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I have two rather simple comments on this interesting, important and long-awaited paper.
The first concerns using basic distribution theory to give a surprising new perspective on pD in

the normal case, perhaps identifying a missed opportunity in exposition.
Consider first a decomposition of data as focus plus noise:

Y = X + Z

where X and Z are independent n-vectors, normally distributed with fixed means and variances,
and var(Z) is non-singular. The deviance is

D(X) = (Y − X)T {var(Z)}−1(Y − X)

and so
pD = E[D(X)|Y ] − D(E[X|Y ]) = tr{var(Z)−1var(Z|Y )}, (1)

using the standard expression for the expectation of a quadratic form. Several results in the paper
have this form, possibly in disguise. However, var(Z|Y ) = var(Z)− cov(Z, Y )var(Y )−1cov(Y, Z) =
var(Z)−var(Z)var(Y )−1var(Z) = var(Z)var(Y )−1{var(Y )−var(Z)}, yielding the much more easily
interpretable

pD = tr{var(Y )−1var(X)}. (2)

This allows a very clean derivation of examples in Sections 2.5 and 4.1–4.3. For example, in the
Lindley and Smith model we have var(Z) = C1, var(X) = A1C2A

T
1 , and so
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T
1 + C1)−1A1C2A

T
1 } = tr{AT

1 C−1
1 A1(AT

1 C−1
1 A1 + C−1
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as in (21) of the paper.
Turning now to hierarchical models, consider a decomposition into k independent terms

Y = Z1 + Z2 + · · · + Zk,

where all Zi are normal, and var(Zk) is nonsingular. These represent all the various terms of the
model: fixed effects with priors, random effects with different structures, errors at various levels;
again all means and variances are fixed. Then for any level ` = 1, 2, . . . , k − 1, we may take the
sum of the first ` terms as the focus and the rest as noise.

Version (1) of pD above is then not very promising:
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but (2) gives the more compelling

pD(`) = tr

{
var(Y )−1var

(∑̀
i=1
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)}
. (3)

Thus pD has generated a decomposition of the overall degrees of freedom n =
∑

` tr{var(Y )−1var(Z`)}
into non-negative terms attributable to the levels ` = 1, 2, . . . , k, just as in frequentist nested model
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ANOVA. (One must take care with improper priors in using (3), and terms should be treated as
limits as precisions go to 0.) Of course, (2) & (3) fail to hold with unknown variances or with
non-normal models, but the observations above do provide further motivation for accepting pD as
a measure of complexity, and suggest exploring more thoroughly its role in hierarchical models.

My second point notes that the paper has no examples with discrete ‘parameters’. Conditional
distributions in hierarchical models with purely categorical variables can be computed using prob-
ability propagation methods (Lauritzen and Spiegelhalter (1988)), avoiding MCMC, so that pD

is again a cheap local computation. Presumably marginal posterior modes would be used for θ.
Certainly this is a context where pD can be negative. Can connections be drawn with existing
model criticism criteria in probabilistic expert systems?
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