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Abstract

Given a decomposable graph, we characterize and enumerate the set of pairs of vertices
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determined by a posterior distribution given observed multivariate data.
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1 Introduction

The flexibility and tractability of decomposable graphical models make them an

attractive option for fitting to a broad array of complex multivariate data types.

Commonly, the Markov, or conditional independence, graph of the graphical model is

regarded as unknown, and is an objective of inference, along with parameters of the joint

probability distribution of the data. This is the setting, of joint structural and parametric

inference, that is considered here. [6] developed a penalized likelihood approach to

graphical model estimation that they implemented in the BIFROST program, which used

a deterministic search method to find an optimal model. Other authors have used random

methods to optimize the model, or sample from well fitting models, in effect

implementing Metropolis-Hastings [10, 5] or simulated annealing [8] samplers for the

posterior probability distribution on decomposable graphical models corresponding to the

penalized likelihood. [4] developed such methods for Gaussian models, while [13] and [12]

applied this approach to modelling discrete distributions for allelic association between

genetic loci in the same genomic region. The programs developed for this latter

application can also be used to estimate a graphical model for general finite valued

multivariate data. More recent work in graphical model estimation includes [7] and [2].

Common algorithmic elements in these approaches are, given a decomposable graphical

model with Markov graph G, to propose a new graph G′ by either adding or deleting an

edge, checking that the G′ is decomposable, calculating its likelihood and prior

probability, and hence either accepting or rejecting the proposal as appropriate according

to the posterior probabilities. Implemented naively, checking for decomposability of G′,

using a maximum cardinality search [11] for example, will take time of order |V | + |E|

where V and E are respectively the vertex and edge sets of G. Calculating the likelihood

and prior of G′ directly is also a substantial computation of order |V |. However, [4]

showed that establishing the decomposability of G′, given the decomposability of G, could

be done in close to constant time when the perturbations involve either adding or deleting

an edge and, moreover, that the difference in likelihood and prior between G and G′
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depends only on local differences that can be evaluated in time independent of the size of

the graph. These results allow much faster sampling and optimization methods even for

moderately large graphs. For example, the HapGraph program [12] for estimating

graphical models for allelic association between genetic loci has been changed to use

Giudici and Green’s method and so works in reasonable time for several thousand

variables.

However, for very large graphs the probability that the addition or deletion of a randomly

proposed edge results in a decomposable graph becomes vanishingly small. Intuitively, for

the relatively sparse graphical models often seen in practice, we would expect the number

of allowable changes to be approximately linear in the size of the graph, whereas the

number of all pairs is quadratic. Thus, as the size of the problem increases, any rejection

algorithm becomes very inefficient. Recent advances in technology, particularly in

molecular biology, allow simultaneous measurement of hundreds of thousands of variables

in a single assay, so, in this field at least, this low acceptance rate is a real obstacle to the

use of graphical model based inference.

This problem could be avoided by characterizing and enumerating the set of pairs of

vertices whose connection or disconnection results in a decomposable model, and then

sampling a proposed perturbation with uniform probability from this set. Identifying the

pairs whose disconnection results in a decomposable graph is easily done using Giudici

and Green’s result, and we illustrate this below. Identifying pairs which can be connected

while preserving decomposability is more involved, but we develop here a framework that

allows this and again provide an illustrative example.

2 Definitions and preliminary results

We begin by reviewing some definitions and standard properties of decomposable graphs

and junction trees. A complete treatment of the topic is given by [9].

Consider a graph G = G(V, E) with vertices V and edges E. A subset of vertices U ⊆ V

defines an induced subgraph of G which contains all the vertices U and any edges in E
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that connect vertices in U . A subgraph induced by U ⊆ V is complete if all pairs of

vertices in U are connected in G. A clique is a complete subgraph that is maximal, that

is, it is not a subgraph of any other complete subgraph.

Definition 1 A graph G is decomposable if and only if the set of cliques of G can be

ordered as (C1, C2, . . . , Cc) so that for each i = 1, 2, . . . , c − 1

if Si = Ci ∩
c⋃

j=i+1

Cj then Si ⊂ Ck for some k > i. (1)

This is called the running intersection property. Note that decomposable graphs are also

known as triangulated or chordal graphs and that the running intersection property is

equivalent to the requirement that every cycle of length 4 or more in G is chorded.

The sets S1, . . . Sc−1 are called the separators of the graph. The set of cliques {C1, . . . Cc}

and the collection of separators {S1, . . . Sc−1} are uniquely determined from the structure

of G, however, there may be many orderings that have the running intersection property.

The cliques of G are distinct sets, but the separators are generally not all distinct. Let

S[1], . . . S[s] be the distinct sets contained in the collection of separators.

Definition 2 The junction graph of a decomposable graph has nodes {C1, . . . , Cc} and

every pair of nodes is connected. Each link is associated with the intersection of the two

cliques that it connects.

Note that for clarity we will reserve the terms vertices and edges for the elements of G,

and call those of the junction graph and its subgraphs nodes and links.

Definition 3 Let J be any spanning tree of the junction graph. J has the junction

property if for any two cliques C and D of G, every node on the unique path between C

and D in J contains C ∩ D. In this case J is said to be a junction tree.

For illustration, Figure 1 gives an example of a decomposable graph while Figure 2 shows

one of its possible junction trees. Some authors first partition a graph into its disjoint
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components before making a junction tree for each component, combining the result into

a junction forest. The above definition, however, will allow us to state results more simply

without having to make special provision for nodes in separate components. In effect, we

have taken a conventional junction forest and connected it into a tree by adding links

between the components. Each of these new links will be associated with the empty set

and have zero weight. Clearly, this tree has the junction property. Results for junction

forests can easily be recovered from the results we present below for junction trees.

A junction tree for G will exist if and only if G is decomposable, and algorithms such as

the maximal cardinality search of [11] allow a junction tree representation to be found in

time of order |V | + |E|. The collection of clique intersections associated with the c − 1

links of any junction tree of G is equal to the collection of separators of G. The junction

property ensures that the subgraph of a junction tree induced by the set of cliques that

contain any set U ⊆ V is a single connected tree.

3 Enumerating allowable perturbations

[3] and [4] gave efficient methods for checking that G′ is decomposable, given that G is,

when the perturbation scheme involves respectively disconnecting or connecting a random

pair of vertices. Using our definition of a junction tree, we can restate their results as

follows.

• Removing an edge (x, y) from G will result in a decomposable graph if and only if x

and y are contained in exactly one clique.

• Adding an edge (x, y) to G will result in a decomposable graph if and only if x and

y are unconnected and contained in cliques that are adjacent in some junction tree

of G.

Thus, enumerating the disconnectible pairs of vertices is easy to do. Having found the

cliques of G, we simply visit each in turn and count the number of edges that appear only
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in that clique. If C is the unique clique containing (x, y), we say that the disconnection of

(x, y) is allowed by C.

Characterizing connectible pairs of vertices, however, is more complicated. If we keep

track of the junction tree J representing our incumbent graph in the course of a sampling

scheme, it is not enough to check the links of J to see whether x and y are in adjacent

cliques. We also have to, in effect, consider all possible junction trees equivalent to J . To

achieve this we first show that the set of connectible pairs can be partitioned over the

distinct separators of G. We then give a method for identifying the pairs corresponding to

each distinct separator.

Let x and y be unconnected vertices of decomposable G whose connection results in a

new decomposable graph G′. Giudici and Green’s condition ensures that G must have

cliques Cx ∋ x and Cy ∋ y that are linked in some junction tree J of G. Let S = Cx ∩ Cy

be the intersection associated with the link. Under this assumption the two following

results hold.

Proposition 4 There are no cliques C ′
x ∋ x and C ′

y ∋ y with either C ′
x 6= Cx or C ′

y 6= Cy

that are adjacent in J .

Proof: Assume for the sake of contradiction that such C ′
x and C ′

y do exist. By the

junction property there is a path from C ′
x to Cx in J through nodes that all contain x,

and similarly one from C ′
y to Cy through nodes containing y. Since Cx and Cy are not

both equal to C ′
x and C ′

y, at least one of these paths has length greater than 0. Also,

since x and y are not connected they cannot appear in the same clique so these paths do

not intersect. Thus, since Cx and Cy are adjacent, a link between C ′
x and C ′

y creates a

cycle of at least 3 nodes violating J ’s tree property.

Proposition 5 Let C ′
x ∋ x and C ′

y ∋ y be cliques of G that are adjacent in some junction

tree J ′ 6= J . Let S ′ = C ′
x ∩ C ′

y. Then S ′ = S.

Proof: Consider the positions of C ′
x and C ′

y in J . Again we construct the unique path in

J from C ′
x to Cx, Cx to Cy and Cy to C ′

y, although it is possible now that C ′
x = Cx and
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C ′
y = Cy in which case the path has length 1. By the junction property S ′ must be

contained in each node along the path, and in particular S ′ ⊆ Cx and S ′ ⊆ Cy. Hence

S ′ ⊆ Cx ∩ Cy = S. By similarly considering the path from Cx to Cy in J ′ we also have

that S ⊆ S ′, and so S ′ = S.

These two results immediately give us the following.

Theorem 6 The set of all possible connectible pairs of vertices of a decomposable graph

G can be partitioned according to the distinct separators of G. The subset of connectible

pairs for a particular distinct separator S are those that appear in cliques adjacent in

some junction tree and whose intersection is equal to S. We say that these pairs are

allowed by S.

Let TS be the subtree of J induced by the cliques that contain the distinct separator S.

The junction property ensures that TS is a single connected subtree. For example, Figure

3 shows T{3}, the subtree of the junction tree in Figure 2 defined by the separator {3}.

Then, let FS be the forest obtained from TS by deleting all the links associated with S.

For example, Figure 4 shows the forest obtained by deleting links associated with the

separator {3} from T{3}. If we now reconnect the subtrees of FS by inserting copies of the

separator S to make a new tree T ′
S say, and then replace TS in J by T ′

S to make a new

spanning tree J ′, J ′ will also be a junction tree of G because it spans all the cliques of G

and has the same collection of separators associated with the links. Moreover, since FS

contains the only cliques of G that contain S, this represents all the ways in which the

edges associated with S can be rearranged to make a new junction tree.

We can then characterize the pairs allowed by S as follows.

Theorem 7 A connection (x, y) is allowed by a distinct separator S if and only if x /∈ S,

y /∈ S and x and y are in cliques that are nodes of different subtrees of FS.

Proof: We have established that the set of equivalent junction trees consists precisely of

those obtained by inserting links associated with S into the gaps in FS so as to form a

tree. Then by Theorem 6, we only have to look at the cliques (A ∪ S, B ∪ S) at either end
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of those links associated with S, and by Giudici and Green’s result S allows connecting

(x, y) if and only if x ∈ A and y ∈ B or vice versa.

4 Method summary

It is already established that the set of disconnectible pairs of G can be partitioned

among the cliques of G [4]. Theorem 6 now establishes a corresponding result for the

connectible pairs: that they can be partitioned among the distinct separators of G.

However, not all the edges in any given clique are disconnectible, only those that appear

in no other cliques. The junction property makes this easy to check: if a pair of vertices

(x, y) contained in clique C is also contained in another clique, they must appear in a

neighbour of C in the junction tree, thus only the neighbours of C in J need to be

checked. Let the number of pairs of disconnectible vertices allowed by C be β(C).

Theorem 7 allows us to similarly find the disconnectible pairs allowed by any distinct

separator S. These are pairs of vertices that do not appear in S and which do not appear

in cliques in the same subtree of FS. If we let mS be the number of times a distinct

separator S appears in the collection of all separators {S1, . . . , Sc−1}, since FS is obtained

by deleting ms links from TS, it must comprise mS + 1 subtrees. Let Aj be the union of

the sets of vertices in the cliques of the jth subtree of FS. Let aj = |Aj − S|, or

aj = |Aj| − |S| since S must be contained in each Aj , and let b =
∑mS+1

i=j aj . The number

of connectible pairs allowed by S must therefore be

α(S) =
1

2

mS+1∑

j=1

aj(b − aj)

Hence, an outline of a method to enumerate the neighbourhood of a decomposable graph

G is as follows:

• Given a decomposable graph G find any junction tree representation J .

• For each clique Ci of G:
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– For each pair of vertices (x, y) in Ci check that {x, y} is not a subset of any

neighbouring clique of Ci in J .

– β(Ci) is the number of such pairs.

• The number of disconnectible edges in G is
∑

i β(Ci).

• For each distinct separator S[i] of G:

– Identify TS[i]
the connected subtree of J induced by the cliques containing S[i].

– Find JS[i]
by deleting from TS[i]

the links corresponding to the separator S[i].

– Calculate aj for each of the mS + 1 components of FS[i]
.

– Hence find α(S[i]) = 1/2
∑

j aj(b − aj).

• The number of connectible edges in G is
∑

i α(S[i])

5 Illustration

As most of the above steps are either standard, such as finding a junction tree, or

straightforward, such as checking that edges appear in only 1 clique, we illustrate only the

novel enumeration of connectible edges. As an example, consider enumerating the

connectible edges allowed in the graph in Figure 1 by the separator {3}. The forest, F{3},

shown in Figure 4 has 4 components. The vertices in the cliques in each component,

excluding vertex 3 are {20}, {7, 17, 22}, {5} and {1, 2, 16, 18, 19}. Any pair of vertices

selected from any two of these sets are connectible making

α({3}) =
1

2
(1 × 9 + 3 × 7 + 1 × 9 + 5 × 5) = 32

connections allowed by separator {3}. Note that the result of connecting the vertices 16

and 18 that appear in cliques in Figure 4 is also a decomposable graph, however, this is

allowed by the separator {2, 3}, not by {3}, so we do not count this possibility at this

stage.
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The other distinct separators are dealt with in the same way and the final results are

presented in Table 2 which enumerates all the pairs of vertices in Figure 1 whose

connection makes a new decomposable graph. Table 1 shows an enumeration of the edges

in Figure 1 that are disconnectible. Of the 23C2 = 253 possible pairs only 26 + 169 = 195

can be changed to give a new decomposable graph.

6 Discussion

As noted above, a junction tree for a decomposable G can be found in time of order

|V | + |E|. Letting n = |V |, this is at worst O(n2), and for the sparser graphs likely to be

encountered in model estimation is closer to linear in n. As we build the junction tree, J ,

we can, at no extra cost, note for any distinct separator S[i] a clique in which it is

contained. Thus, by searching out from that clique we can find TS[i]
in time proportional

to the number of nodes in TS[i]
. Since J can have at most n vertices, finding all the TS[i]

can be done in at most O(n2) time. While it is possible to construct examples where this

bound is attained, for graphs encountered in model estimation actual performance is

again likely to be far faster. Given TS[i]
, with appropriate indexing of vertices, JS[i]

and

α(S[i]) can be found in O(n) time. Hence, overall, enumerating the connectible vertex

pairs by our method allows an O(n2) worst case implementation.

The method previously described by [1] also solves this problem in O(n2) time and is in

many ways similar. It too, in essence, relies on an understanding of the result of [4] when

stated as: two unconnected vertices of G are connectible if and only if they are contained

in cliques that are adjacent in some junction tree J of G. In order to exploit this they

require two auxiliary data structures that are both of order O(n2) in size. One of these,

the clique graph, can be thought of as the union of all possible junction trees of G. It is

here that our method has a significant advantage as it requires only a single, arbitrary,

junction tree representation J of G. As J is of O(n) size this represents a considerable

saving of space. Moreover, as [4] showed, if G is updated to a decomposable G′ by either

the connection or disconnection of a pair of vertices, the corresponding junction tree J ′

10



can be found from J in O(1) time. The update will depend on the context, but involves

changes to 4 cliques or separators where a change may be the addition or deletion of the

clique or separator. This compares very favourably with the O(n2) method for

correspondingly updating the clique graph given by [1].

Furthermore, adjustments to the probability of G to obtain that of proposed G′ requires

only the calculation of the clique marginals of the same 4 cliques or separators which is

again quick and independent of the size of the graph. We also note that this does not

require construction of G′ so that both the proposal and acceptance/rejection steps of the

Metropolis sampling process can be carried out using only the junction tree

representation.

If we accept a proposal G′, we could, at worst, then enumerate the allowable

perturbations anew and select another random update. However, the structure of the

junction tree enables the new enumeration to be made as a modification of the previous.

Once more, counting the number of allowable disconnections is easy. We simply decrease

the count by the number allowed in any clique removed, and increase by the number in

any clique created.

When a link of J , associated with separator S, is added or removed, this will affect not

only TS but also TU for any other separator U ⊂ S, so we need to track the partial

ordering of the distinct separators defined by inclusion. The junction property can again

help here as it ensures that if U ⊂ S then TS is a connected subgraph of FU . Thus, the

effect of changes to TS on FU , and hence the number of connections allowed by U , can be

evaluated by searching in J starting at the changed link S and ending when, in each

direction, a link associated with U is found.

There remains some challenge in developing specific algorithms and data structures to

implement efficiently the methods outlined above. However, it is clear that the junction

tree has very strong properties that can be exploited to make this possible.
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Figure 1: A decomposable graph containing 23 vertices in 4 disjoint components.

Figure 2: One possible junction tree for the graph shown in Figure 1. The 16 cliques
are the vertices of the junction tree and are shown as ovals. The 15 clique separators are
represented by the edges of the graph and each edge is associated with the intersection of
its incident vertices. These intersections are shown as rectangles. Note that some of these
intersections are empty.
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Figure 3: T{3}, the connected subtree of the junction graph shown in Figure 2 induced by
the cliques that contain the separator {3}.

Figure 4: F{3}, the forest obtained by from the tree shown in Figure 3 by deleting edges
associated with the separator {3}.
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Table 1: An enumeration of the disconnectible pairs for the graph in Figure 1.

Clique C Edges only in C Count
{4} - 0
{6} - 0

{13, 14, 15} (13,15) (14,15) 2
{13, 14, 23} (13,23) (14,23) 2

{3, 5} (3,5) 1
{1, 2, 3} (1,2) (1,3) 2
{2, 3, 18} (2,18) 1
{2, 3, 16} (2,16) (3,16) 2
{3, 20} (3, 20) 1

{3, 18, 19} (3,19) (18,19) 2
{17, 21} (17,21) 1
{8, 17} (8,17) 1
{9, 10} (9,10) 1
{11, 12} (11,12) 1
{9, 12, 17} (9,12) (9,17) (12,17) 3
{3, 7, 17, 22} (3,7) (3,17) (3,2) (7,17) (7,22) (17,22) 6

Total number of disconnectible pairs 26

Table 2: An enumeration of the connectible pairs for the graph in Figure 1.

Distinct Variables in cliques
separator S mS of components of FS Sizes α(S)

∅ 4 {4} {6} {13, 14, 15, 23 } 1, 1, 4, 17 111
{1, 2, 3, 5, 7, 8, 9, 10, 11,

12, 16, 17, 18, 19, 20, 21, 22}
{13, 14} 1 {15} {23} 1, 1 1
{3} 3 {20} {5} {7, 17, 22} {1, 2, 16, 18, 19} 1, 1, 3, 5 32
{2, 3} 2 {1} {16} {18 } 1, 1, 1 3
{3, 18} 1 {2} {19} 1, 1 1
{9} 1 {10} {12, 17} 1, 2 2
{12} 1 {11} {9, 17} 1, 2 2
{17} 3 {8} {21} {9, 12} {3, 7, 22} 1, 1, 2, 3 17

Total number of connectible pairs 169
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