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ABSTRACT

Motivation: The coiled coil is a ubiquitous a-helical protein-structure
domain that directs and facilitates protein-protein interactions in a
wide variety of biological processes. At the protein-sequence level,
the coiled coil is readily recognized via a conspicuous heptad repeat
of hydrophobic and polar residues. However, structurally coiled coils
are more complicated, existing in a wide range of oligomer states and
topologies. As a consequence, predicting these various states from
sequence remains an unmet challenge.

Results: This work introduces LOGICOIL, the first algorithm
to address the problem of predicting multiple coiled-coil
oligomeric states from protein-sequence information alone.
By covering > 90% of the known coiled-coil structures,
LOGICOIL is a net improvement compared to other existing
methods, which achieve a predictive coverage of ~ 31% of
this population. This leap in predictive power offers better
opportunities for genome-scale analysis, and analyses of
coiled-coil containing protein assemblies.

Availability:  LOGICOIL is available via a web-interface
at http://coiledcoils.chm.bris.ac.uk/LOGICOIL. Source code,
training sets and Supporting Information can be downloaded
from the same site.

Contact: D.N.Woolfson@bristol.ac.uk

1 INTRODUCTION

Coiled coils are protein-structure domains that comprise two or

motif, referred to as the heptad repeat, are typically labelled
through g, with hydrophobic residues generally occupying the
and d positions, and polar residues falling at the other positons.
Given this common sequence pattern, the 3-dimensional structures
adopted by naturally occurring coiled coils display a remarkable
diversity. Applying SOCKET, an algorithm that finds knobs-into-
holes packing interactions within structurally resolved proteins
(Walshaw and Woolfson, 2001b), to the RCSB PDB (Berman
et al., 2000) reveals an abundance of coiled-coil architectures and
topologies (Testat al., 2009). Indeed, coiled-coil assemblies have
been shown to contain different numbers of helices of parallel or
anti-parallel orientation, that may be formed from the same (homo)
or different (hetero) helical sequences (Moutevelis and Woolfson,
2009; Lupas and Gruber, 2005).

A

more alpha-helices that wrap around each other, typically in a

left-handed fashion, and which interact through specific packing;, 1 pifterent oligomeric states that may be adopted by a coildti-co
interactions known as knobs-into-hole packing. (Crick, 1953;gycture and that are targeted by LOGICOIL: antiparaiteiet (A); parallel
Lupas and Gruber, 2005). While accounting for approximatelydimer (B); trimer (C) and tetramer (D). While other coiled-caipblogies
2.9% (range, 0.3% — 6.5%) of the protein-encoding regions are observed in nature, the four oligomeric states displageel account for
of genes (Rackhanet al., 2010), coiled coils are also actively over90% of the known population.

involved in the mediation of protein-protein interactions across a

wide array of biological functions; from transcription, through

membrane remodeling, to cell and tissue structure and stability Here, we focus on the prediction of coiled-coil oligomeric state.
(Yu, 2002). Despite its functional diversity, the coiled coil is Six algorithms exist to tackle this problem: SCORER (Woolfson
characterized by a straightforward sequence motif of hydrophobiend Alber, 1995), which has been recently redefined and retrained
(H) and polar (P) residues. The positions within this HPPHPPRn SCORER 2.0 (Armstrongt al., 2011), and PrOCoil (Mahrenholz

*To whom correspondence should be addressed.

et al., 2011) achieve high success rates when separating coiled-
coil sequences, but these methods are strictly limited to the

© Oxford University Press xxxx.
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discrimination of parallel dimeric and parallel trimeric coiled- regression models in the Bayesian context, we describe a
coil structures. Multicoil2 (Trigget al., 2011) and its predecessor Bayesian variable selection scheme that selects the most relevant
MultiCoil (Wolf et al., 1997) follow a different approach to predict pairwise associations. Furthermore, we discuss computational and
both the location and oligomeric state of coiled coils in proteinimplementation issues of the variable selection scheme and how
sequences. However, their oligomeric state functions remainghey were handled.
limited to the discrimination of parallel dimers and trimers.

Thus, these algorithms cover only a small subset of the known

coiled-coil structural space, limiting their usefulness. For exampleg BAYESIAN MULTINOMIAL PROBIT

antiparallel dimers, so far excluded from all prediction analysis, REGRESSION WITH VARIABLE SELECTION
account for well over50% of the total coiled-coil structure

population and represent a wealth of untapped data (Moutevelis andtl  Problem Formulation

Woolfson, 2009). Currerde novo methods cover only 31% of the Assume a data sefy;;xii,...,zip}?,, Wheren is the number of
total coiled-coil population. Thus, simple inclusion of antiparallel observed sampleg; € {1,...,C} is a polytomous outcome and; is the
dimeric and tetrameric structures would increase coverage to ovabserved value of thg' predictor in thei*” sample withj = 1,2,...,p.

90%. We also denote the predictor mat® = (z;)n,p as:
Homology basgd approacht_es such as SPIRICOIL (Ragkham predictorl  predictor2 --- predictorp
et al., 2010) partially accomplish the task of multi-state coiled- z11 £12 T1p
coil oligomeric state prediction, but cannot be used to classify X — Zo1 T99 T2 o

the oligomeric state of coiled-coil sequena@sinitio; i.e., those
without structurally defined precedents. As a consequence, we
regard the development of a initio multi-state predictor to be Tnl Tn2 Tnp

the next logical step in coiled-coil structure analysis and predictionThe relationship between the probability §r = ¢|X;) = ;. of observing

To the best of our knowledge, no work has yet treated ahe response givenX; can be conveniently modeled using Generalized Linear
initio problem of multi-state classification of coiled-coil oligomers. Models (McCullagh and Nelder, 1989), and is determined fygp) matrix

As previous attempts have focussed on two-state predictions arfif regression coefficients,.. Although the unknown parameters /. can
therefore been been tailored towards binary response problem@€ estimated through maximum likelihood techniques, data anfgtien
techniques and Gibbs sampling can also be used to allow fariesifi

they could not be systematically extended for the purpose of multl-s.mulation under the Bayesian paradigm (Albert and Chib319fbimes

state C_IaS_Siﬁcation'_ As such, the prpblem required the_ de‘_’e'_Opme'& d Held, 2006). Here, we consider a Bayesian auxiliaryatégimodel that
of statistical techniques and algorithm capable of discriminating,<¢;mes the probabilities.. to be related taX; and/3, through a probit

between multiple coiled-coil oligomeric states. link function.

The key idea proposed by (Albert and Chib, 1993) is to geretay;
from the X; through latent vector&; = (z;,1,...,2;,c—1), which are
thresholded to determine thyg; this means that probabilities . are defined

2 APPROACH only implicitly. The approach is expressed precisely thiotige following

LOGICOIL is based on the simultaneous use of Bayesiannotation:

variable selection, and multinomial probit regression for prediction.

We favour this methodology over others for its ability to ¢, if z;,c = maxz{Z;,0}

perform variable selection and parameter estimation simultaneously. G { C, if maz{Z;} <0,

Furthermore, the Bayesian paradigm allowed us to obtain

informative posterior distributions on the selected parameters, Zi,e = Thise + €ire

while providing a convenient framework for the use of prior Ni,e = Tiflc

information based on biological data and expert knowledge. cie~ N(0,1)

Although other commonly used methods for classification such ’

as support vector machines can incorporate variable selection in Be ~ m(Be) @
the context binary classification problems (Becletral., 2009;

Hochreiter and Obermayer, 2006), these methods are not yetherey; is now conditional on the newly introduced auxiliary vatib
applicable to multi-class problemsThe statistical framework vectorZ;.

used for LOGICOIL can be easily applied to the prediction Writing z. = (21,65 -+ Zn,e] T andec = [€1,c0---s€n,e]T, the
of multiple coiled-coil oligomeric states, while accounting for auxiliary variable can be expressed in vector form as:
the inclusion of higher-order associations, such as intrahelical ze = XB, + e, €c~NO,D)fore=1,...,C—1. (3)

pairwise residue associations. Pairwise interaction effects have ) ) ) ) ) ]

been included in other algorithms that aim to predict coiled-coiIWhef;_eX '?the_ihcfl) Xftprtehd'cmr mat”X'_B_c IS thgl le matl”x Oftf'xe‘i

oligomeric state, but these are limited to two-state predic’[orsCoe cients with respect o the response:; |s§1( N ).X. vector o
. . PR errors andC is a(C' — 1) x (C — 1) positive definite matrix withr1; = 1.

and have yet be extended to multinomial classification (Wolf

et al., 1997; Mahrenholzt al., 2011). The higher-dimensional 3.2 Bayesian variable selection

models and associated computational challenges that this approagfe Bayesian multinomial probit model in (2) is well-suited tariable

usually may entail are becoming increasingly accessible; notabl¥election problems. Throughout the past decade, a numbeecigsforms
through the use of Markov Chain Monte Carlo (MCMC) methods of the reversible jump sampler introduced by (Green, 1995k Hasen

and increased computational power. After discussing multinomiahdvanced. In particular, much work has focussed on data augchedels
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that propose efficient predictor selection methods (Stimgbvanucci, 2010;  under each class was computed as:

Shaet al., 2004; Zhouet al., 2004, 2006; Tuchler, 2008; Holmes and Held,

2006; Ai-Jun and Xin-Yuan, 2010; Gustafson and Lefebvr@8}0Here, we T

use the scheme described in (Holmes and Held, 2006) and (Gustahd p(ys = | X5) Z ( B max{<I>(Xi/6']<,t)), 0)})
Lefebvre, 2008). Their approach introduces a covariateatdr vector that t=1

determines if predictors are in or out of the model:

i=1,... —1landj # ¢
o 1, if B; # 0 (the j-th predictor is selected), @ T
Vi = 0, if B; = 0 (the j-th predictor is not selected). p(y: = C| X)) Z (max{@ zﬂ(t))} )
The parametey is then included in (3) so that: t=1
ze=X,B,, +e, c=1,...,C—1 ®) j=b...C-1 ™

where X, are the elements oK set tol and 3., consists of all the  where ®(.) is the multivariate normal distribution andl; is the
non-zero elements gB.. For the Bayesian variable selection scheme in (C — 1) x p dimensional vector for observatian
(5) the remaining task involved the estimation of the indicatector

= {71,...,7p} and the corresponding, .. andz...

A Gibbs sampler is employed to est|mate all the parameters in tlelmo

Following from others, we choose a "ridge” pria{3) = N,(0,vI,) on
the (C' — 1) x p matrix of parameters, where Ny, (11, %) represents a 4 PRACTICAL IMPLEMENTATION

p-multivariate normal distribution with meaa and covariance matri¥, samoli
andI, is thep x p identity matrix (Shaet al., 2004; Brownet al., 2002). 41 Convergenceof MCMC pling schemes

It should be noted that alternative choices of prior disiitm also exist ~ For all the examples discussed below, the convergence of the
(Liang et al., 2008; O'Hara and Sillanpaaa, 2009). The detailed dedmati MCMC sampling schemes was assessed using multiple chains
of the posterior distributions of the parameters and the S#ampler used  with different random number seeds and starting values. The
to estimate the parameter vecteys 3., . andz. for Bayesian variable  nymper of iterations necessary for the MCMC sampling scheme to
selection are identical to that of Holmes & Held and Gustaf&drefebvre converge, otherwise known as the burn-in, was estimated at the point
(Holmes and Held, 2006; Gustafson and Lefebvre, 2008). for which the independent MCMC runs displayed similar values.
Autocorrelation in the MCMC samples was also checked to ensure

3.3 Computing the Response Probabilities that the chains were mixing adequately. Once a suitable burn-in
. period had been identified, a single, long chain was ran and used
to compute parameter estimates and posterior probabilities. In line

jth accepted guidelines, it was also ensured that the acceptance
ratio of the MH step was kept in the range of [25% — 45%] during
simulations (Gelmast al., 2004).

For the development dfOGICOIL, we treated pairwise-associatio
selection and coiled-coil-oligomeric-state classification in two
sequential steps. Pairwise associations were first selected usi
Bayesian variable selection. From thgy® g{" 2 ¢ =
.,T} MCMC samples obtained from the Gibbs sampling
scheme, the pairwise associations with the highest posteriof.2 Preselection of variables

probability of inclusion were assumed to play the strongest role i 'nBayeS|an variable selection provided a rigorous framework to

predicting the target coiled-coil oligomeric state. Posterlorlnclusmnselect the strongest predictor variables in a model, but was
probabilities were computed according to:

computationally intensive given the large number of variables in
the model. To facilitate simulations and reduce the dimensions of
our data, a preselection filter was used to choose a smaller subset

plyi=1) = % Z A0 (6)  of va_riables, to which Bayesian variable selection was subsequently
applied.
Letn(a1 — 71, a2 — 72, ¢) be the number of times the following
where is observed: amino acid; at register positiom;, and amino acid
a2 at register positiom2, and responsein the dataset; antiparallel
0 { 1, if v; was included in the model at th&" iteration  dimer, parallel dimer, trimer or tetramer. Using the hypergeometric
T T 0. otherwise distribution, the probability of observing the spatial interaction
’ n(a1 — r1,a2 — 72, c) exactlyk times can be written as:
Once the strongest pairwise associations had been identified,
the parameter values of the retained predictors were fitted in a p(n(ar = ri,a2 = ra,¢) = k) = ®)
separate model. Here, multinomial probit regression was chosen to n(ay = r1,+ — r2,e)n(+ — 11, a2 — 72, ¢)
preserve consistency with the variable-selection process. There is no n(+, +,c)

closed form for the likelihood function of multinomial probit models
but practical MCMC methods have been proposed to computgvhere the symbok- denotes summing out over all other amino

parameter estimates. Here, parameter values in the multinomialcids ande € {1,...,C}. A two-sided p-value was assigned to

probit model were estimated using thi\L library available in the  each observation and used to preselect the most significant pairwise

R software (Imai and van Dyk, 2005b,a; Team, 1993). associations. To avoid missing important predictor variables, a
From theT samples{s‘"”, (")t = 1,...,T} of the secondary ~relaxed preselection criterion was taken by setting a p-value

MCMC scheme, the probability of a given test coiled-coil sequencehreshold of0.1.
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4.3 Prior Distribution randomly drawn member of clagsAlthough no equivalent to ROC
The posterior inclusion probabilities(y; = 1]Y,X) have been curves exists to plot multi-class performance measures, the pairwise

reported to be sensitive to the hyperparametem the prior ~AUC'S can be visualized in the form on a spider-web diagram.
distribution 7(8) = N,(0,vI,) (Lamnisoset al., 2010, 2009: This has the advantage of showing the achieved discrimination rate
Fernandezt al. 2001)_pT0’ enpsure we selected the variables thaetween all pairs of classes, therefore allowing for the identification

helped achieve optimal out-of-sample predictive performance, wé’f pairs of classes that are well separated and those that are not,
followed the methodology adopted in (Lamnises al., 2010) regardless of the reported overall mAUC score. All AUC values

and used K-fold cross-validation across a range of values on th¥€'e computed using the ROCR and caTools packages in the R
hyperparameter priar. The K-fold predictive scores were estimated SCftware (Singt al., 2005).

at! = 20 values ofv equally spaced in the logarithmic scale with

lower value0.1 and upper valug00. Since this cross-validaton 6 MULTI-STATE PREDICTION OF COILED-COIL
methodology require&’! MCMC runs to estimate th& partition OLIGOMERIC STATE.

scores for thel values ofv, we use a value ok = 10 to 6.1 Including pairwise associationsin the model
contain computational expenses. Similar predictive performance’

were obtained for values af in the interval (0.1,59), which is Prior to running the Bayesian variable selection scheme on a
in accordance with the guideline rangewproposed in Shat al. larger scale, we performed a trial run on a limited set of pairwise
(2004). For the chosen values of residue pairs were preselected associations. Due to its well-documented and important role in

according to the method describeci5 and subsequently applied oligomer formation, we implemented Bayesian variable selection
to Bayesian variable selection model. to detect the strongest residde- a pairs, which is equivalent to a

i — i + 4 association (Figure 2). Thebanda register positions are
part of the coiled-coil hydrophobic core and have been extensively
studied; indeed, combining various pairs of residues atlaed

5> METHODS d positions of the heptad repeat induces specific oligomer state
5.1 Cailed-cail training and test sets switches (Harburgt al., 1993).

The sequences of antiparallel dimeric, and parallel dimeric, trimeric
and tetrameric canonical — that is, heptad based — coiled coils
longer than14 residues in length were obtained from the CC+
database (Tesgt al., 2009). All coiled-coil sequences were aligned
using Clustalw2 (Larkinet al., 2007) (maximum gap penalties
were used to conserve the alignment of the heptad repeat), and
then culled using CD-HIT (Li and Godzik, 2006) at a redundancy
cutoff of 50%. The corresponding structures were validated by eye
to ensure that all remaining sequences belonged to well-defined
coiled-coil systems. We use #% identity threshold rather than

25 — 30%, often used for culling protein datasets, as we find the
latter to be too restrictive for coiled-coil sequences, which have %0
a constricted amino acid usage, and therefore regarded as regions Pairwise Interactions (d-a)

of low complexity (Armstronget al., 2011; Jones and Swindells,

2002). The final dataset — referred to as the pristine dataset —jg 2 posterior inclusion probabiliies for residues spaced dister
comprises 670 antiparallel dimeric, 173 parallel dimeric, 55 trimericpositions apart, more specifically at tHe— a register positions. Residue
and 39 tetrameric coiled-coil sequences. pairs were preselected prior to being run through the OP&$ay variable
selection model. Posterior inclusion probabilities wergaoted after a
run-length of 10000 iterations with 5000 burn-in iteragon

For problems involving binary response classes, a popular method

to quantify the prediction accuracy of a classifier during cross- o . o o
validation is the Receiver Operator Characteristic (ROC) curve, and The posterior inclusion probabilities of pairwise associations at
the associated Area Under the Curve (AUC) measure (Fawcet{,hed — a pairs provided a noteworthy validation of the Bayesian

2006). The overall performance, denoted as mAUC, of a muIti-cIasé’ariable selection scheme that was used. Indeed, the highest-scoring
classifier can be computed using a generalization of the AUC fopairwise associations have been validated by experimental studies

multiple class classification problems as defined in (Hand and TiII,that incorporated known rules for hydr'ophobic cpres into ade_signed
2001). By averaging the AUC obtained for each pair of classes, th@ackground. For examplel/ (isoleucine at registed and a) is

mAUC discrimination rate can be obtained through the score: a well-established trimer-favouring pairwise interaction, as well as
the LL (leucine at registed anda). LV (leucine at registed and

mAUC = 2_ 5 Z AUC., .., ©) valine at register) associations is a dimer-favouring combination
<J

L is  LVLN YT LKNI
L KI

LR
08 —

YA

0.6 —
vi ™

04 —

CAEA

Posterior Inclusion Probability

FR ER
| AAAE Ls I Byl 1A

5.2 Assessing predictive performance

c(c (Harbury et al., 1993), while thel L (isoleucine at registed and
leucine at registeti) pairwise interaction has been shown to confer
where AUC, ., (ci,c;) € 1,...,Cwith(c; # ¢;) is the  tetrameric conformations (Harbueyal., 1993).
probability that a randomly drawn member from response class Because residues at the— a register pairs are placed in the
will have a lower estimated probability of belonging to clagkana  hydrophobic core of coiled coils, it was expected that many pairwise
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associations would involve hydrophobic residues. However, a few 2. The highest-scoring pairwise associations at all ofithe»
high-scoring pairwise associations with polar residues were also  i+1,7 — i+3 andi — i+4 positions were identified, grouped
found. Once again, these associations have been confirmed by together and ran through a secondary Bayesian variable
experimental work that studied the effects of including a polar selection scheme. Inclusion probabilities were computed

side chain within the otherwise hydrophobic core of a coiled-coil from the final output and only the highest scoring pairwise
complex. For example, theN (leucine at registed and asparagine associations were included in the LOGICOIL predictive model.
at registera) or LK’ (leucine at registed and lysine at register) 3. The parameter values of the retained predictors were fitted in
pairs are found more often in dimeric sequences (Harketil., a separate model, and the resulting MCMC samples were used

1993; Gonzaleet al., 1996). Furthermore, the pairwise association to estimate parameters and class probabilities §3.51
NI (asparagine at registet and isoleucine at register) or 1.5

(isoleucine at registed and serine at register) tends to favour Generally, we observed that the selected pairwise associations
trimeric structures (Hartmaret al., 2009; Akeyet al., 2001). ~remained uniform throughout the separate folds. The convergence
The Bayesian variable selection scheme also detected pairwigshaviour of the secondary Bayesian variable selection scheme
associations, such asT (tyrosine at register/ and threonine at  anq the pairwise associations that were selected to be included
registera), that had no precedent in experimental studies. Some, the LOGICOIL predictive model are listed in tH of the
work has characterized the effects of placing the polar threoningypplementary information. Figure 3 shows the average mAUC

residue at the register position, which produce trimers (Akeyal.,  yajues and associated variations obtained by LOGICOIL during the
2001). However, this work is in the context of a clearly defined 1¢._fo|d cross-validation scheme.

design background.é. leucine and isoleucine in the hydrophobic
core positions) and does not consider the effects of simultaneously
placing a tyrosine residue at theegister position. Placing tyrosine

in the hydrophobic core may confer higher-order oligomerization, - ] T
as only these structures could accommodate the large side-chain —T !
of tyrosine without disrupting the entire coiled-coil conformation

(Walshaw and Woolfson, 2003). This hypothesis is supported by
the PDB 2GUV structure, an engineered pentamer that incoporates
bulky phenyalanine residues in its hydrophobic core (kial.,
2006).

Overall, the posterior inclusion probabilities pairwise associations
at the d — a pairs, and obtained from first principles, agreed
with experimental studies. Since the pairwise associations
selected through Bayesian variable selection were coherent with
experimental and structural interpretation, two main suggestions
are proposed: (1) they represented valid pairwise associations to
discriminate between coiled-coil oligomeric states, and should be
included in the LOGICOIL predictive model; (2) they could be Fig. 3. Boxplot of the mAUC achieved by LOGICOIL when response
exploited to facilitate the rational design of coiled-coil structures.probabilities were estimated using multinomial logistic esgion. The
Here, we focussed on the first point, and investigated if the inclusiofAUC were obtained using 10-fold cross-validation on coited
of pairwise residue effects at neighbouring positions of coiled-coilSructures with sequences greater in length than 14 resiigat grey), 21
sequences improved the predictive power of LOGICOIL. This was €5/dues (dark grey) and 28 residues (black) are shown.
achieved by applying Bayesian variable selection on thei + 1,

i — 1+ 3 andi — i + 4 positions of the coiled-coil heptad repeat.

mAUC
05 06 07 08 0.9

T T T
>4 >21 >28

The inclusion of pairwise residue effects drastically improved our
ability to distinguish between coiled-coil sequences belonging to
6.2 Performanceof LOGICOIL different oligomeric states. In particular, the performance obtained
LOGICOIL was assessed using 10-fold cross validation on thédor coiled-coil sequences longer than 28 residues was high (mAUC
pristine dataset, and variable selection was performed internally 0.93). As shown in Figure 4, pairwise AUC’s of the different pair
to the 10-fold cross validation schemeg., variables were re- of classes were checked to ensure that the good overall perfoemanc
selected whenever the training set and test set were changed. Priont@s not a side product of a few, well-separated cases.
assessing the performance on a test fold, LOGICOIL learned from The separation rate for pairs involving tetramers was on average
the training fold according to a three-step process: lower, in particular for coiled-coil sequences shorter than 28
residues. This could be attributed to the low numbers of tetramers
1. Bayesian variable selection was run on each of the distiret  in our training set, meaning that more structural information may
i+1,7 — i+3 andi — i+4 spatial positions in the coiled-coil be needed to improve predictior&hile AUC measures are useful
heptad repeat. For example, Bayesian variable selection was estimating the discrimination accuracy of an algorithm, they do
run on the seven distinét— ¢ + 1 positionsa — b,b — ¢, c — not explicitly report the fraction of correct assignmenit®, its
d,d—e,e— f, f —gandg — a. The inclusion probabilities of accuracy. Therefore, we performed leave-one-out crossatedid
the pairwise associations were then computed from the outputn the LOGICOIL pristine dataset. We report the results as a
obtained for each spatial position. confusion matrix obtained for coiled coils longer than 20 residues,
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4
S protein structure. Hence, it could be argued that they are highly
6 dependent on packing interactions in order to adopt a coiled-coil
7 structure, and therefore do not represent "real” — or free-standin
8 — coiled coils. While it is possible that the performance of the
9 LOGICOIL algorithm could be optimized if structures that exhibit
10 this property were removed from its dataset, it was judged that this
11 ", would have been too subjective. Additionally, selectively removing
12 < dvs3 data from the training set could lead to unrepresentative database
13 that would not reflect the known population of coiled coils observed
14 in nature. In conclusion, although the caveats of the LOGICOIL
15 dataset should be highlighted and taken into consideration, it is
16 probably more prudent to strictly rely on the SOCKET-annotated
17 data and not tamper with any of the dataset.
18
19 6.3 Comparing LOGICOIL with other algorithms
20 Fig. 4. Pairwise AUC values of the LOGICOIL predictive model for LOGICOIL is the only reported method capable of discriminating
21 coiled coils with sequence length abovel4 (light grey), dark grey) between multiple coiled-coil oligomeric states, which complicated
22 and 28 (black) residues are shown. The synibg) represents antiparallel  the benchmarking of LOGICOIL against other existing coiled-coil
23 dimers,2,, represents parallel dimer3represents trimers antlrepresents oligomer-state predictors. Indeed, MultiCoil, Multicoil2, SCORER
24 tetramers. 2.0 and PrOCail give predictions for parallel dimeric and parallel
25 trimeric coiled coils only. Although it was already shown that
25 shoun nable 1, wich e conect prcictons on th diagonal .00\ SN0 NP precictue aceacy 1 was necessary
28 and incorrect predictions in the off-diagonal cells. do this, LOGICOIL was reduced to a similar two-state predictor.
29 The predictive powers of each algorithm were compared on the
30 _ Prediction Outcome non-redundant dataset of parallel dimeric and trimeric coiled-coil
31 A”I;'il‘r’i?!e' PD?rrna(lelresI Trimers Tetramer#ccuracy — sequences developed for the SCORER 2.0 algorithm (Armstrong
32 Antiparallel Dimers 160 5 o N 058 et al., 2011). Tp ensure fal_r comparison, LOGICQIL, SCORER
33 £ Parallel Dimers 15 68 4 2 0.75 2.Q anq PrOCaoil were retrained and assesseq using 10-fold cross-
34 = Trimers 4 1 31 0 0.86 validation to proylde mdepc_end_ent tests of their ut|||t_y. Due to the
Tetramers 6 0 1 22 0.76 fact that MultiCoil and Multicoil2 could not be re-trained and can
35 0.80 only score sequences longer than 21 residues, we only considered
36 Table 1. Confusiqn matrix of ‘the LQGICOIL pred_icti(_)n; based on Igave- coiled coils with sequence length above this threshold.
37 one-out cross-validation of c0||ed-c0|_| sequences in tligtipe dataset with The AUC values and classification accuracies displayed in Table 2
38 sequence Ien.gth Ionger tha_n 20 residues. T.he rows anq colsinons the show that LOGICOIL outperformed all other algorithms in this two-
39 true and.prEd'Cted oligomeric states, respec tively. Thgmh.al EIer.nems of state-prediction test, with PrOCoil coming in a close second. Due to
the matrix show the number of correct assignments, while theiafjonal > ’ e e ) )
40 shows the number of incorrect assignments. the unavailability of the MultiCoil and Multicoil2 source code, it
41 was not possible to carry out cross-validation for these algorithms.
42 As a consequence, there is a possibility of overlap between the
43 coiled-coil sequences contained in the test database and the training
44 On this basis, LOGICOIL showed high classification accuraciesset of the concerned algorithms; thus biasing results. Nonetheless,
45 for predicting the oligomeric states of coiled-coil sequences inMultiCoil and Multicoil2 did not compare favourably with other
46 the pristine dataset. We observe that the highest misclassificatioradgorithms. The performance of MultiCoil was possibly linked to
47 occurred between antiparallel and parallel dimers, which might béts training set, which is heavily biased towards long parallel two-
48 expected given the similarities between these structures (Walshastranded coiled coils (Grubetal., 2006). This caveat was resolved
49 and Woolfson, 2001aNevertheless, the increased predictive powerin the recently retrained and redesigned Multicoil2 predictor, which
50 of LOGICOIL suggested that spatial associations contributed tamproved the performance of MultiCoil but was not to the level of
differentiate between parallel dimers, antiparallel dimers, trimershe other predictors.
ol and tetramers. Interestingly, the separation rate achieved for the PrOCoil nearly matched LOGICOIL on two-state prediction,
52 antiparallel dimer/tetramer pair was insensitive to changes in thand it would be interesting to evaluate how this method performs
53 coiled-coil sequence-length cutoff, thus raising questions on th@n multi-state classification. SCORER 2.0 also achieved high
54 inherent nature of the structures involved. Contrary to tetrameriaiscrimination rate, but is slightly surpassed by PrOCoil and
55 coiled-coil structures, in-depth analysis of the antiparallel dimersLOGICOIL. Interestingly, SCORER 2.0 is the only algorithm
56 structures in the LOGICOIL dataset suggested that the vast amoutd include no pairwise residue effects in its predictive model,
57 of available data for the antiparallel oligomer is in fact biased bywhich serves as a reminder that including pairwise residue effects
58 many short, buriedif. packed within a protein structure) coiled does not necessarily increase predictive power. Thus, we suggest
59 coils. It is possible therefore that such structures are influenced intthat pairwise-association information may not be so relevant in
60 coiled coil-like conformation by interactions involved in tertiary the context of two-state prediction, which is rationalized by
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LOGICOIL — Multi-state prediction of coiled-coil oligomeric s tate.

Algorithm AUC  Recall Accuracy Most notably, the LOGICOIL algorithm is currently constrained to
Dimer / Trimer the sole function of predicting coiled-coil oligomeric state, while
LOGICOIL 0.90 1/0.88 0.95 depending on third-party softwares for the detection of coiled-
SCORER 2.0 0.85 0.86/0.24 0.71 coil domains in protein sequence. We suggest that extending the
PrOCail 0.89 0.97/0.60 0.88 LOGICOIL predictive function to also include coiled-coil domain
MultiCoil 0.591 0.09/0.00 0.06 prediction would greatly benefit users, as this would result in a
Multicoil2 0.66 0.35/0.20 0.32 truly free-standing software capable of simultaneously predicting

Table 2. AUC values of LOGICOIL, SCORER 2.0, ProCoil, MultiCoil co_iled-co_il regions in a protein sequence along with its_associated
and Multicoil2 when used to classify the oligomeric state afed coils on oligomeric state. Although LOGICOIL iniits present form is capable
the pristine coiled-coil test set developed in (Armstrengl., 2011). Oonly ~ Of dealing with heptad breaks such as stutters, stammers and
coiled coils with sequence 20 amino acids were used, as MultiCoil and SKips, it is not explicitly designed to account for the potential
Multicoil2 do not accept any input shorter thaih characters. effects that may result from these sequence discontinuities. Given
the increasing number of newly detected non-canonical coiled-coil
sequences, future work will focus on the retrieval of heptad-
break specific information to augment the predictive power and

the well-characterized differences between parallel dimeric angoverage of LOGICOIL. Despite these minor caveats, we suggest
trimeric coiled coils,i.e, there were enough distinctive features that the development of LOGICOIL, and the unique features it
between the two structures so that the added sensitivity gaine@ffers, widens the breadth of opportunities for biologists and
from spatial associations was not necessary. Rather, it is thBioinformaticians alike.
construction of reliable training sets and methods to detect relevant LOGICOIL is publicly and freely available via the world-wide
pairwise associations that appears most important. For examplé\{eb at the following URL: http://coiledcoils.chm.bris.ac.uk/LOGICOIL
LOGICOIL and PrOCoil select pairwise associations with a scheménd can be used as stand-alone software for known coiled-coil
that favours sparsity. Also, their performance was reported witH€gions, or in conjunction with MARCOIL, for coiled-coil region
variable selection performed through external cross-validationdetection and oligomeric state assignment.
whereas there are no indication that the same procedure was
applied during the original assessment of MultiCoil and Multicoil2.
In addition, higher-order information may well be important in
coiled-coil discrimination (Hadlegt al., 2008; Steinkrugeet al., ACKNOWLEDGEMENTS
2010). We also assessed how straightforward homology-baseihe authors would like to thank Dr. Craig Armstrong, Dr. Gail
searches using the BLAST algorithm performed on multi-stateBartlett, Dr. Drew thompson and members of the Woolfson lab
classification of coiled-coil oligomeric state prediction (§8énthe ~ for several useful discussions. The authors would also like to
supporting information). Again, the predictive accuracy obtained byacknowledge Dr. Mauro Delorenzi for allowing the free use of
LOGICOIL significantly outperformed the BLAST predictions. MARCOIL on the LOGICOIL web serverWe would also like

to acknowledge Dr. Bodenhofer for providing useful information

regarding the PrOCaoil software.
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