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�� Introduction

Markov chain Monte Carlo is probably about �� years old� and has been both developed and
extensively used in physics for the last four decades� However� the most spectacular increase
in its impact and in�uence in statistics and probability has come since the late ����s�
It has now come to be an all�pervading technique in statistical computation� in particular for
Bayesian inference� and especially in complex stochastic systems�

�� Cyclones example� point processes and change points

We will illustrate the ideas of MCMC with a running example� the observations are a point
process of events at times y�� y�� � � � � yN in an interval 	�� L
� We suppose the events occur as a
Poisson process � but at a possibly non�uniform rate� say x�t
 per unit time� at time t
 we wish
to make inference about x�t
� We consider a series of models� ultimately allowing an unknown
number of change points� unknown hyperparameters� and a parametric periodic component�
The models and the respective algorithms and inferences will be illustrated by an analysis of
a data set of the times of cyclones hitting the Bay of Bengal
 there were ��� cyclones over a
period of ��� years�

Model �� constant rate� First suppose that x�t
 � x for all t� Then the times of the events
are immaterial� we observe N events in a time interval of length L
 the obvious estimate of x
is bx � N

L
� the maximum likelihood estimator of x under the assumption that N has a Poisson

distribution� with mean xL�

Model �� constant rate� the Bayesian way� For a Bayesian approach to this example�
suppose that we have prior information about x �from previous studies� for example
� Suppose
we can model this by x � ���� �
�
Then we �nd that a posteriori x has a Gamma distribution with mean �� � N
��� � L
� or
approximately N�L if N and L are large compared with � and �� Thus with a lot of data� the
Bayesian posterior mean is close to the maximum likelihood estimator�
There is no need for MCMC in this model� you can calculate the posterior exactly� and recognise
it as a standard distribution
 it only worked like this because we used a conjugate prior�

Model �� constant rate� with hyperparameter� Suppose you are reluctant to specify
your prior fully� you are happy to say x � ���� �
 and can specify � but not �� and want
to state only � � ��e� f
 for �xed e and f �a formulation that makes more sense in our next
formulation� model �
�
Now p�xjN��� e� f
 no longer has an explicit form� but the full conditionals p�xjN��� �� e� f

and p��jx�N� �� e� f
 are simple�

xjN��� �� e� f � ��� �N� � � L


as before� and
�jx�N� �� e� f � ��e� �� f � x
�



What happens if we generate a sample of �x� �
 pairs by alternately drawing x and � from
these distributions�
Figure � shows the �rst few moves of this process applied to model � on the cyclones data
 we
took e � � and f � N�L � ����� The marginal distribution for x� as accumulated from the
�rst ���� sweeps of this process is also displayed in Figure ��
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Figure �� First few moves of the Gibbs sampler� and marginal distribution for �
from ���� sweeps� for the cyclones data� model ��

This is a simple example of aGibbs sampler� The alternating updates of one variable conditioned
on the other induces Markov dependence� the successively sampled pairs form a Markov chain
�on the uncountable state space R��R�
� and it is readily shown that the joint posterior is the
�unique
 invariant distribution of the chain� Standard theorems imply that the chain converges
to this invariant distribution in several useful senses� so that we can treat the realised values
as a sample from the posterior�

Model �� constant rate� with change point� Now let us suppose x�t
 is a step function
�a suitable model if we postulate one or more change points
 the process is completely random�
but the rate switches between levels
� Let us take k change points at known times T�� T�� � � � � Tk
with

x�t
 �

���������
x� if � � t � T�
x� if T� � t � T�
� � � � � �
xk if Tk � t � L

�

Suppose that x�� x� � � � � xk are a priori independently drawn from Gamma distributions� as
before� xj � ���� �
� Then if N�� N�� � � � � Nk are the numbers of events between adjacent fTjg�
the above method extends to sampling in turn from

xjj � � � � ��� �Nj� � � Tj�� � Tj
� j � �� � � � � � k and

�j � � � � ��e� �k � �
�� f �
kX

i�o

xi
�

forming a Markov chain with a �k� �
�dimensional state space f�x�� x�� � � � � xk� �
g� Note that
we write �j � � �� to mean �given all other variables� � including the data�



The hierarchical model using random � allows �borrowing strength� in estimation from all the
data together� the xj are conditionally independent given �� but are unconditionally dependent�
In inference their values will be shrunk together�

�� Beyond the Gibbs sampler � MCMC in general

Having motivated the idea of MCMC by use of the Gibbs sampler in a very basic problem� we
are now in a position to discuss the subject from a rather more general perspective�
The objective is to construct a discrete time Markov chain whose state space is X �the param�
eter space in Bayesian statistics
� and whose limiting distribution is a speci�ed target �e�g� a
Bayesian posterior
� That is� we want a transition kernel P such that

Pfx�t� � Ajx���g � ��A
 as t��� 	 x����

Having constructed such a Markov chain� in the sense of devising a transition kernel with this
limiting property� we then construct it in another sense � we form a realisation of the chain
fx����x���� � � � �x�N�g and treat this as if it was a random sample from ��
A number of standard recipes have been developed �see� for example� Besag� et al�� ����
�
including the Gibbs sampler� and the Metropolis and Hastings methods
 the latter is very
general� and can even be extended to cases where the parameter space is not of �xed dimension�
We illustrate some of the extensions to our point process model that can also be handled�

Model �� another hyperparameter� Let us now suppose � is also unknown� with� a
priori� � � ��c� d
 for �xed constants c and d� �For the cyclones data� we took c � d � ��

This last change means that Gibbs sampling is not enough� In a Markov chain with states
x � �x�� x�� � � � � xk� �� �
� we can update � using a random walk Metropolis move� on the
log��
 scale� the acceptance ratio simpli�es to

min

�����
�
���


����


�k�� �
��

�

�c �
e�d�k��

Y
xj
���

��

�	

Model 	� unknown change points� If x�� x�� � � � � xk are unknown� so probably are the times
of the change points T� � T� � � � � � Tk� The state vector is now x � �x�� x�� � � � � xk� T�� T�� � � � �
Tk� �� �
� Let us assume a priori p�T�� T�� � � � � Tk
 
 T��T� � T�
 � � � �Tk � Tk��
�L� Tk
�
The posterior marginal or joint conditional distributions are quite complex� for this or any
prior� so Metropolis�Hastings is needed� The details are a little messy but straightforward� The
acceptance probability for a proposal that T �

j be drawn uniformly from 	Tj��� Tj��� is

min

�
�� �likelihood ratio


�T �

j � Tj��
�Tj�� � T �

j


�Tj � Tj��
�Tj�� � Tj


�
�

Model 
� unknown number of change points

What if the number of change points� k� is also unknown� We might place a prior on k� say
Poisson��
�

p�k
 � e���
k

k�
and then make Bayesian inference about all unknowns� x � �k� �� �� T�� � � � � Tk� x�� � � � � xk
�
There are �k � � parameters� the number of things you don�t know is one of the things you
don�t know�
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Figure �� Posterior sample of step functions x�t
 for model � with k � �� and

posterior for k in model �� applied to cyclones data�

A variable�dimension Metropolis�Hastings algorithm was applied to this problem� setting the
hyperparameter � � �� and one aspect of the resulting analysis is displayed in Figure ��
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R�ESUM�E

Les m�ethode de Monte Carlo par Ch�aines de Markov datent d�environ cinquante ans et ont
�et�e d�evelop�ees et utilis�ees en Physique pendant les quarante derni eres ann�ees� Cependant leur
impact le plus spectaculaire et leur in�uence en Statistique et Probabilit�e ne remontent qu� a la
�n des ann�ees ���
A l�heure actuelle� ces m�ethodes sont omnipr�esentes dans les calculs statistiques� en partic�
ulier dans l�inf�erence bay�esienne et tout sp�ecialement dans l�analyse des syst emes stochastiques
complexes�


