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A Bayesian analysis for factorial experiments is presented, using finite mixture distri-
butions to model the main effects and interactions. This allows both estimation and an
analogue of hypothesis testing in a posterior analysis using a single prior specification. A
detailed formulation based on this approach is provided for the case of the two-way model
with replication, allowing interactions. Issues in formulating a suitable prior are discussed
in detail, and, in the context of two illustrative applications, we discuss implementation,
presentation of posterior distributions, sensitivity and performance of the Markov chain
Monte Carlo methods that are used.
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1. I

Faster computers and the increasing popularity of Markov chain Monte Carlo methods
have allowed Bayesian methods to become widely used in complex data analysis problems.
Curiously, however, in the analyis of factorial experiments the Bayesian approach has yet
to provide a completely satisfactory answer.

One version of the classical theory of factorial experiments, going back to Fisher and
further developed by Kempthorne (1955), completely avoids distributional assumptions,
assuming only additivity, and uses randomisation to derive the standard tests of hypotheses
about treatment effects. Here, we are interested in the more familiar classical approach
based on linear modelling and normal distribution theory. The corresponding Bayesian
analysis has been developed mainly in the pioneering works of Box & Tiao (1973) and
Lindley & Smith (1972). Box & Tiao (1973, Ch. 6) discuss Bayesian analysis of cross-
classified designs, including fixed, random and mixed effects models. They point out that
in a Bayesian approach the appropriate inference procedure for fixed and random effects
‘depends upon the nature of the prior distribution used to represent the behavior of the
factors’. They also show, in Chapter 7, that shrinkage estimates of specific effects may
result when a random effects model is assumed. Lindley & Smith (1972) use a hierarchically
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structured linear model built on multivariate normal components with the focus on esti-
mation of treatment effects; special cases of the model are considered by Lindley (1974)
and Smith (1973). These are authoritative and attractive approaches, albeit with modest
compromises to the Bayesian paradigm, in respect of the estimation of the variance compo-
nents, necessitated by the computational limitations of the time. Nevertheless, the inference
is almost entirely estimative; questions about the indistinguishability of factor levels, or
more general hypotheses about contrasts, are answered indirectly through their joint
posterior distribution, e.g. by checking whether or not the hypothesis falls in a highest
posterior density region. Little attempt is made, with the notable exception of Dickey
(1974), to answer the question a Bayesian would be likely to ask: what is the probability
of the hypothesis?

Schervish (1992) moves closer to this goal, in the context of a non-hierarchical Bayesian
linear model, by addressing questions of the form ‘how far is some linear function of the
parameters away from some specified value?’. Again, continuous, natural conjugate priors
are used, and the inference is summarised by the posterior distribution of a scalar measure
of discrepancy between the data and the linear hypothesis of interest. Gopalan & Berry
(1998) advocate an approach to multiple comparisons that more fully builds in the discrete
character of the hypothesis-testing problem; a partition of the parameter space is pre-
defined as part of the specification of the prior, each cell corresponding to some pattern
of ties among the parameters, and posterior probabilities for the cells are computed by
Markov chain Monte Carlo methods. The estimative and partition-based approaches
co-exist in the paper by Bush & MacEachern (1996) on Bayesian analysis of the random-
ised block experiment, with Dirichlet process priors used for the block effects and ordinary
normal priors for the treatments.

Against this background, we can now state the approach of the present paper. The
traditional dichotomy between estimation and testing in Bayesian statistics has recently
blurred considerably. This is largely because of the research on model mixing and model
averaging, where priors originally devised for testing are employed to provide inferences,
and related measures of uncertainty, that take into account model uncertainty; see e.g.
Kass & Raftery (1995). Consequently, we are not very innovative in using, for a Bayesian
analysis of factorial experiments, a single prior specification suitable for both estimation
and testing. In its detailed formulation, this prior incorporates the researcher’s view about
what numerical differences between levels are considered practically significant. In our
approach this judgement determines the amount of variation within clusters of effects.
Posterior probabilities can then be computed that any subset of effects belongs to the
same cluster, while ‘model-averaging’ estimates of the effects are also produced automati-
cally. This is all made possible by the use of finite mixture models for factorial effects,
through the analysis of their underlying latent allocation variables. We choose to use
explicitly-specified mixtures of normals, with unknown numbers of components, building
on Richardson & Green (1997), rather than adopting the more restrictive Dirichlet process
models. Comparisons between these classes of models can be found in an unpublished
report by P. J. Green and S. Richardson. Our approach bears some resemblance to that
used by Consonni & Veronese (1995) for binomial experiments. Recast in the present
context, their model would assume a prior distribution on the partitions of levels and,
conditional on the partition, exchangeability of the levels within each partition subset. In
our model, this is achieved via the prior distribution on the mixture allocation variables.

This paper is restricted to the case of the two-way, ‘row-plus-column’ model with repli-
cations, possibly unequal and/or missing, and allowing interactions, but the approach is
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modular, and intended to be extendible to more complicated designs and to experiments
including covariates. Computations are all done by Markov chain Monte Carlo, making
use of reversible jump moves (Green, 1995) where it is necessary to jump between param-
eter subspaces of differing dimension, as happens here when the numbers of components
in the distributions of row, column or interaction effects change. Apart from the modelling
flexibility permitted by Markov chain Monte Carlo, this approach leaves us particularly
free to explore interesting aspects of the joint posterior distribution.

The paper is structured as follows. In § 2, we introduce notation and describe our
mixture-model-based formulation in detail. As is intuitively expected and confirmed by
pilot experiments, there are interesting patterns of sensitivity to prior specification; in § 3
we provide a set of guidelines for the choice of prior hyperparameters. Two illustrative
applications are then described in detail in § 4, where we cover implementational issues
and many aspects of the posterior analysis, and give brief information about sensitivity
and about Markov chain Monte Carlo performance. Details of the sampler are deferred
to the Appendix.

2. M    

2·1. A Bayesian two-way model

We consider a two-way layout model. For i=1, 2, . . . , m and j=1, 2, . . . , n, suppose
there are r

ij
replicate observations {y

ijk
, k=1, 2, . . . , r

ij
} in cell (i, j ), corresponding to

the ith level of factor 1 and the jth level of factor 2. Each observation is modelled as the
sum of a systematic component, consisting of overall level, main effects and interaction,
and a normal error component. Both main effects and the interaction are assumed random
and drawn from finite mixtures of normal distributions.

A detailed description of the model follows. For notational simplicity we contravene
traditional usage and employ s

ij
, sa

t
etc., to denote variances rather than standard devi-

ations. All distributions are tacitly assumed conditional on the higher-order parameters,
although these are only rarely explicitly mentioned. Quantities for which a distribution is
not specified are fixed constants and need to be assigned before the analysis.

It is assumed that

y
ijk
=h

ij
+e

ijk
(i=1, . . . , m; j=1, . . . , n; k=1, . . . , r

ij
).

The systematic component h
ij

is the sum of the overall level m, the main effects a
i
and b

j
and the interaction c

ij
:

h
ij
=m+a

i
+b

j
+c

ij
. (1)

The error terms e
ijk

are independently normally distributed e
ijk
~N(0, s

ij
), with zero means

and variances s
ij

allowed to differ from cell to cell according to the model

s−1
ij
~Ga(a, b), b~Ga(q, h), (2)

where the s
ij

are conditionally independent given b. The overall level m has normal prior
distribution m~N(g, sm ). The remaining terms in the systematic component (1) are
assumed to proceed from finite mixtures of unknown numbers of normal component
distributions, subject to the classical identifying constraints

∑
i

a
i
=0, ∑

j
b
j
=0, ∑

j
c
ij
=0, ∑

i
c
ij
=0. (3)
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More precisely, we first consider

a
i
~ ∑

ka

t=1
wa
t
N(ma

t
, sa

t
), (4)

independently for all i, and then take, as the prior distribution on the a’s, the conditional
distribution of (a1 , . . . , a

m
)T given W a

i
=0, where this is defined as the limit of the distri-

bution given |W a
i
|<d as d�0; all similar conditionals in this paper should be interpreted

in the same way. Thus the a’s are dependent random variables. Similarly, the prior distri-
butions of the b’s and c’s are obtained by first considering

b
j
~ ∑

kb

s=1
wb
s
N(mb

s
, sb

s
), c

ij
~ ∑

kc

u=1
wc
u
N(mc

u
, sc

u
), (5)

all independently, and then conditioning on W b
j
=0, W

j
c
ij
=0 and W

i
c
ij
=0.

Next we specify the distributions for the parameters in the mixtures (4)–(5). We only
give these explicitly for the a’s since similar structures are assumed for the b’s and c’s. For
the number of components ka, the prior is uniform on the integers from 1 to some maxi-
mum value kamax ; see § 3 for further discussion of this point. The mixture weights follow a
Dirichlet distribution: wa~Dir(da

1
, . . . , da

ka
). We employ independent normal and inverse

gamma distributions as priors on the component means and variances:

ma
t
~N(ja

t
, 1/ta), (sa

t
)−1~Ga (aa

t
, ba
t
).

The prior precision of the component means is assumed to have a gamma distribution:
ta~Ga(ata, bta ). The hyperparameters da

t
, aa

t
, ba

t
and ja

t
are allowed to be different across

components to permit prior specifications incorporating substantial information dis-
tinguishing the components. However, typically one may want to provide a common value
for each of them, making the mixture components exchangeable. In § 3 we discuss a
practicable strategy for hyperparameter choice which selects values corresponding to very
well separated mixture components, to meet the requirement that factor levels from the
same component are ‘practically indistinguishable’.

The mixture assumption on main effects and interactions in (4)–(5) can be restated by
introducing latent variables za, zb and zc which indicate from which components in the
mixtures the main effects and interactions proceed. Thus, for example, za

i
=t means that

a
i
, the ith level of factor 1, has been drawn from the tth component of the finite mixture (4).

Equation (4) can be restated as follows. Conditional on the mixture weights wa, each
component in the allocation vector za is independently drawn from the multinomial distri-
bution with pr (za

i
=t)=wa

t
. Once we condition on the za ’s, the distribution of the a’s

reduces to singular m-variate normal with covariance matrix of rank m−1. Analogous
distributions hold for the mixtures in (5); see the Appendix for further details. Introducing
the allocations greatly facilitates computations. More importantly, it illuminates the partial
exchangeability structures on main effects and interactions embedded in the prior; for
discussion and references on partial exchangeability see e.g. Bernardo & Smith (1994,
Ch. 4) and Schervish (1995, Ch. 8). Each allocation vector za induces a partition of the
a’s into subsets, with exchangeability holding within each. Positive prior probability is
assigned to each allocation vector, including those corresponding to only one subset, all
exchangeable a’s, and to m subsets, thus affording great modelling flexibility.

Sampling from the posterior distribution of all the parameters and allocations is per-
formed as described in the Appendix. The sample can be used for various inferential
purposes: (i) estimation of the main effects and interactions, (ii) determination of most
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probable partition patterns of the main effects and interactions, (iii ) estimation of variance
components, and (iv) prediction of future observables. Several illustrations are provided
in § 4, with special emphasis on points (i ) and (ii).

2·2. Parameter identifiability

Since the data y depend on the parameter (m, a, b, c) only through h and the map from
(m, a, b, c) to h is not one to one, (m, a, b, c) is not identified.

In principle, lack of identifiability in the likelihood poses no problem to the Bayesian
provided the prior distribution is proper (Lindley, 1971, p. 46; Lindley & Smith, 1972),
although in such a situation inference may be very sensitive to prior assumptions. In
practice, Markov chain Monte Carlo sampling of the resulting posterior faces problems
of slow convergence: on contours of constant likelihood the posterior is proportional to
the prior and, as sample size increases, it will tend to concentrate on a lower dimensional
manifold. Gelfand, Sahu & Carlin (1995) suggested a centring reparameterisation for
nested random effects models, while Vines, Gilks & Wild (1996) proposed a reparameteris-
ation for multiple random effects models by sweeping, based on the classical constraints.
Another possibility is to improve mixing by Metropolis–Hastings moves that allow for
swift changes along contours of constant likelihood; for an example, see Nobile (1998).

An alternative approach consists of including identifying constraints in the prior distri-
bution. This is the approach usually followed for fixed effects; see e.g. Schervish (1995,
p. 488). However, it has also been used for random effects models (Smith, 1973) and it is
the approach we follow in the present paper.

2·3. Other models

In the above model we have assumed prior independence between the allocations za, zb
and zc. In some contexts it may be preferable to entertain more structured models, with
the property that za

i
1

=za
i
2

and zb
j
1

=zb
j
2

imply zc
i
1
j
1

=zc
i
2
j
2

. At one extreme one can assume
that the product partition induced by za and zb is the partition of zc. In this model,
interactions all from one component are inconsistent with any grouping of levels of either
factor. A weaker model allows elements of the product partition to be grouped together
to form the partition of zc. The procedures presented in § 3 and in the Appendix could be
modified to deal with the estimation of both models, using Metropolis–Hastings draws
to sample simultaneously all the allocations za, zb and zc. However, we have preferred to
use the more flexible specification with prior independent allocations.

We conclude this section by mentioning one modification going towards reducing struc-
ture. Rather than assuming mixture distributions for the factor levels and the interactions,
one could directly model the cell means h

ij
with a normal mixture. This model is easier

to implement and is more flexible than the one we entertain; for instance, in a 2×2 design,
it allows direct consideration of the hypothesis h11=h12=h21Nh22 that requires a much
more complicated formulation in terms of a’s, b’s and c’s. This added flexibility may well
provide the easiest approach to modelling, but it is achieved by losing the linear structure
imposed by (1), which has a powerful explanatory role when it is satisfied and the main
factors are dominant.

3. C  

3·1. Introduction

Several hyperparameters need to be specified. If prior information concerning the mech-
anism generating the data is available, it should be used in this specification. In particular,
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prior information distinguishing the components is accommodated by our model and
ought to be used whenever available. In this section we provide a set of guidelines that
can be applied, as stated, when no such information is available. Nevertheless, the resulting
prior distribution is far from uninformative. In the first instance, the hyperparameters are
chosen in a way to make well separated mixture components very likely, as this is the
basis for considering levels from distinct components as practically different. Secondly,
the prior distribution incorporates the experimenter’s judgement about what constitutes
a practically significant difference between levels. We also make minimal use of the data,
specifically in equation (6).

The prior distributions of ka, kb and kc can be chosen as having support on small ranges
of integer values. We suggest respective supports {1, . . . , m}, {1, . . . , n} and {1, . . . , mn}.
In the examples of § 4 discrete uniform distributions are used, but other choices are also
feasible. We emphasise the following difference with respect to the usual mixture analysis.
Since the numbers of factor levels m and n, which play a role analogous to the number
of data points in a mixture analysis, is typically small, the posterior distributions of the
number of mixture components will resemble the prior distributions. As a consequence,
we are much less interested in, say, the posterior of ka than in the posterior distribution
of the partitions pa of the a’s induced by the allocations za.

The mixture weights are chosen to have uniform distribution on the appropriate sim-
plexes: da

t
=db

s
=dc

u
=1. The prior on ka, wa and za induces a prior distribution on the

partitions pa of the a’s; similarly for the partitions pb and pc. In the example in § 4·2, with
m=3 and n=4, the prior specification adopted yielded the prior distributions on pa and
pb given in Table 1. These distributions can be used to check the appropriateness of, and
possibly revise, the prior on the k’s and w’s and to aid in assessing the corresponding
posterior distributions.

Table 1. Independent prior probability distributions induced on the par-
tition vectors pa and pb by the prior on ka, kb, wa, wb, za, zb, when m=3

and n=4

pa Prior prob. pb Prior prob.

111 0·6 1111 0·4286
112, 121, 211 0·1222 1112, 1121, 1211, 2111 0·0714

123 0·0333 1122, 1212, 1221 0·0476
1123, 1213, 1231, 2113, 2131, 2311 0·0226
1234 0·0071

Next we consider the hyperparameters governing the prior distribution of the overall
level m. The mean g can be set equal to zero. A large enough prior spread for m is achieved
by setting sm equal to the square of the largest cell mean times a constant, 100, say:

sm=100×max
i,j

y2
ij
. (6)

As for the prior locations of the mixture component means, we set them all equal to 0:
ja
t
=jb

s
=jc

u
=0. Our recipe for the remaining hyperparameters is a little more involved,

so we prefer to organise it in further subsections.

3·2. Variability between and within mixture components

Two sets of hyperparameters control the variability of the normal components in the
mixtures in (4) and (5). The variability within components is controlled by the hyperpara-
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meters aa
t
, ba

t
, ab

s
, bb

s
, ac

u
and bc

u
in the prior distributions of sa

t
, sb

s
and sc

u
. The variability

between component means depends on the hyperparameters ata, bta, atb, btb, atc and btc
through the prior precisions ta, tb and tc. Our discussion is only in terms of the hyperpara-
meters governing (4), the same considerations applying to the hyperparameters in the
distributions of sb

s
, sc

u
, tb and tc. In order to lighten the notation, in the remainder of § 3

we denote sa
t
, aa

t
, ba

t
, ta, ata and bta by s

t
, a

t
, b

t
, t, at and bt respectively.

Since we want to interpret the allocation of two factor levels in the same mixture
component as an indication that they do not differ substantially, it is essential that the
components’ variances be small. How small depends on a substantive judgement about
what differences we are willing to consider as negligible. Suppose these judgements can
be phrased as follows: ‘the effects of two factor levels, a

i
and a

j
, say, are considered as

essentially identical if they differ by less than a specified amount D’. Then the problem
becomes that of determining a

t
and b

t
such that the distribution of s

t
assigns most of the

probability to the set of variances that make draws from the same component very likely
to be less than D apart. Suppose we require that

p0=pr ( |a
i
−a

j
|∏D), (7)

where p0 is close to 1. After integrating s
t
out, a

i
−a

j
has a t distribution with 2a

t
degrees

of freedom, location 0 and precision a
t
/(2b

t
), that is (a

i
−a

j
){a

t
/(2b

t
)}D~t(2a

t
). Thus, (7)

becomes

p0=2F
2a
t qD A at2b

t
BDr−1, (8)

where F
2a
t

is the distribution function of a t(2a
t
) distribution. Solving (8) for b

t
yields

b
t
=

a
t

2
D2qF−12at A1+p0

2 Br−2.
We choose the shape parameter a

t
=3, in order to have finite second moments for s

t
. The

selection of p0 is discussed at the end of this section.
Consider next the hyperparameters in the distribution of t, governing the spread of the

mixture component means ma
t
. Here too we choose at=3 to ensure finite second moments.

Since we wish to interpret differences between component means as practically significant
differences, their prior distribution should assign little probability to (−D, D). We do this
by requiring that, for any two component means ma

t
and ma

r
, the ratio between the prob-

ability densities of ma
t
−ma

r
and a

i
−a

j
be less than 1 on the interval (−D, D ), while the

opposite hold on (−2,−D)^ (D, 2). After we integrate out t, ma
t
−ma

r
has a t distribution

with 2at degree of freedom, location 0 and precision at/(2bt ). Therefore, the above require-
ment leads to the equation

t
2a
t qD A at2b

t
BDr A at2b

t
BD=t

2at qD A at2btBDr A at2btBD, (9)

where t
2a
t

denotes the probability density of a standard t distribution with 2a
t
degrees

of freedom. Since a
t
=at, equation (9) has only one solution in bt, beside the trivial one

bt=b
t
, which can be easily determined numerically, e.g. using the bisection rule.

In this procedure, p0 controls both b
t
and bt. Increasing p0 tightens the distribution of

a
i
−a

j
around 0, thus lowering b

t
; it also lowers the density of a

i
−a

j
at D, with the result
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Table 2. T he second and third columns report values of b
t
/D2 and bt/D2 pro-

duced by the procedure in §3·2 for selected values of p0 . T he last five columns
report, for the same values of p0 , the probabilities of the intervals I according

to the distribution of (s
t
t)−1

I
p0 b

t
/D2 bt/D2 (0, 1) (1, 10) (10, 102) (102, 103 ) (103, 2)

0·8 0·7236 3·619 0·035 0·75 0·21 0·0010 1·2×10−6
0·9 0·3973 10·23 0·00049 0·14 0·80 0·061 0·00015

0·95 0·2505 30·04 5·6×10−6 0·0040 0·41 0·57 0·010
0·99 0·1091 454·4 1·4×10−10 1·4×10−7 0·00012 0·053 0·95

of a larger spread for the distribution of ma
t
−ma

r
, that is larger bt. Table 2 contains, for

some levels of p0 , the values of b
t
and bt determined by our procedure.

As was already explained when introducing (7), p0 is close to 1. However, values very
close to 1 should be avoided as they correspond to prior distributions that assign extremely
small probability to s

t
and 1/t having about the same magnitude. Given p0 , the distribu-

tion of (atb
t
)(a

t
bt )−1 (s

t
t)−1 is F(2a

t
, 2at). In the right-hand part of Table 2 we provide

pr{(s
t
t)−1µI} for selected intervals I, corresponding to few values of p0 . It seems to us

that sensible values of p0 lie close to 0·95 and in our examples we used p0=0·95.

3·3. W ithin-cell variability

We suggest choosing a, q and h so that the distribution of s
ij

is proper with finite second
moments, and is approximately centred at the expected value of 1/t, the prior variance of
the means in the mixture components. For the sake of clarity, we rewrite (2) as follows:

s
ij
=

q

h(a−1)

v

u
ij
, v~Ga(q, q), u

ij
~Ga(a, a−1),

where the u
ij

are mutually independent and are independent of v. The above representation
makes it clear that the s

ij
’s are, apart from the constant q/h(a−1), products of two unit-

mean independent random variables, one of which, 1/u
ij
, is specific to each s

ij
, and the

other, v, is common to all of them. Choosing a>1 and q<1 corresponds to a prior on
the s

ij
’s such that they are approximately of the same unknown size. Once values of a

and q are selected, one can set h=q(at−1)/{(a−1)bt} in order to have E(s
ij
)=E(1/t)=

bt/(at−1). As to the choice of a and q, some guide may be derived from the examination
of Tables 3(a) and (b), which report the 0·01 and 0·99 quantiles of the distributions of
1/u

ij
and v for various values of a and q respectively. In our examples we used a=3 and

q=0·2. We remark that our choice of the prior distributions on s
ij

and the t’s implies
that a priori the contributions of main effects, interactions and error components to the
overall variability are of comparable sizes.

From the previous discussion one observes that b
t
, bt and 1/h are all proportional to

D2. This suggests an empirical Bayes variant of our recipe which does not require explicit
specification of D: follow the recipe as described with D=1, then multiply the resulting
b
t
, bt by s2

y
(at−1)/bt and divide h by the same quantity. The effect is to set E(s

ij
) and

E(1/t) equal to s2
y
, the sample variance of the observations, while implicitly selecting a

value of D.



23Bayesian analysis of factorial experiments

Table 3. First and 99th percentiles (a) of the distribution of
1/u

ij
for selected values of the hyperparameter a, and (b) of the

distribution of v for selected values of the hyperparameter q

(a) Distribution of 1/u
ij

a

3 5 10 20 50 100 200 500

0·01 quantile 0·24 0·34 0·48 0·60 0·72 0·79 0·85 0·90
0·99 quantile 4·59 3·13 2·18 1·71 1·40 1·27 1·18 1·11

(b) Distribution of v

q

1 0·5 0·2 0·1 0·05

0·01 quantile 0·01 2×10−4 3×10−10 6×10−20 1×10−39
0·99 quantile 4·61 6·63 11·0 15·9 21·8

4. E

4·1. Introduction

We provide two illustrations. One of them involves a 3×4 experiment with replication,
whereas the other has a larger number of levels on both factors but only one observation
per cell. Even though the designs of these experiments are balanced, we emphasise that
our model can just as easily be applied to unbalanced and incomplete designs.

In each case the sampler was run for 100 000 sweeps, with an initial 10 000 sweeps of
burn-in. With the exception of the allocations, simulated values were only recorded at the
rate of 1 every 100, to save space. Since the priors employed are invariant with respect to
relabelling the allocations z, we obtained a clearer and more economical presentation in
terms of the partitions, denoted by p in place of z. The simulated paths did not display
any obvious lack of convergence of the sampling Markov chain. Simulation times were
close to 10 minutes on a Sun Sparcstation 4 for the first example. The second example
required 23 minutes when fitted with no interaction and about 7 hours with interactions;
this last run was done only for comparison purposes.

The hyperparameters were set as described in § 3. The remaining control parameter D
was set at values that we considered reasonable. In the first example, computations were
repeated with a different value of D and the results were not dramatically different.

4·2. A small design with replication

We consider the data on survival times analysed by Box & Cox (1964). The data,
displayed in Fig. 1, consist of survival times in hours of animals randomly assigned to
each combination of three poisons and four treatments. Four animals were assigned to
each combination.

Classical two-way analysis of variance reveals very strong poison and treatment effects,
the F statistics are F2,36=23·2 and F3,36=13·8, and mild interaction, with p-value 0·11.
An analysis in terms of death rates, following a reciprocal transformation of the response,
is more sensitive; the main effects have increased significance while the interaction becomes
much weaker, with p-value 0·39.

In effect, the borderline-significant interaction in the analysis of survival times arises
because of heteroscedasticity in the error variances, which is not accounted for in the
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Fig. 1: Survival time dataset. Survival times, in hours, of
animals assigned to combinations of three poisons and
four treatments. Combinations of poisons and treatments
are indicated as the abscissa, and four animals were
assigned to each combination. The only purpose of the

lines is to assist one to view the plot ‘vertically’.

standard analysis. In the model we consider, error variances are allowed to vary between
cells, avoiding this problem.

For these data, the control parameter D was chosen to be unity, meaning that we would
consider two factor levels as essentially equivalent if their effects differed by less than an
hour of survival time, and similarly for the interactions. The values of the hyperparameters
not explicitly stated in § 3 were

sm=7744, h=0·006658, ba
t
=bb

s
=bc

u
=0·2505, bta=btb=btc=30·04. (10)

Figure 2(a) displays boxplots of the cell means h
ij
, with crosses marking the cells’ sample

averages. Clearly, posterior estimates afford much shrinkage, as the cell sample average
is usually outside the posterior interquartile range. Similar conclusions can be drawn from
Figs 2(b)–(d), containing boxplots of the posterior samples for the main effects and inter-
actions. The distributions of the c

ij
are all similar and centred at 0, while clear differences

among the a’s and among the b’s are visible. Posterior distributions of any contrast
between the factor levels can be readily obtained from the simulation output. However,
as we will detail shortly, our approach to judging whether or not two levels are the same
is based on the posterior probability that the two levels are from the same mixture compo-
nent. Figure 2(e) contains the posterior distributions of the error variances s

ij
, on the log-

scale. The variances of the observations in cells 12, 22 and 24 stand out as much larger
than the rest.

Estimates of the posterior distributions of the variance components can be obtained
from the simulation output in several ways, of which we only illustrate one. Denote var (a)
by va. Then, conditional on ka, wa, sa and ma, one has

va= ∑
ka

t=1
wa
t
sa
t
+ ∑

ka

t=1
wa
t
(ma
t
)2−A ∑ka

t=1
wa
t
ma
tB2.

Therefore a ‘sample’ of va is easily computed from the simulation output. Figure 3 displays
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Fig. 2: Survival time dataset. Boxplots of cell means, main factor effects, interactions and logarithms of
cell variances for each combination of three poisons and four treatments: (a) boxplots of cell means h

ij
’s

with superimposed the cell sample averages marked as crosses; (b) boxplots of poison effects a
i
’s, crosses

denote classical estimates; (c) boxplots of treatment effects b
j
’s, crosses denote classical estimates;

(d) boxplots of interactions c
ij
’s, crosses denote classical estimates; (e) boxplots of the logarithms of the

cell variances s
ij
.

histograms of the sampled va, vb and vc; note the much smaller scale of the plot for vc.
Also displayed is a trilinear plot of the variance components, normalised to sum to unity.

Predictive distributions of future observations, conditional on the poison/treatment
combination, are also easily computed from the simulation output, using the Rao–
Blackwellised estimate

p(y
ij
)=

1

N
∑
N

l=1
w(y

ij
; h(l)

ij
, s(l)

ij
),

where {h (l)
ij

, s(l)
ij

}, for l=1, . . . , N=1000, are drawn from the posterior and w(y; h, s) is
the normal density with mean h and variance s evaluated at y. Estimates for the poison/
treatment combinations in the data are reported in Fig. 4.

As mentioned above, we make statements about which factor levels are alike based on
the relative frequency, in the posterior sample, of their being allocated to the same mixture
component. As a shorthand we write, for example, a

i
ja

j
and a

i
j/ a

j
for pa

i
=pa

j
and

pa
i
Npa

j
, respectively, and we informally say that the effects of levels i and j are ‘equal’ or

‘different’. For the poison factor, the frequency distribution of pa in the posterior sample
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Fig. 4: Survival time dataset. Posterior predictive densities of the
next observation conditioned on the poison/treatment combi-
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combination, in the same order as in Fig. 1. Each predictive
density has four labels on it, placed at points with abscissae equal

to the observed survival times.
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was as given in the first row of Table 4(a). We can conclude that the probability of no
poison effect is about 0·03. With probability 0·78 poisons 1 and 2 have the same effect,
a1ja2 , while with probability approximately 0·17 the three poisons all have different
effects. As for the treatment effects, the most frequent pb were as given in the first row of
Table 4(b). Thus, the probability of no treatment effect is approximately 0·05. With prob-
ability close to 0·48, b1jb3 and b2jb4 ; with probability close to 0·79, b1jb3 ; with
probability close to 0·66, b2jb4 . Probability statements concerning the joint distribution
of pa and pb can just as easily be made, based on the simulation output. For instance, the
event {a1ja2j/ a3 , b1jb3j/ b2jb4} has probability approximately 0·37. Regarding the
empirical distribution of pc, its support included 4336 partition vectors, of which 3036
were only visited once while 4192 were visited fewer than 10 times and accounted for 0·07
of the probability. The interactions all belonged to the same component with probability
approximately 0·88, while vectors with all but one interaction from the same component
accounted for an additional 0·03. These results are consistent with the marginal distri-
butions displayed in Fig. 2(d).

Table 4: Survival time dataset. Frequency distribution in the posterior sample of
the partition vectors pa and pb of poison eVects and treatment eVects, respectively;

models with D=1 and D=0·25. Simulation sample size is 100 000

(a) pa of poison eVects

pa
D 111 112 121 211 123

1 2703 75 148 221 5403 16 525
0·25 1 58 978 0 306 40 715

(b) pb of treatment eVects

pb
D 1212 1213 1211 2131 1111 2311 2111 1234 1231 1112 2113

1 47 540 15 873 9217 8665 5423 4730 4393 1994 663 490 396
0·25 53 191 19 905 848 17 388 92 2125 1665 3886 90 159 590

The model was re-estimated with D changed from 1 to 0·25, so that factor levels and
interactions were considered as essentially equivalent if the difference of the corresponding
survival times was less than 15 minutes. This change yielded the following modification
to the list of hyperparameter values given in (10):

h=0·1065, ba
t
=bb

s
=bc

u
=0·01566, bta=btb=btc=1·877.

The distributions of the sampled h’s, a’s, b’s and s
ij
’s were very similar to those displayed

in Fig. 2. The distribution of the interactions followed the same pattern as with unit D,
but were considerably further shrunk towards 0. The sample from the posterior distri-
bution of pa had the frequency distribution given in the second row of Table 4(a). As
expected, the smaller value of D leads to lower posterior probability of allocation to the
same component. A similar change occurred in the distribution of pb; see Table 4(b). The
empirical distribution of the sampled pc did not differ much from that obtained for
D=1; all interactions came from the same component with probability 0·90, and all but
one from the same component with probability 0·02. On the whole, the changes were
consistent with a more stringent definition of equality between effects, and they affect
more the details than the overall picture. In the end it is the experimenter’s responsibility
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to define what he/she considers as ‘essentially equivalent’, i.e. the size of practically signifi-
cant differences between effects.

To assess the convergence of the Markov chain Monte Carlo methods we plotted the
sums of squares corresponding to the sampled main effects, interactions and residuals, for
the subsample of 1000 saved iterates. No obvious nonstationary behaviour was evident
from the plots, not shown here. We also plotted, at each sweep in the simulation, the
cumulative probability of some quantiles of the distributions of the simulated sums of
squares. Again, no clear evidence of transient behaviour was apparent.

4·3. A larger unreplicated experiment

Here we consider a dataset of yields in tonnes/hectare of 7 varieties of potato tested at
16 different sites by the National Institute of Agricultural Botany in 1975. The data are
reported in Patterson (1982, p. 272). In this dataset varieties are of interest and sites are
a blocking variable.

The yields are displayed as crosses in Fig. 5(a), along with boxplots of the posterior
distributions of h

ij
. Despite the clutter, one can readily see the 16 clumps corresponding

to the sites and within each clump the yields for the 7 varieties. There is no replication,
so that a model with no interaction seems appropriate. The standard two-way analysis of
variance gives an extremely significant site effect, F15,90=24·27, and a very significant
variety effect, F6,90=3·62. However, in the present approach, one can also estimate a
model with interaction. In such a model interactions and error components compete to
explain the variability which cannot be accounted for by the main effects. We estimated
the model both with and without interaction, using D=4 and hyperparameter values as
follows:

sm=770 884, h=0·0004161, ba
t
=bb

s
=bc

u
=4·008, bta=btb=btc=480·6.

Results are very similar, since when interactions are present their posterior distributions
are all centred at 0 and similarly distributed; see Fig. 5(b). Note, however, that this need
not be so: strong prior opinion on small error variances would yield more differentiated
interactions. The following results are all based on the model with no interaction. Figures
5(c) and (d) contain boxplots for the site and variety effects. The classical estimates of the
main effects are all close to the central portions of the posterior distributions, even though
some shrinkage is evident for the b’s. The boxplots of log s

ij
in Fig. 5(e) are all similar

with the exception of a few which assign probability mass to rather larger values. These
all correspond to observations which deviate from the sum of the main effects.

The distribution of pa is very spread out, with our dependent sample of 100 000 visiting
64 089 different vectors. Of these, 52 302 were visited only once while 63 483 were visited
fewer than 10 times, for a total probability of 0·85. The five most frequent vectors are
indicated in Table 5. Estimates of probabilities of interest are readily derived from the
output. For example, in all but 243 sampled vectors za

10
was different from all other

allocations, so that the probability that a10 is equal to any other level is rather small. We
report, as other examples, the following estimates:

pr (a7ja
12
j/ a

i
, iN7, 12)=0·48, pr (a3ja5ja9ja

14
ja

16
)=0·22,

pr (a1ja2ja4ja6ja8ja
11
ja

13
ja

15
)=0·03.

The distribution of pb is more concentrated. Its support included 797 vectors, with 85
visited only once and 376 fewer than 10 times, for a total probability of 0·01. The five
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Fig. 5: Potato trial dataset, yield in tonnes/hectare of 7 varieties grown at 16 sites. (a) Boxplots of cell means
h
ij
’s, with observations marked as crosses, for each combination of 16 sites and 7 varieties, model with no

interaction. (b) Boxplots of c
ij
’s, model with interactions. (c) and (d) Boxplots of site effects a

i
’s and variety

effects b
j
’s respectively; crosses denote classical estimates, model with no interaction. (e) Boxplots of the

logarithms of the cell variances s
ij
, model with no interaction.

Table 5: Potato trial dataset. Five most frequent
partition vectors of site eVects, pa, and of variety
eVects, pb, in the posterior sample. Simulation

sample size is 100 000

pa Frequency pb Frequency

1121213124131212 997 1111111 22 371
1121213124151212 411 1111112 21 361

1521213124131212 333 2111112 8619
1521253124131212 309 3111112 2761
1521253124161212 251 1131112 1897

most probable vectors account for about 0·57 of the probability and are reported in
Table 5.

An overall view of the distribution of pb is given in Fig. 6. This display is a multivariate
analogue of the quantile function. As the abscissae we report the probability scale and as
the ordinates the components of pb, the same grey-scale meaning that the components
are equal. The plot was created by subsampling 10% of the sampled pb, then ordering
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them to produce a picture with large patches. Therefore, it contains no information con-
cerning the mixing of the sampling chain. The plot suggests that the pattern where most
of the levels in {b2 , b3 , b4 , b5 , b6} are grouped together accounts for much of the distri-
bution. The five most probable partitions reported in Table 5 are easily identified, even
without the help of the arrows added to the plot.
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Fig. 6: Potato trial dataset. A graphical display of the frequency distribution of pb in the
posterior sample. Cumulative frequency is on the x-axis and components of pb are the
ordinates, same grey-scale denotes equal components. The five most frequent partition
vectors reported in Table 5 correspond to the vertical bands identified by the arrows and

numbers.

5. D

At first it may seem that our model falls short of full generality in one important respect,
namely its ability to accommodate fully the experimenter’s prior beliefs. Consider the case
when substantive information about some of the mixture components is available. This
may take the form of a series of conditional statements given the number of components
in the mixture. It is quite possible that the meaning of each component will depend on
the number of components. Thus, the experimenter’s beliefs, given ka=2, about the second
component in the mixture may well be different from his/her beliefs conditional on ka=3. It
thus seems that to accommodate these prior beliefs one needs to allow the hyperparameters
to vary not only across components but also with respect to the number of components,
as in A. Nobile’s 1994 Ph.D. dissertation from the Department of Statistics, Carnegie
Mellon University. This modification can be readily carried out and it would only involve
a more complicated expression for the acceptance probability of the reversible jump moves,
as now changing the number of components may change the hyperparameters of all
components.

However, one may counter-argue that, if substantive prior information on kAa compo-
nents is available, this is likely to occur when some possibly unobserved attribute of the
levels is the discriminating element. This case is accommodated within our model by
placing a prior on ka that assigns zero probability to the set {1, . . . , kAa−1} while using
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the available information to form a prior distribution for each component, characterised
by a different value of the attribute, thereby identifying the labels of the first kAa components.
We emphasise that this does not rule out the possibility of high posterior probability on
allocations za with many fewer components than kAa, including the allocations (t, t, . . . , t)
corresponding to exchangeable levels, since our mixture models allow for empty
components.
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A

T he reversible jump Markov chain Monte Carlo sampler

Simulation from the posterior distribution of the parameters and the latent variables is performed
using the reversible jump algorithm of Green (1995), which is an extension of the method of
Hastings (1970) that allows variable-dimension parameters. For the sake of clarity, we distinguish
between moves that do not modify ka, kb or kc and moves that can change them. The first group
of moves consists of draws from the full conditional distributions, while the second group follows,
with minor modifications, the approach of Richardson & Green (1997).

In order to write down the full conditionals we need some additional notation. Let

y
ij.
=
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r
ij
∑
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ijk
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The following distributions are all conditional on the observed data y and the other parameters/
latent variables:
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ta~Ga qata+ ka

2
, bta+

1

2
∑
ka

t=1
(ma
t
−ja
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)2r . (A5)

The full conditional distributions of wb, wc, zb
j
, zc

u
, sb

s
, sc

u
, mb

s
, mc

u
, tb and tc are obtained from

(A1)–(A5) with obvious modifications. For the parameters in the error component we have
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ij B .

If it was not for the constraints in (3) we would have the following full conditionals of the parameters
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in the systematic component of the model:
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Simulation from the full conditionals is done subject to the constraints in (3). Note that when
simulating the a’s one only needs to make use of W a

i
=0, as the b’s and c’s are given and they

already satisfy the respective constraints. Similar remarks apply to the simulation of the b’s and
c’s. The same argument implies that the constraints in (3) need not be considered explicitly when
simulating from the other full conditionals. Next we show how to simulate the a’s, b’s and c’s
subject to (3). Rewrite (A6) as a

i
~N(mA ai , sA ai ) or, in matrix notation,

a~N
m
(mA a, Da ),

where Da=diag (sA a1 , . . . , sA am ). Let Sa=W a
i
and denote by 1

m
a column vector of m 1’s. Then the

conditional distribution of a given Sa=0 is singular multivariate normal with covariance matrix
of rank m−1:
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m
1T
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To simulate a, draw from the nonsingular multivariate normal of the first m−1 components in
(A8), then set a

m
equal to minus their sum. Draws from the full conditional distribution of the b’s

are performed similarly. As for the c’s, rewrite (A7) as c
ij
~N(mA cij , sA cij ) or, in matrix notation,
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its nonsingular marginal distribution in (A9). Then compute the remaining components as follows:
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The reversible jump moves follow, with minor changes, the ones proposed by Richardson &
Green (1997, § 3.2). Besides the exclusive use of split/merge moves, whereas Richardson & Green
also employ birth-and-death moves and use ‘combine’ for ‘merge’, the main difference is that we
do not constrain the component means to be ordered. If the hyperparameters (da

t
, aa
t
, ba
t
, ja
t
) differ

across components then the corresponding labels are uniquely identified. If a single value is specified
for each hyperparameter, inference about the mixture parameters requires some identifying con-
straint to be imposed on the labels; we perform this exercise in a post-processing ‘after simulation’
stage. Moreover, in the present context the most interesting quantities, i.e. main factor levels,
interactions and their partitions, do not depend on the mixture labels.

In each simulation sweep either a split or a merge is attempted for the components in the
mixtures in (4) and (5). We only discuss the moves for the mixture of the a’s, and in so doing we
drop the superscript a from the relevant parameters and hyperparameters. We discuss first the case
where hyperparameters differ across components and then the case where they are identical. The
split/merge move begins with the selection of a candidate new state. This is selected by first making
a random choice between splitting, with probability s

k
, and merging, with probability c

k
=1−s

k
,

where s1=c
k
max

=1 and s
k
=0·5, for k=2, . . . , kmax−1. Suppose that there are currently k compo-

nents in the mixture. If split is selected, we randomly choose one of these components, j*, say, and
we split it into two components j1 and j2 according to the following recipe:
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where u1~Be(2, 2), u2~2 Be(2, 2)−1 and u3~Be(1, 1). The candidate state is obtained by remov-
ing j* and adding j1 and j2 to the list of existing components. We make the arbitrary convention
that j1 will take the place of j* and j2 will become the (k+1)th component. In the candidate state,
the observations presently allocated to j* are reallocated to components j1 and j2 in accordance
with
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The candidate state is then accepted with probability min(1, R) with
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where the W d
j
is over the indexes of the components in the mixture that are not affected by the
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split/merge move, Palloc is the probability of the reallocations in (A10), and g1,1 and g2,2 are the
densities of Be(1, 1) and Be(2, 2) distributions.

The reverse of a split is a merge. If merge is selected, two components are selected as follows:
j1 is randomly chosen from the first k existing ones while j2 is set equal to (k+1), to ensure
reversibility. Then a new component j* is formed according to
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The candidate state results from removing j1 and j2 from the list of components and placing j* in
the place occupied by j1 . The factor levels associated with j1 and j2 are also reallocated to j*. The
candidate is accepted with probability min(1, R−1 ), where R is given in (A11).

The above split/merge moves are designed so that the ‘ejected’ component in a split or the
‘absorbed’ component in a merge is always the last component in the list. This ensures that, if
component k is present, so are all the preceding ones; of course this makes complete sense only
because of the differing hyperparameters. When the hyperparameters do not vary across compo-
nents the above moves are still applicable. However, better mixing is achieved by a further ran-
domisation: after the split of j* into j1 and j2 , randomly place j2 in one of the k+1 possible
locations, 1st, 2nd, . . . , (k+1)th, in the list. The corresponding change in the merge consists of
choosing j1 and j2 randomly from the (k+1) existing components. It turns out that the ratio R
used in the acceptance probabilities is unaffected by these modifications. Moreover, from a compu-
tational viewpoint, the random placement of j2 need not be done, so that the only modification
consists of the random choice of j1 and j2 in the merge move.
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