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ABSTRACT
Motivation: The coiled coil is a ubiquitous α-helical protein-structure
domain that directs and facilitates protein-protein interactions in a
wide variety of biological processes. At the protein-sequence level,
the coiled coil is readily recognized via a conspicuous heptad repeat
of hydrophobic and polar residues. However, structurally coiled coils
are more complicated, existing in a wide range of oligomer states and
topologies. As a consequence, predicting these various states from
sequence remains an unmet challenge.
Results: This work introduces LOGICOIL, the first algorithm
to address the problem of predicting multiple coiled-coil
oligomeric states from protein-sequence information alone.
By covering > 90% of the known coiled-coil structures,
LOGICOIL is a net improvement compared to other existing
methods, which achieve a predictive coverage of ∼ 31% of
this population. This leap in predictive power offers better
opportunities for genome-scale analysis, and analyses of
coiled-coil containing protein assemblies.
Availability: LOGICOIL is available via a web-interface
at http://coiledcoils.chm.bris.ac.uk/LOGICOIL. Source code,
training sets and Supporting Information can be downloaded
from the same site.
Contact: D.N.Woolfson@bristol.ac.uk

1 INTRODUCTION
Coiled coils are protein-structure domains that comprise two or
more alpha-helices that wrap around each other, typically in a
left-handed fashion, and which interact through specific packing
interactions known as knobs-into-hole packing. (Crick, 1953;
Lupas and Gruber, 2005). While accounting for approximately
2.9% (range, 0.3% – 6.5%) of the protein-encoding regions
of genes (Rackhamet al., 2010), coiled coils are also actively
involved in the mediation of protein-protein interactions across a
wide array of biological functions; from transcription, through
membrane remodeling, to cell and tissue structure and stability
(Yu, 2002). Despite its functional diversity, the coiled coil is
characterized by a straightforward sequence motif of hydrophobic
(H) and polar (P) residues. The positions within this HPPHPPP

∗To whom correspondence should be addressed.

motif, referred to as the heptad repeat, are typically labelleda

throughg, with hydrophobic residues generally occupying thea

and d positions, and polar residues falling at the other positons.
Given this common sequence pattern, the 3-dimensional structures
adopted by naturally occurring coiled coils display a remarkable
diversity. Applying SOCKET, an algorithm that finds knobs-into-
holes packing interactions within structurally resolved proteins
(Walshaw and Woolfson, 2001b), to the RCSB PDB (Berman
et al., 2000) reveals an abundance of coiled-coil architectures and
topologies (Testaet al., 2009). Indeed, coiled-coil assemblies have
been shown to contain different numbers of helices of parallel or
anti-parallel orientation, that may be formed from the same (homo)
or different (hetero) helical sequences (Moutevelis and Woolfson,
2009; Lupas and Gruber, 2005).

Fig. 1. Different oligomeric states that may be adopted by a coiled-coil
structure and that are targeted by LOGICOIL: antiparallel dimer (A); parallel
dimer (B); trimer (C) and tetramer (D). While other coiled-coil topologies
are observed in nature, the four oligomeric states displayedhere account for
over90% of the known population.

Here, we focus on the prediction of coiled-coil oligomeric state.
Six algorithms exist to tackle this problem: SCORER (Woolfson
and Alber, 1995), which has been recently redefined and retrained
in SCORER 2.0 (Armstronget al., 2011), and PrOCoil (Mahrenholz
et al., 2011) achieve high success rates when separating coiled-
coil sequences, but these methods are strictly limited to the
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Page 4 of 11Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Vincent et al

discrimination of parallel dimeric and parallel trimeric coiled-
coil structures. Multicoil2 (Trigget al., 2011) and its predecessor
MultiCoil (Wolf et al., 1997) follow a different approach to predict
both the location and oligomeric state of coiled coils in protein
sequences. However, their oligomeric state functions remains
limited to the discrimination of parallel dimers and trimers.

Thus, these algorithms cover only a small subset of the known
coiled-coil structural space, limiting their usefulness. For example,
antiparallel dimers, so far excluded from all prediction analysis,
account for well over50% of the total coiled-coil structure
population and represent a wealth of untapped data (Moutevelis and
Woolfson, 2009). Currentde novo methods cover only∼ 31% of the
total coiled-coil population. Thus, simple inclusion of antiparallel
dimeric and tetrameric structures would increase coverage to over
90%.

Homology based approaches such as SPIRICOIL (Rackham
et al., 2010) partially accomplish the task of multi-state coiled-
coil oligomeric state prediction, but cannot be used to classify
the oligomeric state of coiled-coil sequencesab initio; i.e., those
without structurally defined precedents. As a consequence, we
regard the development of aab initio multi-state predictor to be
the next logical step in coiled-coil structure analysis and prediction.
To the best of our knowledge, no work has yet treated theab
initio problem of multi-state classification of coiled-coil oligomers.
As previous attempts have focussed on two-state predictions and
therefore been been tailored towards binary response problems,
they could not be systematically extended for the purpose of multi-
state classification. As such, the problem required the development
of statistical techniques and algorithm capable of discriminating
between multiple coiled-coil oligomeric states.

2 APPROACH
LOGICOIL is based on the simultaneous use of Bayesian
variable selection, and multinomial probit regression for prediction.
We favour this methodology over others for its ability to
perform variable selection and parameter estimation simultaneously.
Furthermore, the Bayesian paradigm allowed us to obtain
informative posterior distributions on the selected parameters,
while providing a convenient framework for the use of prior
information based on biological data and expert knowledge.
Although other commonly used methods for classification such
as support vector machines can incorporate variable selection in
the context binary classification problems (Beckeret al., 2009;
Hochreiter and Obermayer, 2006), these methods are not yet
applicable to multi-class problems.The statistical framework
used for LOGICOIL can be easily applied to the prediction
of multiple coiled-coil oligomeric states, while accounting for
the inclusion of higher-order associations, such as intrahelical
pairwise residue associations. Pairwise interaction effects have
been included in other algorithms that aim to predict coiled-coil
oligomeric state, but these are limited to two-state predictors
and have yet be extended to multinomial classification (Wolf
et al., 1997; Mahrenholzet al., 2011). The higher-dimensional
models and associated computational challenges that this approach
usually may entail are becoming increasingly accessible; notably
through the use of Markov Chain Monte Carlo (MCMC) methods
and increased computational power. After discussing multinomial

regression models in the Bayesian context, we describe a
Bayesian variable selection scheme that selects the most relevant
pairwise associations. Furthermore, we discuss computational and
implementation issues of the variable selection scheme and how
they were handled.

3 BAYESIAN MULTINOMIAL PROBIT
REGRESSION WITH VARIABLE SELECTION

3.1 Problem Formulation
Assume a data set{yi;xi1, . . . , xip}

n
i=1, where n is the number of

observed samples,yi ∈ {1, . . . , C} is a polytomous outcome andxij is the
observed value of thejth predictor in theith sample withj = 1, 2, . . . , p.
We also denote the predictor matrixX = (xij)n,p as:

X =

















predictor1 predictor2 · · · predictorp
x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp

















(1)

The relationship between the probability Pr(yi = c|Xi) = πic of observing
responsec givenXi can be conveniently modeled using Generalized Linear
Models (McCullagh and Nelder, 1989), and is determined by a(1×p)matrix
of regression coefficientsβc. Although the unknown parameters inβc can
be estimated through maximum likelihood techniques, data augmentation
techniques and Gibbs sampling can also be used to allow for efficient
simulation under the Bayesian paradigm (Albert and Chib, 1993; Holmes
and Held, 2006). Here, we consider a Bayesian auxiliary variable model that
assumes the probabilitiesπic to be related toXi andβc through a probit
link function.

The key idea proposed by (Albert and Chib, 1993) is to generate theyi
from theXi through latent vectorsZi = (zi,1, . . . , zi,C−1), which are
thresholded to determine theyi; this means that probabilitiesπic are defined
only implicitly. The approach is expressed precisely through the following
notation:

yi =

{

c, if zi,c = max{Zi, 0}

C, if max{Zi} ≤ 0,

zi,c = ηi,c + ǫi,c

ηi,c = xiβc

ǫi,c ∼ N(0, 1)

βc ∼ π(βc) (2)

where yi is now conditional on the newly introduced auxiliary variable
vectorZi.

Writing zc = [z1,c, . . . , zn,c]T and ǫc = [ǫ1,c, . . . , ǫn,c]T , the
auxiliary variable can be expressed in vector form as:

zc = Xβc + ǫc, ǫc ∼ N(0,Σ) for c = 1, . . . , C − 1. (3)

whereX is the(C−1)×p predictor matrix,βc is the1×p matrix of fixed
coefficients with respect to the responsec, ǫi is a (C − 1) × 1 vector of
errors andΣ is a(C − 1)× (C − 1) positive definite matrix withσ11 = 1.

3.2 Bayesian variable selection
The Bayesian multinomial probit model in (2) is well-suited to variable
selection problems. Throughout the past decade, a number of special forms
of the reversible jump sampler introduced by (Green, 1995) have been
advanced. In particular, much work has focussed on data augmented models
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that propose efficient predictor selection methods (Stingo and Vanucci, 2010;
Shaet al., 2004; Zhouet al., 2004, 2006; Tuchler, 2008; Holmes and Held,
2006; Ai-Jun and Xin-Yuan, 2010; Gustafson and Lefebvre, 2008). Here, we
use the scheme described in (Holmes and Held, 2006) and (Gustafson and
Lefebvre, 2008). Their approach introduces a covariate indicator vector that
determines if predictors are in or out of the model:

γi =

{

1, if βj 6= 0 (the j-th predictor is selected),

0, if βj = 0 (the j-th predictor is not selected).
(4)

The parameterγ is then included in (3) so that:

zc = Xγβc,γ + ec, c = 1, . . . , C − 1. (5)

whereXγ are the elements ofX set to1 and βc,γ consists of all the
non-zero elements ofβc. For the Bayesian variable selection scheme in
(5), the remaining task involved the estimation of the indicator vector
γ = {γ1, . . . , γp} and the correspondingβγ,c andzc.

A Gibbs sampler is employed to estimate all the parameters in the model.
Following from others, we choose a ”ridge” priorπ(β) = Np(0, vIp) on
the (C − 1) × p matrix of parametersβ, whereNp(µ, Σ̂) represents a
p-multivariate normal distribution with meanµ and covariance matrix̂Σ,
andIp is thep × p identity matrix (Shaet al., 2004; Brownet al., 2002).
It should be noted that alternative choices of prior distribution also exist
(Liang et al., 2008; O’Hara and Sillanpaaa, 2009). The detailed derivation
of the posterior distributions of the parameters and the Gibbs sampler used
to estimate the parameter vectorsγ, βγ,c and zc for Bayesian variable
selection are identical to that of Holmes & Held and Gustafson& Lefebvre
(Holmes and Held, 2006; Gustafson and Lefebvre, 2008).

3.3 Computing the Response Probabilities

For the development ofLOGICOIL, we treated pairwise-association
selection and coiled-coil-oligomeric-state classification in two
sequential steps. Pairwise associations were first selected using
Bayesian variable selection. From the{γ(t), β

(t)
c , z

(t)
c , t =

1, . . . , T} MCMC samples obtained from the Gibbs sampling
scheme, the pairwise associations with the highest posterior
probability of inclusion were assumed to play the strongest role in
predicting the target coiled-coil oligomeric state. Posterior inclusion
probabilities were computed according to:

p(γi = 1) =
1

T

T
∑

t=1

γ
(t)
i (6)

where

γ
(t)
i =

{

1, if γi was included in the model at thetth iteration

0, otherwise

Once the strongest pairwise associations had been identified,
the parameter values of the retained predictors were fitted in a
separate model. Here, multinomial probit regression was chosen to
preserve consistency with the variable-selection process. There is no
closed form for the likelihood function of multinomial probit models
but practical MCMC methods have been proposed to compute
parameter estimates. Here, parameter values in the multinomial
probit model were estimated using theMNL library available in the
R software (Imai and van Dyk, 2005b,a; Team, 1993).

From theT samples{β(t)
c , z

(t)
c , t = 1, . . . , T} of the secondary

MCMC scheme, the probability of a given test coiled-coil sequence

under each class was computed as:

p(yi = c|Xi) =
1

T

T
∑

t=1

(

Φ(Xiβ
(t)
c ) = max{Φ(Xiβ

(t)
j ), 0)}

)

j = 1, . . . , C − 1 andj 6= c

p(yi = C|Xi) =
1

T

T
∑

t=1

(

max{Φ(Xiβ
(t)
j )} 6 0

)

j = 1, . . . , C − 1 (7)

whereΦ(.) is the multivariate normal distribution andXi is the
(C − 1)× p dimensional vector for observationi.

4 PRACTICAL IMPLEMENTATION

4.1 Convergence of MCMC sampling schemes

For all the examples discussed below, the convergence of the
MCMC sampling schemes was assessed using multiple chains
with different random number seeds and starting values. The
number of iterations necessary for the MCMC sampling scheme to
converge, otherwise known as the burn-in, was estimated at the point
for which the independent MCMC runs displayed similar values.
Autocorrelation in the MCMC samples was also checked to ensure
that the chains were mixing adequately. Once a suitable burn-in
period had been identified, a single, long chain was ran and used
to compute parameter estimates and posterior probabilities. In line
with accepted guidelines, it was also ensured that the acceptance
ratio of the MH step was kept in the range of [25% – 45%] during
simulations (Gelmanet al., 2004).

4.2 Preselection of variables

Bayesian variable selection provided a rigorous framework to
select the strongest predictor variables in a model, but was
computationally intensive given the large number of variables in
the model. To facilitate simulations and reduce the dimensions of
our data, a preselection filter was used to choose a smaller subset
of variables, to which Bayesian variable selection was subsequently
applied.

Letn(a1 → r1, a2 → r2, c) be the number of times the following
is observed: amino acida1 at register positionr1, and amino acid
a2 at register positionr2, and responsec in the dataset; antiparallel
dimer, parallel dimer, trimer or tetramer. Using the hypergeometric
distribution, the probability of observing the spatial interaction
n(a1 → r1, a2 → r2, c) exactlyk times can be written as:

p(n(a1 → r1, a2 → r2, c) = k) = (8)

n(a1 → r1,+ → r2, c)n(+ → r1, a2 → r2, c)

n(+,+, c)

where the symbol+ denotes summing out over all other amino
acids andc ∈ {1, . . . , C}. A two-sided p-value was assigned to
each observation and used to preselect the most significant pairwise
associations. To avoid missing important predictor variables, a
relaxed preselection criterion was taken by setting a p-value
threshold of0.1.

3
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4.3 Prior Distribution

The posterior inclusion probabilitiesp(γi = 1|Y,X) have been
reported to be sensitive to the hyperparameterv in the prior
distribution π(β) = Np(0, vIp) (Lamnisoset al., 2010, 2009;
Fernandezet al., 2001). To ensure we selected the variables that
helped achieve optimal out-of-sample predictive performance, we
followed the methodology adopted in (Lamnisoset al., 2010)
and used K-fold cross-validation across a range of values on the
hyperparameter priorv. The K-fold predictive scores were estimated
at l = 20 values ofv equally spaced in the logarithmic scale with
lower value0.1 and upper value500. Since this cross-validation
methodology requiresKl MCMC runs to estimate theK partition
scores for thel values of v, we use a value ofK = 10 to
contain computational expenses. Similar predictive performance
were obtained for values ofv in the interval(0.1, 59), which is
in accordance with the guideline range ofv proposed in Shaet al.
(2004). For the chosen values ofv, residue pairs were preselected
according to the method described in§3.5 and subsequently applied
to Bayesian variable selection model.

5 METHODS

5.1 Coiled-coil training and test sets

The sequences of antiparallel dimeric, and parallel dimeric, trimeric
and tetrameric canonical — that is, heptad based — coiled coils
longer than14 residues in length were obtained from the CC+
database (Testaet al., 2009). All coiled-coil sequences were aligned
using Clustalw2 (Larkinet al., 2007) (maximum gap penalties
were used to conserve the alignment of the heptad repeat), and
then culled using CD-HIT (Li and Godzik, 2006) at a redundancy
cutoff of 50%. The corresponding structures were validated by eye
to ensure that all remaining sequences belonged to well-defined
coiled-coil systems. We use a50% identity threshold rather than
25 − 30%, often used for culling protein datasets, as we find the
latter to be too restrictive for coiled-coil sequences, which have
a constricted amino acid usage, and therefore regarded as regions
of low complexity (Armstronget al., 2011; Jones and Swindells,
2002). The final dataset — referred to as the pristine dataset —
comprises 670 antiparallel dimeric, 173 parallel dimeric, 55 trimeric
and 39 tetrameric coiled-coil sequences.

5.2 Assessing predictive performance

For problems involving binary response classes, a popular method
to quantify the prediction accuracy of a classifier during cross-
validation is the Receiver Operator Characteristic (ROC) curve, and
the associated Area Under the Curve (AUC) measure (Fawcett,
2006). The overall performance, denoted as mAUC, of a multi-class
classifier can be computed using a generalization of the AUC for
multiple class classification problems as defined in (Hand and Till,
2001). By averaging the AUC obtained for each pair of classes, the
mAUC discrimination rate can be obtained through the score:

mAUC =
2

c(c− 1)

∑

i<j

AUCci,cj (9)

where AUCci,cj , (ci, cj) ∈ 1, . . . , C with (ci 6= cj) is the
probability that a randomly drawn member from response classi

will have a lower estimated probability of belonging to classj than a

randomly drawn member of classj. Although no equivalent to ROC
curves exists to plot multi-class performance measures, the pairwise
AUC’s can be visualized in the form on a spider-web diagram.
This has the advantage of showing the achieved discrimination rate
between all pairs of classes, therefore allowing for the identification
of pairs of classes that are well separated and those that are not,
regardless of the reported overall mAUC score. All AUC values
were computed using the ROCR and caTools packages in the R
software (Singet al., 2005).

6 MULTI-STATE PREDICTION OF COILED-COIL
OLIGOMERIC STATE.

6.1 Including pairwise associations in the model
Prior to running the Bayesian variable selection scheme on a
larger scale, we performed a trial run on a limited set of pairwise
associations. Due to its well-documented and important role in
oligomer formation, we implemented Bayesian variable selection
to detect the strongest residued − a pairs, which is equivalent to a
i → i+ 4 association (Figure 2). Thed anda register positions are
part of the coiled-coil hydrophobic core and have been extensively
studied; indeed, combining various pairs of residues at thea and
d positions of the heptad repeat induces specific oligomer state
switches (Harburyet al., 1993).

Fig. 2. Posterior inclusion probabilities for residues spaced 4 register
positions apart, more specifically at thed − a register positions. Residue
pairs were preselected prior to being run through the OPS Bayesian variable
selection model. Posterior inclusion probabilities were obtained after a
run-length of 10000 iterations with 5000 burn-in iterations.

The posterior inclusion probabilities of pairwise associations at
the d − a pairs provided a noteworthy validation of the Bayesian
variable selection scheme that was used. Indeed, the highest-scoring
pairwise associations have been validated by experimental studies
that incorporated known rules for hydrophobic cores into a designed
background. For example,II (isoleucine at registerd and a) is
a well-established trimer-favouring pairwise interaction, as well as
theLL (leucine at registerd anda). LV (leucine at registerd and
valine at registera) associations is a dimer-favouring combination
(Harbury et al., 1993), while theIL (isoleucine at registerd and
leucine at registera) pairwise interaction has been shown to confer
tetrameric conformations (Harburyet al., 1993).

Because residues at thed − a register pairs are placed in the
hydrophobic core of coiled coils, it was expected that many pairwise

4
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associations would involve hydrophobic residues. However, a few
high-scoring pairwise associations with polar residues were also
found. Once again, these associations have been confirmed by
experimental work that studied the effects of including a polar
side chain within the otherwise hydrophobic core of a coiled-coil
complex. For example, theLN (leucine at registerd and asparagine
at registera) or LK (leucine at registerd and lysine at registera)
pairs are found more often in dimeric sequences (Harburyet al.,
1993; Gonzalezet al., 1996). Furthermore, the pairwise association
NI (asparagine at registerd and isoleucine at registera) or IS
(isoleucine at registerd and serine at registera) tends to favour
trimeric structures (Hartmannet al., 2009; Akeyet al., 2001).

The Bayesian variable selection scheme also detected pairwise
associations, such asY T (tyrosine at registerd and threonine at
registera), that had no precedent in experimental studies. Some
work has characterized the effects of placing the polar threonine
residue at thea register position, which produce trimers (Akeyet al.,
2001). However, this work is in the context of a clearly defined
design background (i.e. leucine and isoleucine in the hydrophobic
core positions) and does not consider the effects of simultaneously
placing a tyrosine residue at thea register position. Placing tyrosine
in the hydrophobic core may confer higher-order oligomerization,
as only these structures could accommodate the large side-chain
of tyrosine without disrupting the entire coiled-coil conformation
(Walshaw and Woolfson, 2003). This hypothesis is supported by
the PDB 2GUV structure, an engineered pentamer that incoporates
bulky phenyalanine residues in its hydrophobic core (Liuet al.,
2006).

Overall, the posterior inclusion probabilities pairwise associations
at the d − a pairs, and obtained from first principles, agreed
with experimental studies. Since the pairwise associations
selected through Bayesian variable selection were coherent with
experimental and structural interpretation, two main suggestions
are proposed: (1) they represented valid pairwise associations to
discriminate between coiled-coil oligomeric states, and should be
included in the LOGICOIL predictive model; (2) they could be
exploited to facilitate the rational design of coiled-coil structures.
Here, we focussed on the first point, and investigated if the inclusion
of pairwise residue effects at neighbouring positions of coiled-coil
sequences improved the predictive power of LOGICOIL. This was
achieved by applying Bayesian variable selection on thei → i+ 1,
i → i+ 3 andi → i+ 4 positions of the coiled-coil heptad repeat.

6.2 Performance of LOGICOIL
LOGICOIL was assessed using 10-fold cross validation on the
pristine dataset, and variable selection was performed internally
to the 10-fold cross validation scheme;i.e., variables were re-
selected whenever the training set and test set were changed. Prior to
assessing the performance on a test fold, LOGICOIL learned from
the training fold according to a three-step process:

1. Bayesian variable selection was run on each of the distincti →
i+1, i → i+3 andi → i+4 spatial positions in the coiled-coil
heptad repeat. For example, Bayesian variable selection was
run on the seven distincti → i+ 1 positionsa− b, b− c, c−
d, d− e, e− f, f − g andg− a. The inclusion probabilities of
the pairwise associations were then computed from the output
obtained for each spatial position.

2. The highest-scoring pairwise associations at all of thei →
i+1, i → i+3 andi → i+4 positions were identified, grouped
together and ran through a secondary Bayesian variable
selection scheme. Inclusion probabilities were computed
from the final output and only the highest scoring pairwise
associations were included in the LOGICOIL predictive model.

3. The parameter values of the retained predictors were fitted in
a separate model, and the resulting MCMC samples were used
to estimate parameters and class probabilities as in§3.3.

Generally, we observed that the selected pairwise associations
remained uniform throughout the separate folds. The convergence
behaviour of the secondary Bayesian variable selection scheme
and the pairwise associations that were selected to be included
in the LOGICOIL predictive model are listed in the§1 of the
supplementary information. Figure 3 shows the average mAUC
values and associated variations obtained by LOGICOIL during the
10-fold cross-validation scheme.

Fig. 3. Boxplot of the mAUC achieved by LOGICOIL when response
probabilities were estimated using multinomial logistic regression. The
mAUC were obtained using 10-fold cross-validation on coiled-coil
structures with sequences greater in length than 14 residues (light grey), 21
residues (dark grey) and 28 residues (black) are shown.

The inclusion of pairwise residue effects drastically improved our
ability to distinguish between coiled-coil sequences belonging to
different oligomeric states. In particular, the performance obtained
for coiled-coil sequences longer than 28 residues was high (mAUC
= 0.93). As shown in Figure 4, pairwise AUC’s of the different pair
of classes were checked to ensure that the good overall performance
was not a side product of a few, well-separated cases.

The separation rate for pairs involving tetramers was on average
lower, in particular for coiled-coil sequences shorter than 28
residues. This could be attributed to the low numbers of tetramers
in our training set, meaning that more structural information may
be needed to improve predictions.While AUC measures are useful
in estimating the discrimination accuracy of an algorithm, they do
not explicitly report the fraction of correct assignments;i.e., its
accuracy. Therefore, we performed leave-one-out cross-validation
on the LOGICOIL pristine dataset. We report the results as a
confusion matrix obtained for coiled coils longer than 20 residues,

5
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Fig. 4. Pairwise AUC values of the LOGICOIL predictive model for
coiled coils with sequence length above14 (light grey), 21 (dark grey)
and 28 (black) residues are shown. The symbol2ap represents antiparallel
dimers,2p represents parallel dimers,3 represents trimers and4 represents
tetramers.

shown in table 1, which gives correct predictions on the diagonal
and incorrect predictions in the off-diagonal cells.

Prediction Outcome
Antiparallel Parallel Trimers TetramersAccuracy

Dimers Dimers

T
ru

th

Antiparallel Dimers 160 8 10 17 0.82
Parallel Dimers 15 68 4 4 0.75

Trimers 4 1 31 0 0.86
Tetramers 6 0 1 22 0.76

0.80
Table 1. Confusion matrix of the LOGICOIL predictions based on leave-
one-out cross-validation of coiled-coil sequences in the pristine dataset with
sequence length longer than 20 residues. The rows and columnsshow the
true and predicted oligomeric states, respectively. The diagonal elements of
the matrix show the number of correct assignments, while the off-diagonal
shows the number of incorrect assignments.

On this basis, LOGICOIL showed high classification accuracies
for predicting the oligomeric states of coiled-coil sequences in
the pristine dataset. We observe that the highest misclassifications
occurred between antiparallel and parallel dimers, which might be
expected given the similarities between these structures (Walshaw
and Woolfson, 2001a).Nevertheless, the increased predictive power
of LOGICOIL suggested that spatial associations contributed to
differentiate between parallel dimers, antiparallel dimers, trimers
and tetramers. Interestingly, the separation rate achieved for the
antiparallel dimer/tetramer pair was insensitive to changes in the
coiled-coil sequence-length cutoff, thus raising questions on the
inherent nature of the structures involved. Contrary to tetrameric
coiled-coil structures, in-depth analysis of the antiparallel dimers
structures in the LOGICOIL dataset suggested that the vast amount
of available data for the antiparallel oligomer is in fact biased by
many short, buried (i.e. packed within a protein structure) coiled
coils. It is possible therefore that such structures are influenced into
coiled coil-like conformation by interactions involved in tertiary

protein structure. Hence, it could be argued that they are highly
dependent on packing interactions in order to adopt a coiled-coil
structure, and therefore do not represent ”real” — or free-standing
— coiled coils. While it is possible that the performance of the
LOGICOIL algorithm could be optimized if structures that exhibit
this property were removed from its dataset, it was judged that this
would have been too subjective. Additionally, selectively removing
data from the training set could lead to unrepresentative database
that would not reflect the known population of coiled coils observed
in nature. In conclusion, although the caveats of the LOGICOIL
dataset should be highlighted and taken into consideration, it is
probably more prudent to strictly rely on the SOCKET-annotated
data and not tamper with any of the dataset.

6.3 Comparing LOGICOIL with other algorithms
LOGICOIL is the only reported method capable of discriminating
between multiple coiled-coil oligomeric states, which complicated
the benchmarking of LOGICOIL against other existing coiled-coil
oligomer-state predictors. Indeed, MultiCoil, Multicoil2, SCORER
2.0 and PrOCoil give predictions for parallel dimeric and parallel
trimeric coiled coils only. Although it was already shown that
LOGICOIL achieved high predictive accuracy, it was necessary
to measure its performance relative to these other algorithms. To
do this, LOGICOIL was reduced to a similar two-state predictor.
The predictive powers of each algorithm were compared on the
non-redundant dataset of parallel dimeric and trimeric coiled-coil
sequences developed for the SCORER 2.0 algorithm (Armstrong
et al., 2011). To ensure fair comparison, LOGICOIL, SCORER
2.0 and PrOCoil were retrained and assessed using 10-fold cross-
validation to provide independent tests of their utility. Due to the
fact that MultiCoil and Multicoil2 could not be re-trained and can
only score sequences longer than 21 residues, we only considered
coiled coils with sequence length above this threshold.

The AUC values and classification accuracies displayed in Table 2
show that LOGICOIL outperformed all other algorithms in this two-
state-prediction test, with PrOCoil coming in a close second. Due to
the unavailability of the MultiCoil and Multicoil2 source code, it
was not possible to carry out cross-validation for these algorithms.
As a consequence, there is a possibility of overlap between the
coiled-coil sequences contained in the test database and the training
set of the concerned algorithms; thus biasing results. Nonetheless,
MultiCoil and Multicoil2 did not compare favourably with other
algorithms. The performance of MultiCoil was possibly linked to
its training set, which is heavily biased towards long parallel two-
stranded coiled coils (Gruberet al., 2006). This caveat was resolved
in the recently retrained and redesigned Multicoil2 predictor, which
improved the performance of MultiCoil but was not to the level of
the other predictors.

PrOCoil nearly matched LOGICOIL on two-state prediction,
and it would be interesting to evaluate how this method performs
on multi-state classification. SCORER 2.0 also achieved high
discrimination rate, but is slightly surpassed by PrOCoil and
LOGICOIL. Interestingly, SCORER 2.0 is the only algorithm
to include no pairwise residue effects in its predictive model,
which serves as a reminder that including pairwise residue effects
does not necessarily increase predictive power. Thus, we suggest
that pairwise-association information may not be so relevant in
the context of two-state prediction, which is rationalized by
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LOGICOIL — Multi-state prediction of coiled-coil oligomeric s tate.

Algorithm AUC Recall Accuracy
Dimer / Trimer

LOGICOIL 0.90 1 / 0.88 0.95
SCORER 2.0 0.85 0.86 / 0.24 0.71
PrOCoil 0.89 0.97 / 0.60 0.88
MultiCoil 0.591 0.09 / 0.00 0.06
Multicoil2 0.66 0.35 / 0.20 0.32

Table 2. AUC values of LOGICOIL, SCORER 2.0, PrOCoil, MultiCoil
and Multicoil2 when used to classify the oligomeric state of coiled coils on
the pristine coiled-coil test set developed in (Armstronget al., 2011). Only
coiled coils with sequence> 20 amino acids were used, as MultiCoil and
Multicoil2 do not accept any input shorter than21 characters.

the well-characterized differences between parallel dimeric and
trimeric coiled coils, i.e, there were enough distinctive features
between the two structures so that the added sensitivity gained
from spatial associations was not necessary. Rather, it is the
construction of reliable training sets and methods to detect relevant
pairwise associations that appears most important. For example,
LOGICOIL and PrOCoil select pairwise associations with a scheme
that favours sparsity. Also, their performance was reported with
variable selection performed through external cross-validation,
whereas there are no indication that the same procedure was
applied during the original assessment of MultiCoil and Multicoil2.
In addition, higher-order information may well be important in
coiled-coil discrimination (Hadleyet al., 2008; Steinkrugeret al.,
2010). We also assessed how straightforward homology-based
searches using the BLAST algorithm performed on multi-state
classification of coiled-coil oligomeric state prediction (see§2 in the
supporting information). Again, the predictive accuracy obtained by
LOGICOIL significantly outperformed the BLAST predictions.

7 CONCLUSIONS
This work has introduced LOGICOIL, the first algorithm to address
the problem of predicting multiple coiled-coil oligomeric states
from protein-sequence information alone. LOGICOIL increases
our predictive coverage of the known coiled-coil structures from
31% to over 90%, but also distinctly improves our ability to
differentiate between coiled-coil sequences of different oligomeric
state. By taking into account the independent contribution of amino
acids at different register positions, and subsequently including
pairwise association effects between distantly positioned residues,
we show that LOGICOIL achieves a high discrimination rate
when predicting the oligomeric state of coiled-coil sequences
across a range of structures, including antiparallel dimers, parallel
dimers, trimers and tetramers. As the only algorithm allowing
for such extensive coverage of the total coiled-coil population,
LOGICOIL could not be benchmarked against any other algorithms.
However, when constrained to the limitations of the currently
available coiled-coil oligomeric state predictors, SCORER 2.0,
MultiCoil and PrOCoil, it was demonstrated that LOGICOIL offers
equal or superior predictive power. Furthermore, LOGICOIL

While the improvements that the LOGICOIL algorithm brings
to the field of coiled-coil oligomeric state prediction are clear, we
propose that LOGICOIL may still benefit from further iterations.

Most notably, the LOGICOIL algorithm is currently constrained to
the sole function of predicting coiled-coil oligomeric state, while
depending on third-party softwares for the detection of coiled-
coil domains in protein sequence. We suggest that extending the
LOGICOIL predictive function to also include coiled-coil domain
prediction would greatly benefit users, as this would result in a
truly free-standing software capable of simultaneously predicting
coiled-coil regions in a protein sequence along with its associated
oligomeric state. Although LOGICOIL in its present form is capable
of dealing with heptad breaks such as stutters, stammers and
skips, it is not explicitly designed to account for the potential
effects that may result from these sequence discontinuities. Given
the increasing number of newly detected non-canonical coiled-coil
sequences, future work will focus on the retrieval of heptad-
break specific information to augment the predictive power and
coverage of LOGICOIL. Despite these minor caveats, we suggest
that the development of LOGICOIL, and the unique features it
offers, widens the breadth of opportunities for biologists and
bioinformaticians alike.

LOGICOIL is publicly and freely available via the world-wide
web at the following URL: http://coiledcoils.chm.bris.ac.uk/LOGICOIL
and can be used as stand-alone software for known coiled-coil
regions, or in conjunction with MARCOIL, for coiled-coil region
detection and oligomeric state assignment.
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