GF.G] (20)
t t t
- T _ T _ T
where A = Iy Yy o, B, E ym s Cy z (msmS + VS)
s=1 s=1 s=1
t ~ T
E, = Z(mm - +V )
t g=1 S S 1 s,s-1
t
and F, = I (m .m Ty v o)

This expression is easily minimised over choice of G, H, V and V%’ subject to
any linear constraints of parameterisation. In particular, the 'non-parame-
tric' estimates, free of any such constraints, take the simple forms
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_ 4
G = EF,
H = BtCt—l
-1 -1, T (21)
vV =t "{A-BC B}
G PO -1 T
and vn t {ct EtFt Et 1.

4.4 Practical implementation of the Kalman Filter for image seguences

As mentioned earlier, operation of the Kalman filter ostensibly involves
manipulations of very large matrices, and this is also true of the method of
perameter estimation in subsection L.3.

There are modest savings to be made by using a stationary approximation
to the Kalman filter, but this is incompatible with updating of parameter
estimates. Another possibility is replacement of the linear operators con-
cerned by 'local' approximations of limited bandwidth. For example, if G, H
and VtHTVE”l have only a few non-zero terms in each row, the recurrence (16)

can be computed very quickly. While such approximations, in conjunction with
assuming V, stationary in t, can be algebraically tenable, they are unappealing
as they involve interaction between assumptions on (13) and on (1k). Again,
this does not tie in well with recursive parameter estimation.

One general approach that seems promising is availeble if G, H, V¢, Vy
and V_ can be simultaneously diagonalised (by similarity transforms). Then
(15) 8an be diasgonalised, and the result used in (16) to implement the Kalman
filter entirely with scalar operations on the various eigenvalues, in parallel.
But what prospect is there of simultaneous diagonalisation being possible?
Suppose now that both (x,) and (y,) are located on a two-dimensional rectangu-
lar grid of dimensions m by n. I% is convenient to index mnxmn matrices, with
both rows and columns corresponding to pixels in lexicographic order, by pairs
of double subscripts, e.g. (Mijkﬂ)’ where 1 £ i, k s mand 1 ¢ Js 2 £ n. Con-

sider such a matrix, with the special form

M; g = aIfi=k, j=¢] + 8,Ifi=k, j=e1]

+ B, I[i=kt1, j=1]
+ yI[i=k+l, j=2+1] .

where I[ ] denotes the indicator function. For example, assuming that H had
such a form would specify that blurring extended only to the eight neighbouring
pixels (four orthogonal and four diagonal) and had certain symmetry properties.
All such matrices have the same eigenvectors (Ord, 1975, Besag, 1978). This is
easily seen by noting that they can be expressed as sums of Kroneker products
of tridiagonal Toeplitz matrices and using a result in Bellman (1960, p.230).

The eigenvalues and eigenvectors involve only sines and cosines at
Fourier frequencies, so the Kalman filter could be implemented efficiently if
G, H, V_, Vn and Vg all had this structure. This may be acceptable: no special
treatment is needed at the edges of the image, and the innovations n_ and €

are first-order spatial moving average processes. However, it does seem rather
restrictive.

A wider range of possibilities results if we make assumptions of toroidal
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stationarity instead. This means that all of the matrices have block-circulant
structure, i.e. Mi'kl depends only on (k-i) mod m and (&-j) mod n. It identi-
fies opposite edgeg of the image to give two-dimensional periodicity, but
removes the bandwidth restriction asbove. All block-circulant matrices sre dia-
gonalised by the (two-dimensional, discrete) Fourier transform, s unitary oper-
ation (see, e.g., Hunt, 1973). Thus the entire Kalman filter recursion can be
carried out in the Fourier domain using only scalar operations. The only
assumptions are spatial stationarity and periodicity of all of the stochastic
processes involved. In practice we believe that this mis-treatment of the
edges of the image will not have a severe effect: various tricks borrowed from
time series analysis might be used if necessary. Imposing periodicity in
addition to stationarity is equivalent to replacing a Toeplitz matrix by its
circulant approximation, as discussed by Gray (1972) and Sherman (1985). Using
the Fast Fourier Transform or its generalisations leads to very repid computat-
ion.

4.5 Parameter estimation by Fourier methods

Under essumptions of toroidal stationarity, the estimation method of
subsection U.3 can also be handled by Fourier methods. Define U to be the
unitary matrix with Uijkl = (mn)~2v-iky=J% where v and w are respectively

mth and nth camplex roots of unity. Providing we interpret the transpose

symbols in (20) as complex conjugate transposes, the value of this expression

is unchanged if we replace each of the matrices M = G, H, Vn, Ves At’ Bt’ Ct’

Et and Ft by UMU*. 1In the case of a block-circulant M, UMU* is the diagonal

matrix whose entries are the unnormalised, two-dimensional discrete Fourier co-
efficients of an arbitrary row of M. Of course, At’ Bt’ etc., depend on the

data and are not block-circulant, but it is clear from the form of the trace
terms in (20) that only the diagonal elements of UA U*, ete., are required.
Such diegonal elements are simply sums, over s = 1 to t, of the squared
moduli of the Fourier coefficients of Yg-

The approximate maximum likelihood estimator can therefore be found quite
simply. For example, free of any constraints except toroidal stationarity, we
obtain estimates again given by expression (21), where each matrix is now
interpreted as the diagonal part of its Fourier transform. More interestingly,
we can estimate G and H subject to parametric constraints. Because of the form
of (20) the results are weighted least squares estimates (based on complex
data). For example, if we revert to a single subscript for pixels, and let Vi

8;» b;, ¢; and h, denote the ith diagonal elements of UMU* for M = VoA B

Ct and H, then from (20) we see that {hi} should be chosen to minimise

Zv.—l(a. - c.-llb.le) + ZV.’lc.lh. - c.-lb.[2 .

C i i i i A S A | i 1

i i
Thus if H is assumed symmetric (blurring symmetric, not necessarily isotropic),
h; is estimated as (2ci)' (bi + bi*). If H was parameterised to have only its

first p Fourier components non-zero, then hi is estimated as c. lb:.L for i = 1,

«++5 P, and zero otherwise., Assumptions of simple form in the original non-
Fourier domain (e.g. finite_ range blur) would lead to explicit least squares
comEutations regressing ci-lbi on appropriate basis vectors, withweights

v. tec..

i 71
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The mean vectas un and ue can be allowed to be non~zero, and estimated in

& similar fashion. If we impose toroidal stationarity on the mean structure as
well, these will each have only one non-zero Fourier component but more gener-
ally it may be appropriate to allow non-stationarity in the mean (see Hunt,
1977). For any Fourier camponent of un and uE allowed to be non-zero, the

corresponding components of {ms} and {ys} are mean-corrected before being used
to define At’ etc., leading to estimates of G, H, Vn and Ve much as before.

The estimates of Mn and Mo result from simple averaging.

L.6 Other aspects of the state space model

There are a number of ramifications of the ideas in this section that it
seems appropriate to mention briefly.

Margy real image sensing and recording processes operate non-linearly.
Hunt (1977) argues that a model of the form

y = s(Hx) + ¢
will often be adequate, perhaps after non-linear transformation of Xy OF Y, .

Here the function s, representing for example a film characteristic curve,
operates component-wise. Hunt's paper, which addresses only the single-image
problem, uses this replacement for our (14) together with a Gaussian prior on x
and circulant approximations to Toeplitz matrices to derive an iterative algo-
rithm for maximum a posteriori restoration of x using the Fourier transform.

A possible approach to approximating the recursive estimation method of
subsection 4.3 uses ideas analogous to those of Titterington and Jiang (1983).
The expectation in (19) would be replaced by an imputation procedure, in which

a random deviate from the N(mt,Vt) distribution would be used to represent X, .

This leads to a convenient rank-one update of the matrices Ct and Ft so that
estimates can be obtained from (21).

Finally, we should mention the restoration of x, and estimation of §
given future as well as past data. This problem is no longer recursive, but
leads to some similar computations in the linear Gaussian case. Shumway and
Stoffer (1982) consider this in detail for an ordinary multiveriate time series:
their approach to the exact EM estimation of 6 using the Kalman filter involves
iterating by alternately scanning forwards and backwards through the sequence.
This would doubtless be extremely expensive in our image-processing context.

5. Discussion and further work

It will be clear that we have not attempted a complete treatment of the
topic of our title. Many ramifications of the approach we have described
remain unexplored, and this section serves to record the future work we propose.

The Kalman filter approach described in Section 4 has been implemented,
together with recursive parameter estimation, and our presentation in Tokyo
will include some illustrations of this in action.

We intend to develop specific methods based on (12), probably incorporat-

ing stochastic imputation to obtain practical approximations. This seems the
best prospect for progress where the linear Gaussian assumptions are untenable.
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None of the methods described is well tuned to the classic computer-
vision problems of motion of solid objects. The suggestion by Kelly (1986) of
increasing the dimension of Xy to include velocity information seems a promis-
in approach, and one which we intend to investigate.

Acknowledgement

The authors are grateful to Julian Besag for helpful discussions and
encouragement.

BIBLIOGRAPHY

Abend, K., Harley, T.J. and Kanal, L.N. (1965). Classification of binary
random patterns. IEEE Trans, Inf. Thy., IT-11, 538-5kk,

Anderson, B.D.O. and Moore, J.B. (1979). Optimal filtering. Prentice Hall.

Baum, L.E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximisation
technique occurring in the statistical analysis of probabilistic
functions of Markov Chains. Ann. Math. Statist., 41, 16L-1T71.

Bellman, R.E. (1960). Introduction to matrix analysis. New York: McGraw-Hill.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice
systems (with discussion). J.R. Statist. Soc. B, 36, 192-236.

Besag, J. (1978). Contribution to discussion of paper by Bartlett.
J.R. Statist. Soc. B, 4O, 165-166.

Besag, J. (1986). On the statistical analysis of dirty pictures (with discuss-
ion). J.R. Statist. Soc. B, 48, 259-302.

Biemond, J. and Gerbrands, J.J. (1979). An edge-preserving, recursive, noise-
smoothing algorithm for image data. IEEE Trans. Syst. Man. Cybernet. ,
SMC-9, 622-627.

Biemond, J. and Gerbrands, J.J. (1980). Comparison of some two-dimensional
recursive point-to-point estimators based on a DPCM image model. IEEE
Trans. Syst. Men. Cybernet., SMC-10, 929-936.

Biemond, J., Rieske, J. and Gerbrands, J.J. (1983). A fast Kalman filter for
images degraded by both blur and noise. IEEE Trans. Acoust. Speech
Signal Proc., ASSP-31, 1248-1256.

Bresler, Y. and Merhav, S.J. (1987). Recursive image registration with applic-
ation to motion estimation. IEEE Trans. Acoust. Speech Signal Proc.,
ASSP-35, T0-85.

Buxton, B.F., Buxton, H. and Stephenson, B.K. (1984). Parallel computations of
optic flow in early image processing. Proc. IEEE., Ser. F, 131, 593-602.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood ?rom
incamplete data via the EM algorithm (with discussion). J.R. Statist,
Soc. B, 39, 1-38.

Derin, H. (1987). Estimating components of univariate Gaussian mixtures using
Prony's method. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-9, 1k2-1L8.

-14-



IP-22.1

Derin, H. and Elliott, H. (1987). Modelling and segmentation of noisy and
textured images using Gibbs random fields. IEEE Trans. Pattern Anal.
Mach. Intell., PAMI-9, 39-55.

Fang, J.Q. and Hwang, T.S. (1984). Some experiments on estimating the 3-D
motion parameters of a rigid body from two consecutive image frames.
IEEE Trans. Pattern Ansl. Mach. Intell., PAMI-6, 545-55k,

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and
the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach.
Intell., PAMI-6, T721-TLl.

Geman, S. and Graffigne, C. (1986). A consistency theorem for Markov random
fields. Technical report, Brown University.

Geman, S. and McClure, D.E. (1985). Bayesian image analysis: an application to
single photon emission tomography. Proc. Amer., Statist. Assoc., Stat.
Comp. Sect., 12-18.

Gray, R.M. (1972). On the asymptotic eigenvalue distribution of Toeplitz
matrices. IEEE Trans, Inf. Thy., IT-18, 725-730.

Harrison, P.J. and Stevens, C.F. (1976). Bayesian forecasting (with discussim).
J.R. Statist. Soc. B, 38, 205-247.

Hunt, B.R. (1973). The application of constrained least squares estimation to
image restoration by digital computer. IEEE Trans. Computers, C-22,
805-812.

Hunt, B.R. (1977). Bayesian methods in nonlinear digital image restoration.
IEEE Trans. Computers,C-26, 219-229,

Jones, R.H. (1966). Exponential smoothing for multivariate time series.
J.R. Statistic. Soec. B, 28, 241-251.

Kanal, L.N. (1980). Markov mesh models. 1In Image Modelling. New York:
Academic Press.

Katayama, T. (1979) Restoration of noisy images using a two-dimensional
linear model. IEEE Trans. Syst. Man. Cybernet., SMC-9, T11-T17.

Katayama, T. and Kosaka, M. (1978). Smoothing algorithms for two-dimensional
image processing. IEEE Trans. Syst. Man. Cybernet., SMC-8, 62-66.

Kay, J.W. and Titterington, D.M. (1986). Image labelling and the statistical
analysis of incomplete data. Proc. 2nd Int. Conf. Image Processing and
Applications. Conf. Publ. No. 265, London: IEE, p. L44-L8,

Kiiveri, H. (1986). Contribution to discussion of paper by Besag. J.R. Statist.
Soc. B, 48, 293-294,

Kelly, F.P. (1986). Contribution to discussion of paper by Besag. J.R.
Statist. Soc. B, 48, 287.

Little, R.J.A. and Rubin, D.B. (1983). On jointly estimating parameters and
missing values by maximizing the complete data likelihood. Amer.
Statist., 37, 218-220.

-15-



IP-22.1

Nahi, N.E. (1972). Role of recursive estimation in statistical image enhance-
ment. Proc. IEEE, 60, 872-877.

Ord, J.K. (1975). Estimation methods for models of spatial interaction.
J. Amer, Statist. Assoc., 70, 120-126,

Pickett, E.E. and Whiting, R.G. (1987). On the estimation of probabilitistic
functions of Markov chains. Proc. Conf. Model Oriented Data Ansalysis,
Eisenach, DDR, Springer, to appear.

Possolo, A. (1986). Estimation of binary Markov random fields. Technical
Report no. T7, Dept. of Statistics, University of Washington.

Sclove, S.C. (198k4). Reply to Titterington (1984b). IEEE Trans. Pattern Anal.
Mach. Intell., PAMI-6, 657-658.

Symons , M.J. (1981). Clustering criteria and multivariate normal mixtures.
Biometrics, 37, 35-43.

Sethi, I.K. and Jain, R. (1987). Finding trajectories of feature points in a
monocular image sequence. IEEE Trans. Pattern Anal. Mach. Intell.,
PAMI-9, 56-73.

Sherman, P.J. (1985). Circulant approximations to Toeplitz matrices and
related quantities with application to stationary random processes.
IEEE Trans. Acoust. Speech and Signal Proc., ASSP-33, 1630-1632.

Shumway , R.H. and Stoffer, D.S. (1982). An approach to time series smoothing
and forecasting using the EM algorithm. J. Time Series Anal., 3, 253-
264,

Tekalp, A.M., Kaufman, H. and Woods, J.W. (1985). Fast recursive estimation of
parameters of a space-varying auto-regressive imege model. IEEE Trans.
Acoust. Speech Signal Proc., ASSP-33, L69-L72.

Tekalp, A.M., Kaufman, H. and Woods, J.W. (1986). Identification of image and
blur parameters for the restoration of noncausal images. IEEE Trans.
Acoust. Speech Signal Proc., ASSP-34, 963-972.

Titterington, D.M. (198L4a). Recursive parameter estimation using incomplete
data. J.R. Statist. Soc. B, 46, 257-267.

Titterington, D.M. (1984b). Comment on & paper by Sclove. IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-6, 656-65T7.

Titterington, D.M. and Jiang, J-M. (1983). Recursive estimation procedures for
missing-data problems. Biometrika, 70, 613-62k.

Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985). Statistical Analysis
of Finite Mixture Distributions. Wiley.

Woodward, W.A., Parr, W.C., Schucany, W.R. and Lindsey, H. (1984). A compar-
ison of minimum distance and maximum likelihood estimation of a mixture
proportion. J. Amer. Statist. Assoc., 79, 590-598.

Wu, Z. (1985). Multidimensional state-space model Kalman filteripg with appli-
cations to image restoration. IEEE Trans. Acoust. Speech Signal Proc.,

-16-



IP-22.1

ASSP-33, 1576-1592.

Yasumoto, Y. and Medioni, G. (1986). Robust estimation of three-dimensional
motion parameters from a sequence of image frames using regularization.
IEEE Trans. Pattern Anal. Mach. Intell., 8, 46L-LT1.

SUMMARY

In this paper we discuss statistical methods for the analysis of a
sequence of digital images. Such a sequence usually represents the development
of a true scene through time, and the observed data are degraded, for example
W blur or noise. We concentrate on recursive procedures, that might be applied
in real time. Specific examples include models based on Gibbs distributions or
the Kalman filter. In addition to restoring the image, we suggest methods for
recursively estimating the parameters in both the models for the sequence of
true scenes and the degradation process.

RESUME

Dans cette communication on discute les méthodes statistiques pour
l'analyse d'une séquence d'images numériques. Ordinsirement une telle séquence
représente le développement d'une sc2ne vraie dans le temps et les données
observées sont dégradées, par example par le flou on par le bruit. On se
concentre ice sur les procédures récursives que l'on peut appliquer en temps
réel. Des examples spécifiques renferment des mod2les fondées sur les
distributions de Gibbs ou sur le filtre de Kalman. Au dessus de restaurer
1l'image, on suggeste des méthodes pour l'estimation recursive des parametres de
la modele pour la ségquence des sc®nes vraies et du processus de dégradation.
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