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Abstract

We derive methods for enumerating the distinct junction tree representations for any given
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graph. Programs implementing these methods are included as supplemental material.
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1 Introduction

Decomposable or triangulated or chordal graphs are of interest in many areas of mathematics.

Our primary interest is in their role as the conditional independence graphs of decomposable

graphical models. In particular, we are interested in estimating decomposable graphical

models from observed data using Markov chain Monte Carlo, or MCMC, schemes that

traverse the space of decomposable graphs in order to sample from, or maximize, the

posterior probability distribution defined by the data. The underlying approach is the

same whether the data is continuous (Giudici & Green 1999, Jones, Carvalho, Dobra,

Hans, Carter & West 2005) or discrete (Thomas & Camp 2004, Thomas 2005). A common

feature of such schemes is that, given an incumbent decomposable graph G, we propose

a new graph G′ which is then accepted or rejected according to probabilities that depend

on the distribution being sampled (Metropolis, Rosenbluth, Rosenbluth & Teller 1953,

Hastings 1970, Kirkpatrick, Gellatt & Vecchi 1982). However, there are no known proposal

schemes that guarantee in advance that G′ will be decomposable, even if G is. Hence, it is

necessary to test G′ for decomposability before evaluating the usual acceptance probability.

While such tests can be very quick (Giudici & Green 1999), for all practical methods for

proposing a random G′ of which we are aware, the probability that G′ is decomposable

decreases rapidly with the size of the graph, making this approach infeasible for large

problems. For instance, in the genetic examples considered by Thomas (2009), involving

up to 20,000 variables, the probability of proposing a decomposable G′ decreases roughly as

the inverse of the number of variables. Given these circumstances, it would be very useful to

have an alternative representation of the problem that avoids the test for decomposability.

It is with this in mind that we consider what follows.
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It is often convenient in graphical modeling to operate not on the graph itself, but on

its derived representation as a junction tree. This raises the prospect of discarding the

underlying conditional independence graph entirely and defining MCMC schemes on the

space of junction trees. As each junction tree uniquely defines a decomposable graph, this

might avoid the expensive need to propose non-decomposable models. However, decom-

posable graphs have multiple equivalent junction tree representations and moreover the

number is variable from graph to graph. Therefore, sampling the space of junction trees

will over-sample decomposable graphs with a large number of such representations. This

can be corrected for if the number of junction trees for any particular decomposable graph

can be evaluated and this is the motivation for the method we present here.

We begin by reviewing some definitions and standard properties of decomposable graphs

and junction trees. For more complete information on these see Golumbic (1980) and

Lauritzen (1996), whose terminology we have adopted. We then consider the number of

ways that sets of links of a junction tree that correspond to the same clique intersection

can be rearranged. These counts are then combined to give the total number of junction

trees. A simple algorithm is then presented that will take a junction tree and select an

equivalent one uniformly at random from the set of all possible equivalents. Finally, we

discuss the computational complexity of our method showing that it is faster than existing

algorithms, and outline potential junction tree sampling methods.

2 Definitions and preliminary results

Consider a graph G = G(V, E) with vertices V and edges E. A subset of vertices U ⊆ V

defines an induced subgraph of G which contains all the vertices U and any edges in E that
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connect vertices in U . A subgraph induced by U ⊆ V is complete if all pairs of vertices in

U are connected in G. A clique is a complete subgraph that is maximal, that is, it is not

a subgraph of any other complete subgraph of G.

Definition 1 A graph G is decomposable if and only if the set of cliques of G can be

ordered as (C1, C2, . . . , Cc) so that for each i = 1, 2, . . . , c − 1

if Si = Ci ∩
c⋃

j=i+1

Cj then Si ⊂ Ck for some k > i. (1)

This is called the running intersection property and is equivalent to the requirement

that every cycle in G of length 4 or more is chorded. The sets S1, . . . Sc−1 are called the

separators of the graph. The set of cliques {C1, . . . Cc} and the collection of separators

{S1, . . . Sc−1} are uniquely determined from the structure of G; however, there may be

many orderings that have the running intersection property. The cliques of G are distinct

sets, but the separators are generally not all distinct.

Definition 2 The junction graph of a decomposable graph has nodes {C1, . . . , Cc} and

every pair of nodes is connected. Each link is associated with the intersection of the two

cliques that it connects, and has a weight, possibly zero, equal to the cardinality of the

intersection.

Note that for clarity we will reserve the terms vertices and edges for the elements of G,

and call those of the junction graph and its subgraphs nodes and links.

Definition 3 Let J be any spanning tree of the junction graph. J has the junction property

if for any two cliques C and D of G, every node on the unique path between C and D in J

contains C ∩ D. In this case J is said to be a junction tree.
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Figure 1: A decomposable graph containing 23 vertices in 4 disjoint components.
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Figure 2: One possible junction tree for the graph shown in Figure 1. The 16 cliques
are the vertices of the junction tree and are shown as ovals. The 15 clique separators are
represented by the edges of the graph and each edge is associated with the intersection of
its incident vertices. These intersections are shown as rectangles. Note that some of these
intersections are empty.
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Figure 1 gives an example of a decomposable graph while Figure 2 shows one of its

possible junction trees. The lexicographic search method of Tarjan & Yannakakis (1984)

will find a junction tree for a given decomposable graph in time and storage of order

|V | + |E|.

Note that some authors first partition a graph into its disjoint components before making

a junction tree for each component, combining the result into a junction forest. The above

definition, however, will allow us to state results more simply without having to make

special provision for nodes in separate components. In effect, we have taken a conventional

junction forest and connected it into a tree by adding links between the components. Each

of these new links will be associated with the empty set and have zero weight. Clearly, this

tree has the junction property. Results for junction forests can easily be recovered from

the results we present below for junction trees.

As Lauritzen (1996) describes more fully, a junction tree for G will exist if and only if

G is decomposable, and the collection of clique intersections associated with the c−1 links

of any junction tree of G is equal to the collection of separators of G. Also, the junction

property can be equivalently stated as the property that the subgraph of a junction tree

induced by the set of cliques that contain any set U ⊆ V is a single connected tree.

As stated in Definition 2, we can consider each link of the junction graph to have

a weight. Thus, any subgraph of it, and in particular any spanning tree, can also be

associated with a weight defined by the sum of the weights of the links included. Jensen

(1988) exploits this to give the following useful characterization of a junction tree.

Theorem 4 A spanning tree of the junction graph is a junction tree if and only if it has

maximal weight.
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From this it is clear that any tree with the cliques of G as its nodes and for which

the collection of clique intersections associated with the links is equal to the collection of

separators of G, is a junction tree of G, since such a tree must span the junction graph and

have maximal weight. Therefore, the problem of enumerating junction trees for a given

graph G is equivalent to enumerating the ways that links of a given junction tree can be

rearranged so that the result is also a tree, and the collection of clique intersections defined

by the links of the tree is unchanged.

3 Rearranging the links for the set of separators with

the same intersection

As noted above, the separators of G are not generally distinct. For example, in Figure 2

three links are associated with the clique intersection {17} and two with the intersection

{2, 3}. We now consider the effect of rearranging all the links that are associated with the

same clique intersection. Let J be any junction tree of G and S one of its separators. Define

TS to be the subtree of J induced by the cliques that contain S. The junction property

ensures that TS is a single connected subtree of J .

Clearly, any rearrangement of the links associated with S in J must be a rearrangement

among certain links of TS, since both cliques joined by such a link must contain S. For

illustration, Figure 3 shows T{3}, the subtree defined by the separator {3} for the graph in

Figure 1. If we now rearrange the links that are associated with S to produce a new graph,

T ′
S say, and replace TS in J by T ′

S to give a new graph J ′, J ′ will be a junction tree of G if

and only if

• T ′
S is a tree, and hence so is J ′, and
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Figure 3: T{3}, the connected subtree of the junction graph shown in Figure 2 induced by
the cliques that contain the separator {3}.

• T ′
S has the same weight as TS, so that J ′ has the same weight as J .

In fact the second condition is redundant: all cliques in TS contain S so their intersection

must also do so, and any pair of cliques whose intersection is a superset of S cannot be

joined in a tree T ′
S unless already joined in TS as T ′

S would then have greater weight than

TS, and J ′ greater weight than J thus violating the latter’s maximal weight property. So

we need only count the number of ways of rearranging the links of TS associated with S

such that T ′
S is a tree.

Consider FS to be the forest obtained by deleting all the links associated with S from TS.

For example, Figure 4 shows F{3}, the forest obtained by deleting links associated with the

separator {3} from the tree T{3} shown in Figure 3. Define ν(S) to be the number of ways

that the components of FS can be connected into a single tree by adding the appropriate

number of links. This value is given by a theorem by Moon (1970) which can be restated
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as follows.

Theorem 5 The number of distinct ways that a forest of p nodes comprising q subtrees of

sizes r1 . . . rq can be connected into a single tree by adding q − 1 links is

pq−2
q∏

i=1

ri. (2)

If the number of links associated with a given separator S is mS we know that FS will

contain mS +1 components. Let these be of sizes f1, f2, . . . fmS+1. Let the number of nodes

in TS be tS which is simply the number of cliques of G that contain S. Then, directly from

theorem 5 we obtain the following.

Theorem 6

ν(S) = tmS−1
S

mS+1∏

j=1

fj . (3)

For example, the forest in Figure 4 has 7 nodes in 4 components of sizes 1, 1, 1 and 4.

This forest, F{3}, can be reconnected into a single tree by adding 3 links in 72×1×1×1×4 =

196 different ways.

4 The number of junction trees for a decomposable

graph

The final step in enumerating junction trees is to note that ν(S) depends only on the sizes

of the components of FS, not on their particular structure. These sizes are determined by

the sets of cliques that contain separators that are supersets of S. Since the set of cliques

and collection of separators are uniquely determined and independent of any particular
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Figure 4: F{3}, the forest obtained by from the tree shown in Figure 3 by deleting edges
associated with the separator {3}.

junction tree, ν(S) is independent of J . Hence, the links associated with one particular

separator can be reallocated independently of the links associated with another. Thus we

obtain the following result.

Theorem 7 Consider a decomposable graph G with separators S1, . . . Sc−1. Let S[1], . . . S[s]

be the distinct sets contained in the collection of separators. The number of junction trees

of G is

µ(G) =
s∏

i=1

ν(S[i]). (4)

As an example, the number of distinct junction trees for the graph shown in Figure 1

is 57,802,752. The calculations needed to obtain this are given in Table 1.
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Table 1: The computations that enumerate the distinct junction trees for the decomposable
graph given in Figure 1.

Separator S mS tS {fS} ν(S)
∅ 3 16 1, 1, 2, 12 6144

{13, 14} 1 2 1, 1 1
{3} 3 7 1, 1, 1, 4 196
{2, 3} 2 3 1, 1, 1 3
{3, 18} 1 2 1, 1 1
{9} 1 2 1, 1 1
{12} 1 2 1, 1 1
{17} 3 4 1, 1, 1, 1 16

µ(G) = 6144 × 1 × 196 × 3 × 1 × 1 × 1 × 16 = 57802752

As noted above, we can retrieve from this result the count of the number of possible

conventional junction forests that a decomposable graph has. This is given simply by

µ(G)

ν(∅)
,

which for the example is 57802752/6144 = 9408.

5 Randomizing the junction tree

Theorem 5 is similar in style to Prüfer’s constructive proof (Prüfer 1918) of Cayley’s result

that there are nn−2 distinct labeled trees of n vertices (Cayley 1889). A similar construction

lets us choose uniformly at random from the set of possible trees containing a given forest

as follows:

1. Label each vertex of the forest {i, j} where 1 ≤ i ≤ q and 1 ≤ j ≤ ri, so that the

first index indicates the subtree the vertex belongs to and the second reflects some
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ordering within the subtree. The orderings of the subtrees and of vertices within

subtrees are arbitrary.

2. Construct a list v containing q − 2 vertices each chosen at random with replacement

from the set of all p vertices.

3. Construct a set w containing q vertices, one chosen at random from each subtree.

4. Find in w the vertex x with the largest first index that does not appear as a first

index of any vertex in v. Since the length of v is 2 less than the size of w there must

always be at least 2 such vertices.

5. Connect x to y, the vertex at the head of the list v.

6. Remove x from the set w, and delete y from the head of the list v.

7. Repeat from 4 until v is empty. At this point w contains 2 vertices. Connect them.

Given any particular junction tree representation J for a decomposable graph G we can

choose uniformly at random from the set of equivalent junction trees by applying the above

algorithm to each of the forests FS defined by the distinct separators of J .

6 Computational complexity

Jensen’s characterization of a junction tree as a maximal spanning tree of the junction

graph means that general methods for enumerating the optimal spanning trees of a graph

can also be applied to enumerating junction trees. The method of Broder & Mayr (1997)

does precisely this. Recalling the notation used in section 2, the junction graph will have c

nodes and c(c− 1)/2 links. Broder and Mayr’s method would require O(M(c)) elementary
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operations to enumerate its maximal spanning trees, where M(c) is the number of oper-

ations needed to multiply c × c matrices. Asymptotically, the best algorithm for matrix

multiplication is that of Coppersmith & Winograd (1990) which requires O(c2.376) opera-

tions, although for realistically sized matrices the best practical methods, based on that of

Strassen (1969), need O(c2.807) operations. Letting n = |V |, the number of vertices in G,

we note that c can be as large as n and typically grows linearly with n. Hence, Broder and

Mayr’s algorithm is at best an O(n2.376) method.

However, as noted above, Jensen’s characterization is not the only route to obtaining a

junction tree. The lexicographic search of Tarjan & Yannakakis (1984) will find a simple

elimination scheme, and hence a junction tree, in time O(n + m), where m = |E| the

number of edges in G. While m = O(n2) in the worst case, typical graphical models are

sparse and the time required is closer to linear in n. The enumeration method presented

here depends only on knowing a single junction tree for G. The time required to carry it

out is dominated by the time needed to find each TS[i]
. We note that any link L of J will

be a link in TS[i]
for each i such that S[i] ⊆ L. Finding all the TS[i]

can be done by iterating

over the c − 1 links of J , and for each link checking for inclusion of each of the s distinct

separators. Since both c and s can be O(n), the enumeration is an O(n2) algorithm in the

worst case. Other ways of finding the TS[i]
will in practice be faster. For example, we can

find TS[i]
by starting with a node that contains S[i] and searching outwards in J until we hit

nodes that don’t contain the separator. Thus, if TS[i]
is small it will be found very quickly.

While it is straightforward to construct examples where this approach is also O(n2), for

more typical graphs it will be considerably faster.

In summary, applying Broder and Mayr’s general method to the special case of enu-

merating junction trees is at best an O(n2.376) method, and more realistically O(n2.807). By
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exploiting the junction property, our method improves this to a worst case of O(n2) which

in practice is a very conservative upper bound.

7 MCMC samplers for junction trees

Given a distribution π(G) from which we want to sample decomposable graphs G, the

methods of Metropolis et al. (1953) and Hastings (1970) allow us to construct Markov

chains with π(G) as the ergodic distribution. For example, we can propose a new graph G′

by choosing two random vertices of G: if they are connected in G we disconnect them in G′

and vice versa. G′ is then accepted with probability max(1, π(G′)/π(G)), with the special

case that π(G′) is defined to be 0 if G′ is not a decomposable graph. Intuitively, it is easy

to see that this can be very inefficient. If we consider choosing two random vertices of G,

it is quite likely that we pick two vertices that are not connected directly, but which are

connected by several paths through other vertices. Adding an edge between the vertices

is, therefore, likely to create cycles. Unless all the connecting paths are short, a cycle of

length 4 or more may well be formed which prevents G′ being decomposable. Thomas

(2009) shows that for modeling linkage disequilibrium between genetic loci, the acceptance

rate decreases approximately as 1/n, making the method infeasible for large numbers of

variables. As genetic methods now routinely assay hundreds of thousands of loci on a single

chromosome, the high rejection rate becomes increasingly problematic.

The motivation for our enumeration method is that it makes it possible to devise MCMC

schemes over decomposable graphs that that are expressed as operations on junction trees.

If we wish to sample decomposable graphs from π(G), it is sufficient to sample junction

15



trees from

ρ(J) =
π(G(J))

µ(G(J))

since

P (G) =
∑

J :G(J)=G

π(G(J))

µ(G(J))

=
π(G)

µ(G)

∑

J :G(J)=G

1

= π(G).

For each J sampled from a Markov chain with ergodic distribution ρ(J), we would derive

the graph G(J) which would be sampled with probability π(G), as required. This, of

course, requires efficient enumeration, but note that the Metropolis-Hastings acceptance

probability for a junction tree MCMC scheme depends only on µ(G(J ′))/µ(G(J)) which,

given the factorization in equation 4 above, might be computable from µ(G(J)) more simply

than direct enumeration of µ(G(J ′)).

Simulating general labeled trees is a relatively straightforward matter. For instance,

Prüfer’s construction (Prüfer 1918) makes independent realizations of trees of a given size

from a uniform distribution easy. However, for the junction tree problem the labels on the

nodes of J are the cliques of G and these must be connected so that the junction property

holds, making for a more difficult problem in a constrained space. Nonetheless, we have

been able to construct an irreducible MCMC sampling scheme over the space of junction

trees for graphs of a given size n. This involves operations on the nodes and links of an

incumbent junction tree J that correspond to either adding edges to or deleting edges from

G when the edges are chosen from highly restricted sets of possibilities. Following these

16



perturbation rules, ensures that any proposal J ′ is a junction tree for some graph G′ on

n vertices. Since J ′ is junction tree, G′ must by definition be decomposable, and, hence,

we avoid both the need to test for decomposability and the inefficiency of proposing non-

decomposable graphs. The randomization method described in section 5 above can also

be included in the scheme; although, it is not necessary for irreducibility, it may improve

the mixing properties of the chain. While the space of junction trees is larger than that

of decomposable graphs, it is more tractable and may be more easily traversible. A com-

plete description of the method and implementation is the subject of a future manuscript

currently under preparation.
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jtree.jar: This file contains the source code and compiled classes required to run the

programs described below. The code can be run by adding jtree.jar to the list of

files accessed by the user’s classpath, or by using the -classpath option of the java

command. (Jar, java archive, file.)

docs: This is a directory of HTML pages automatically produced for the code in jtree.jar

using the javadoc program, and can be viewed using a web browser. (Directory of

HTML files.)

illustration: This is simple text file specifying the graph used in this paper to illustrate

junction tree enumeration. (Text file.)

The programs included in jtree.jar are:

CountJTrees: This reads a graph as a simple text file from the standard input stream

and outputs the number of equivalent junction trees it has. If the input graph is

not decomposable, zero is output. For example, to replicate the enumeration shown

in Table 1, first ensure that files jtenum.jar and illustration are in the current

working directory and then run the command:

java -classpath jtenum.jar CountJTrees < illustration

The following programs can be run in a similar way.

CountLogJTrees: This reads a graph as a simple text file and outputs the log of the

number of equivalent junction trees it has. If the input graph is not decomposable,

negative infinity is output.
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FindRandomJTree: This reads a graph and outputs a junction tree selected uniformly

at random from all possible junction tree representations. If the input graph is not

decomposable, there is no output.

RandomJTreeDemo: This reads a graph and draws a junction tree representation to the

screen. Every 2 seconds the junction tree is replaced by randomly chosen equivalent

junction tree. If the input graph is not decomposable, the program exits with an

error message.
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