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Abstract. In this paper we shall consider a self-affine iterated
function system in

�
d, d ≥ 2, where we allow a small random

translation at each application of the contractions. We compute
the dimension of a typical attractor of the resulting random iter-
ated function system, complementing a famous deterministic result
of Falconer, which necessarily requires restrictions on the norms of
the contraction. However, our result has the advantage that we
do not need to impose any additional assumptions on the norms.
This is of benefit in practical applications, where such perturba-
tions would correspond to the effect of random noise. We also give
analogous results for the dimension of ergodic measures (in terms
of their Lyapunov dimension). Finally, we apply our method to a
problem originating in the theory of fractal image compression.

1. Introduction

In this article we consider families of self-affine Iterated Function
Systems (IFS) defined on � d. More precisely, we consider contractions

(1) F := {fi(x) = Ai · x + ti}
m
i=1 ,

for x ∈ � d, where the Ai are d× d non-singular matrices satisfying

(2) 0 < ‖Ai‖ < Θ < 1, ∀1 ≤ i ≤ m,

and the vectors ti are in � d. The following definition is standard.

Definition 1 (The attractor Λ of F). Let B be a ball in � d centered
at the origin with radius larger than max1≤i≤m ‖ti‖/(1− Θ). Then the
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attractor of F is defined by:

(3) Λ :=

∞⋂

n=1

⋃

i0...in−1

fi0...in−1
(B).

where we denote fi0...in−1
= fi0 ◦ · · · ◦ fin−1

.

It is easy to see that this definition does not depend on the choice of
B and that Λ is the unique non-empty compact set for which

Λ =

m⋃

i=1

fi(Λ).

Since we use the translations as parameters it is sometimes conve-
nient to explicitly show the dependence by writing F t and f t

i , instead
of F and fi, respectively. We let dimH Λt and dimB Λt denote the Haus-
dorff dimension and Box dimension of the attractor, respectively. (We
refer the reader to [5] for the definitions.)

The following result is due to Falconer [4] and Solomyak [18].

Theorem 1 (Falconer, Solomyak). If

(4) ‖Ai‖ <
1

2
, ∀1 ≤ i ≤ m,

then for Lebm·d-almost all vectors t := (t1, . . . , tm) ∈ � m·d the dimen-
sion of the attractor Λt = ∪m

i=1f
t
i (Λt) is

(5) dimH Λt = dimB Λt = min {d, s(A1, . . . , Am)} ,

where s(A1, . . . , Am) is the singularity dimension (see [4, Proposition
4.1] and Definition 2 below.)

Theorem 1 was originally proved by Falconer in 1988 under the
stronger hypothesis that ‖Ai‖ < 1

3
, for all 1 ≤ i ≤ m. Ten years

later Solomyak weakened the hypotheses to their present form. Previ-
ously, Edgar [2] had already observed that the bound in (4) is optimal.
Moreover, it was shown by Simon and Solomyak in [17] that the bound
1
2

in (4) cannot be improved even in the special case that all the maps
fi are similarities. Finally, the “almost all” hypothesis is necessary, in
light of the construction by Bedford and McMullen of sporadic exam-
ples where the equality (5) fails even when the norms are smaller than
1
2

[13].
If the matrices Ai are orthogonal then the singularity dimension is

simply the usual similarity dimension, while in the general case it is
defined in terms of the singular values of repeated products of the



RANDOMLY PERTURBED SELF-AFFINE SETS 3

matrices A1, . . . , Am. More precisely, let T be a non-singular linear
mapping from � d to � d. The singular values

α1 ≥ α2 ≥ · · · ≥ αd

of T are the positive square roots of the eigenvalues of the positive
definite symmetric matrix T ∗T . The singular value function φs(T ) is
defined for s > 0 by

φs(T ) :=

{
α1 · · ·αk−1α

s−(k−1)
k , if k − 1 < s ≤ k ≤ d;

(α1 · · ·αd)
s/d , if s ≥ d.

We can now present the definition of singularity dimension.

Definition 2 (Singularity dimension). For a contracting self-affine IFS
defined by (1) the singularity dimension is

(6) s(A1, . . . , An) := inf

{
t > 0 :

∞∑

n=0

∑

i0...in

φt(Ai0 · · ·Ain) <∞

}
.

The following conjecture is widely believed to hold.

Conjecture 1. For a typical (in an appropriate sense) self-affine IFS
the Hausdorff dimension of the limit set is equal to min {d, s(A1, . . . , Am)}.

In this general direction, we will prove a statement for a random
perturbation of a given attractor Λ. Of particular importance is the
fact that our Theorem will make no assumptions regarding the matrix
norms. More precisely, we assume that with each application of the
functions from the given IFS we make a random additive error Y . We
assume that these errors have distribution η, where η is an absolutely
continuous distribution with bounded density supported on a disk D
which is centered at the origin and can be chosen to be arbitrarily
small. We saw in (3) that Λ is defined by all possible compositions
fi0···in−1

. For each such function we assume that the perturbations are
independent. More precisely, let T be the m-adic tree with mn nodes
on the n-th level. Each of these n-th level nodes corresponds to a word
in := (i0, . . . , in−1) ∈ {1, . . . , m}n. To obtain a random perturbation of
the attractor Λ we consider the random perturbations of the n-th level
node maps fin : � d → � d of the form

f
yin

in
:= (fi0 + yi0) ◦ (fi1 + yi0i1) ◦ · · · ◦ (fin−1

+ yi0...in−1
),

where in = (i0, . . . , in−1) ∈ T , and the elements of

yin :=
(
yi0, yi0i1 , . . . , yi0...in−1

)
∈ D × · · · ×D︸ ︷︷ ︸

n
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are i.i.d. with distribution η.
It is notationally convenient to label the perturbations by the natural

numbers. Let ϕ : T → � be the natural labeling of the nodes given by
setting ϕ(k) to be the k-th element of the following infinite sequence:

{1, 2, . . . , m, (1, 1), (1, 2), . . . , (m,m), (1, 1, 1), . . . , (m,m,m), . . . } .

The sequence of all random errors

(7) y := {yk}
∞
k=1 ∈ D∞ := D ×D × · · ·

in the construction of the random perturbation of Λ is defined by

yk := yin if k = ϕ(in).

Given y ∈ D∞ we denote the associated attractor by Λy. More pre-
cisely,

Λy :=

∞⋂

n=0

⋃

in

f
yin

in
(B),

where B is a sufficiently large ball in � d, centered at the origin. Let
Πy : Σ → � d be the natural projection from the symbolic space

Σ = {1, . . . , m}
�

+

to the attractor Λy given by

(8) Πy(i) := lim
n→∞

f
yin

in
(0)

where i ∈ Σ and in denotes the truncation to the first n terms. More
explicitly,

Πy(i) := lim
n→∞

(
ti0 +

n∑

k=1

Ai0 · · ·Aik−1
· tik(9)

+ yi0 +

n∑

k=1

Ai0 · · ·Aik−1
· yi0...ik

)
.

On D∞ we define the infinite product measure by

(10) � := η × · · · × η × · · · .

Example 1. Fat Sierpiński gaskets were one of the examples used in
[17] to show that Theorem 1 does not extend to contractions bigger than
1
2
. These were defined in terms of functions on � 2, of the form

fi(x) = λx+ ai for i = 0, 1, 2,

where a0, a1, a2 are not collinear and λ > 1
2
. For certain algebraic λ

the dimension is strictly less than min{− log 3
log λ

, 2}, the value one might

expect from Theorem 1. One such example is λ =
√

5−1
2

where the
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Figure 1. The golden gasket with and without random
errors in the translation

expected dimension from Theorem 1 is 2 but was computed in [1] as
1.93 . . .. However, with the addition of random translation errors to
the iterated function scheme, Theorem 2 gives that almost surely the
dimension of the attractor is two and, furthermore, the Lebesgue mea-
sure is positive. The reason for the drop in dimension in the deter-
ministic case is that several of the third level iterations are the same
(for example f0 ◦ f1 ◦ f1 = f1 ◦ f0 ◦ f0). In particular, this means a
“recoding” can give a more efficient cover. However, in the random
case these third level iterations are typically no longer identical due to
the random errors (see figure 1). Moreover, since no form of recoding
would be possible as the random errors are different for each nth level
iterate there is no longer any obvious reason to anticipate a drop in
dimension.

The following theorem gives a rigorous formulation of the intuitive
notion that random attractors should have the expected dimension.

Theorem 2 (Main Theorem). Consider contracting self-affine IFS of
the form (1). For � -almost all y ∈ D∞ we have:

(1) If s(A1, . . . , Am) ≤ d then dimH Λy = s(A1, . . . , Am);
(2) If s(A1, . . . , Am) > d then Lebd(Λ

y) > 0.

There is a closely related result by Peres, Simon and Solomyak in
[15] for self-similar IFS with random multiplicative errors. Moreover,
there the authors consider IFS which contract on average and where
the nth level maps are assumed to have the same error.

Our method of proof of this Theorem involves an investigation of the
dimension of certain measures defined on the attractor (Theorem 3).
These are the images, under the natural projection, of ergodic, shift
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invariant Borel measures on Σ. For the rest of the paper when we refer
to an ergodic measure on Σ, or a compact subset of Σ, we shall always
assume it is both Borel and shift invariant. We use this method since
s(A1, . . . , Am) can be expressed in terms of the Lyapunov exponents of
an ergodic measure introduced by Käenmäki in [8]. More precisely, let
ν be an ergodic measure on Σ and let A : Σ → M, where M denotes
the set of d× d matrices with real entries be defined by

A(i) := Ai0 .

Then for the stationary process given by the measure ν and

(11)
{
Pn(A, i) := A∗

in−1
· · ·A∗

i0

}∞
n=1

we denote the Lyapunov exponents [10, Theorem 5.7] by

(12) λ1(ν) ≥ λ2(ν) ≥ · · · ≥ λd(ν).

Indeed, the main reason for introducing the transposed matrices A∗
i is

to reverse the order of the product of such matrices, and so be able to
directly apply known results on Lyapunov exponents.

This leads naturally to the following definition.

Definition 3 (Definition of the Lyapunov dimension D(ν)).

(i): If

(13) k := k(ν) = max {i : 0 < hν + λ1(ν) + · · ·+ λi(ν)} ≤ d,

then we define

D(ν) := k +
hν + λ1(ν) + · · ·+ λk(n)

−λk+1(ν)
;

(ii): If hν + λ1(ν) + · · · + λd(ν) > 0 then we define

D(ν) := d ·
hν

−(λ1(ν) + · · ·+ λd(ν))

where hν is the entropy of the measure ν.

Note that in both cases above the Lyapunov dimension is simply the
generalization of the similarity dimension (which can be higher than
the dimension of the space) if the system is self-similar.

The following theorem gives a characterization of properties of the
image of an ergodic measure in terms of the Lyapunov dimension.

Theorem 3. Consider a contracting self-affine IFS of the form (1) and
an ergodic measure ν on Σ. For � -almost all y ∈ D∞ the following
hold:
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(a):
dimH Πy

∗ (ν) = min {d,D(ν)}

(b): If D(ν) > d then

Πy
∗ (ν) � Lebd.

We refer the reader to [6] for the definition of the Hausdorff dimension
of a measure. Theorem 2 is an immediate consequence of Theorem 3
and the following proposition. Let E(Σ) denote the ergodic probability
measures on Σ.

Proposition 1. There exists an ergodic probability measure µ on Σ
such that

s(A1, . . . , Am) = D(µ) = sup
ν∈E(Σ)

D(ν).

The measure µ in Proposition 1 is the same as that constructed by
Käenmäki in [8].

We briefly explain the scheme of the proofs of Theorem 2 and Theo-
rem 3. The key point is the introduction of a new self-affine transver-
sality condition (26) for certain families of self-affine IFS, which was
motivated by Solomyak’s general projection scheme in [18]. We show
that if this condition holds then for a typical parameter value the Haus-
dorff dimension of the attractor is the minimum of d and the singularity
dimension (Theorem 6). Furthermore, the Hausdorff dimension of the
image ν = Πy(µ) of an ergodic measure µ on Σ is the Lyapunov dimen-
sion if the Lyapunov dimension D(ν) is smaller than d. Alternatively,
if D(ν) is larger than d then the image measure is absolute continuous
(Theorem 7). As another application of this method we can solve a
randomized version of a long standing open problem in fractal image
compression [7], [9] (see Section 6).

The techniques we use in this paper also apply to the deterministic
case, giving the following analogue of Theorem 1. We define a natural
projection πt : Σ → � d by

πt(i) := lim
n→∞

(
ti0 +

n∑

k=1

Ai0 · · ·Aik−1
· tik

)
.

Theorem 4. Consider a contracting self-affine IFS of the form (1)
and an ergodic measure ν on Σ. As in Theorem 1 we assume that

‖Ai‖ <
1

2
, ∀1 ≤ i ≤ m.

Then for Lebmd a.e. t ∈ � md we have:

(a): dimH π
t
∗(ν) = min {D(ν), d};
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(b): If D(ν) > d then πt
∗(ν) � Lebd;

(c): If s(A1, . . . , Am) > d then Lebd(Λ
t) > 0, where Λt is the

attractor. That is Λt = πt(Σ).

In section 2 we describe the main properties of the singular value
function and singularity dimension. In section 3 we introduce a variant
on thermodynamic formalism, which is important in relating singular-
ity dimension and Lyapunov dimension. The self-affine transversality
condition is introduced in section 4 and used to get lower bounds on
the dimensions, and to verify absolute continuity, in a general setting.
Section 5 contains proofs of Theorems 2-7. Finally, in section 6 we
apply our method to a problem in fractal image compression.

2. Main properties of the singular value function

Here we summarize those properties of the singular value function
and singularity dimension which will be used in our proofs.

One can easily see that for every s, h > 0 we have

(14) αh
1 ≥

φs+h(T )

φs(T )
≥ αh

d .

The singular value function is submultiplicative [4]: For each s ≥ 0,

φs(T1T2) ≤ φs(T1)φ
s(T2).

We denote by Σ∗ the set of finite words from the alphabet {1, . . . , m}.
Fix a contractive IFS F , of the form (1). We choose 0 < aF < bF < 1
such that for each i = 1, . . . , m,

1 > bF ≥ α1(Ai) ≥ · · · ≥ αd(Ai) ≥ aF > 0.

We then obtain

(15) b
|i|
F ≥ α1(Ai) ≥ · · · ≥ αd(Ai) ≥ a

|i|
F

where |i| denotes the length of i. Furthermore, it follows from the
definition that for all i ∈ Σ∗ and s ≥ 0 we have

(16) b
s|i|
F ≥ φs(Ai) ≥ a

s|i|
F .

For an arbitrary i ∈ Σ∗ with |i| ≥ n, or i ∈ Σ, we define

ψs
n(i) := log φs(Ai0 · · ·Ain−1

).

It follows from (16) that

ns log bF ≥ ψs
n(i) ≥ ns log aF .

Using

ψn+k(i) ≤ ψn(i) + ψk(σ
ni),
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it follows from the sub-additive ergodic theorem that for every ergodic
measure ν on Σ and for ν almost all i ∈ Σ we have that

(17) lim
n→∞

1

n
ψs

n(i) = lim
n→∞

1

n

∫

Σ

ψs
n(i)dν(i).

Finally, we need the following simple result to show that the singu-
lar values are the same if we reverse the order of the product of the
matrices.

Lemma 1. For every i ∈ Σ∗ and for every 1 ≤ k ≤ d we have

αk(Ai) = αk(Pn(A, i)),

where Pn(A, i) was defined in (11).

Proof. The proof immediately follows from the standard fact that for
a d×d matrix B the eigenvalues of the matrices B∗B and BB∗ are the
same (with the same multiplicity). �

2.1. A Corollary of a proof of Oseledeč’s Theorem. Using the
proof [10, p. 43-47] of Oseledeč’s Theorem we can deduce the following
result.

Lemma 2. Consider a contractive IFS F defined by (1). Let ν be
an arbitrary ergodic measure on Σ. We define Pn(A, i) and λi(ν) for
i = 1, . . . , d as in (11) and (12). Then for ν-almost all i ∈ Σ and
1 ≤ k ≤ d we have

(18) lim
n→∞

1

n
logαk (Pn(A, i)) = λk(ν),

where αk (Pn(A, i)) is the k-th largest singular value of Pn(A, i).

This is an immediate consequence of the proof [10, Theorem 5.7].

2.2. The singularity dimension and finite measures. Consider
the d × d non-singular matrices A1, . . . , Am satisfying (2) and Ω ⊂ Σ
a σ-invariant compact set. For Ω = Σ the singularity dimension was
defined by Falconer [4, p. 344]. For the convenience of the reader we
summarize the most important facts about the singularity dimension
sΩ(A1, . . . , Am) for Ω ⊂ Σ compact σ-invariant analogous to those in
[4, p.344.].

For every ` > 0 and s > 0 we define a set function N s
` on the subsets

of Ω by

N s
` (A) := inf

{
∑

k

φs(Aωk
) : ωk ∈ Σ∗, A ⊂ ∪kωk and |ωk| ≥ `

}
.
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Then it follows from [11, Theorem 4.2] that the measure

N s(A) := lim
`→∞

N s
` (A) = sup

`
N s

` (A)

is a Borel regular measure. It follows from (14) and (15) that if t < s
and N t(Ω) < ∞ then N s(Ω) = 0. This implies that we can define
sΩ(A1, . . . , Am) by

(19) sΩ(A1, . . . , Am) = inf {s : N s(Ω) = 0} = sup {s : N s(Ω) = ∞} .

It follows from [4, p.344] that if Ω = Σ then sΩ(A1, . . . , Am) is equal to
s(A1, . . . , Am) defined in (9).

The following lemma allows us to find a finite measure whose prop-
erties are closely related to the singularity dimension.

Lemma 3. If N s(Ω) = ∞ for some s then there exists a finite measure
µ supported on Ω and a constant c0 such that

µ(ω) ≤ c0 · φ
s(Aω) for every ω ∈ Σ∗

where µ(ω) represents the measure of the corresponding cylinder set.

Proof. Fix an s such that N s(Ω) = ∞. It follows from [16, Theorem
54] that there exists a compact set Ω′ ⊂ Ω such that 0 < N s(Ω′) <∞.
We define a metric ρ on Ω′ as follows:

ρ(i, j) :=

{
φs(Ai∧j), if i 6= j;
0, if i = j.

We can see that ρ is a metric since for every ω ∈ Σ∗ we have

φs(Ai∧j) ≤ max {φs(Ai∧ω), φs(Aω∧j)} .

Then it follows from [16, Theorem 53] that the measure N s is the
1-dimensional Hausdorff measure on the compact set Ω′. Now the
assertion of the Lemma immediately follows from [11, Theorem 8.17].

�

3. Thermodynamical formalism

Following [8], we define the energy of an ergodic measure ν by

(20) Eν(s) := lim
n→∞

1

n

∫
ψs

n(i)dν(i).

The following lemma relates the energy to the Lyapunov exponents.

Lemma 4. Assume the same hypotheses as in Lemma 2. For k < s ≤
k + 1, we can write

(21) Eν(s) =

{
λ1(ν) + · · ·+ λk(ν) + [s− k]λk+1(ν), if s < d;
s
d
[λ1(ν) + · · ·+ λd(ν)] , if s ≥ d.
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From this we obtain that

(22) hν + Eν(D(ν)) = 0.

Proof. It follows from (17) that for ν-almost all i we have Eν(s) =
lim

n→∞
1
n
ψs

n(i). It follows from Lemma 2 that for ν-almost all i we have

lim
n→∞

1
n
ψs

n(i) is equal to the right hand side of (21). �

We can define the pressure function by

P (s) := lim
n→∞

1

n
log
∑

|i|=n

φs(Ai).

In particular, we see that P (0) = logm > 0. Comparing (14) and (15)
we see that

log bF ≥

1
n
· log

∑
|i|=k

φs+h(Ai) −
1
n
· log

∑
|i|=k

φs(Ai)

h
≥ log aF

and from this we see that the function P (s) is strictly decreasing, and
has a unique zero which we denote by t0 > 0.

The following result is due to Käenmäki [8].

Theorem 5 (Käenmäki). For any ergodic measure ν we have

P (s) ≥ hν + Eν(s).

Moreover,

(a): There exists an ergodic measure µ on Σ such that

(23) 0 = P (t0) = hµ + Eµ(t0),

(b): s(A1, . . . , Am) = t0.

We are now in a position to prove Proposition 1, assuming Theorem
5.

Proof of Proposition 1. It follows from (21) that the function s →
Eµ(s) is strictly decreasing. Therefore it follows from (22) and (23)
that t0 = D(µ). Using part (b) of Theorem 5 the result follows. �

4. Generalized Projection Scheme for self affine IFS

In [18, p. 542], Solomyak presented a generalized projection scheme
applicable to self-conformal IFS. In this section we construct an analo-
gous scheme suitable for self-affine IFS. In the next section we give the
details of the proofs.

Assume that we are given a contractive IFS F of the form (1). For
every distinct i, j ∈ Σ we write αk(i ∧ j) for the k-th largest singular
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value of Ai∧j if 1 ≤ k ≤ d and α0(i ∧ j) := ∞, αd+1(i ∧ j) := 0. Let
J` := [α`+1(i ∧ j), α`(i ∧ j)]. We define a function Zi∧j : [0,∞) → [0, 1]
(see Figure 2) by
(24)

Zi∧j(ρ) :=

d∏

k=1

min {ρ, αk(i ∧ j)}

αk(i ∧ j)
=

d∑

`=1

ρ`

α1(i ∧ j) · · ·α`(i ∧ j)
· � J`

+ � J0
.

0

PSfrag replacements

α1 α2 α3

1

1

1

ρ
α1

ρ2

α1α2

ρ3

α1α2α3

Figure 2. The function ρ→ Zi∧j(ρ) for αk := αk(i ∧ j)

Note that if all the maps of F are similarities then the similarity

ratio of fi∧j is λi∧j and Zi∧j(ρ) = min
{

1, ρd

λd

i∧j

}
.
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The motivation for the next Theorem is that we want to consider
a one-parameter family of self-affine IFS defined by random perturba-
tions of F . The parameter space is a compact metric space U on which
we are given a probability measure M. We want to give a dimension
estimate for M almost all parameters u ∈ U .

Definition 4. Consider a contractive IFS F of the form (1). Let U
be compact metric space (parameter space) with a finite Borel measure
M. Assume we are also given a continuous map Π : U × Ω → � d

(the natural projection), where Ω ⊂ Σ = {1, · · · , m}
�

+

is compact and
σ-invariant. For any u ∈ U, i ∈ Ω we write Πu(i) := Π(u, i). We make
the following two definitions.

Self-affine Hölder condition: There exists a constant K > 0
such that for every u ∈ U and i ∈ Ω and for every n ∈ � we can find
an isometry G = G(i, n) : � d → � d with

(25) Πu(i|n) ⊂ K ·G ([0, α1(i|n)] × · · · × [0, αd(i|n)])

where i|n denotes the truncation of i ∈ Σ to a word of length n (i.e.,
we scale the image of the isometry by the constant K).

This condition is used only for upper bounds on the Hausdorff dimension.

Self-affine transversality condition: There is a constant C > 0
(independent of i, j) such that for all i, j ∈ Ω, i 6= j we have

(26) M{u ∈ U : |Πu(i) − Πu(j)| < ρ} < C · Zi∧j(ρ).

With this definition, we can now state the following theorem.

Theorem 6. Consider a contractive IFS of the form (1) and a compact
metric space U with a finite Borel measure M. Let Π and Ω be as in
Definition 4. Let ν be an ergodic measure on Ω. If the self-affine
Hölder condition and self-affine transversality condition hold then for
M-almost all u ∈ U we have:

(a): dimH (Πu(Ω)) = min {d, sΩ(A1, . . . , Am)}; and
(b): If sΩ(A1, . . . , Am) > d then Lebd (Πu(Ω)) > 0.

Note that the self-affine Hölder condition (25) in the self-similar case
reduces to the formulae in [18, p.542, formulae (10)]. Similarly the self-
affine transversality condition (26) in the self-similar case reduces to
the usual transversality condition (see e.g. [18, p.542, formulae (11)]).

We also have the following measure theoretic result.

Theorem 7. Consider a contractive IFS of the form (1) and a com-
pact metric space U with a finite Borel measure M. Let Π and Ω be
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as in Definition 4. If the self-affine Hölder condition and self-affine
transversality condition hold then for M-almost all u ∈ U we have:

(a): dimH Πu
∗(ν) = min {d,D(ν)} ; and

(b): If hν > −(λ1 + · · · + λd) then

Πu
∗(ν) � Lebd.

To get the lower bound in Theorems 6 and 7 we need the following
Proposition.

Proposition 2. Consider a contractive IFS of the form (1) and a
compact metric space U with a finite Borel measure M. Let Π and Ω be
as in Definition 4. Assume that the self-affine transversality condition
holds. Consider a Radon measure µ on Ω and a positive number s such
that there exists c1 > 0 which satisfies that for all finite words ω ∈ Σ∗,

(27) µ([ω]) ≤ c1φ
s(Aω).

Then for M-almost all u ∈ U we have:

(a): If s ≤ d then dimH (Πu
∗µ) ≥ s.; and

(b): If s > d then Πu
∗(µ) � Lebd.

In turn, to prove part (a) of Proposition 2 we need the following
Lemma.

Lemma 5. Consider a contractive IFS of the form (1) and a compact
metric space U with a finite Borel measure M. Let Π and Ω be as in
Definition 4. Assume that the self-affine transversality condition holds.
Then for every t 6∈ � , 0 < t < d there exists a constant c2 = c2(t)
(independent of i, j) such that for all i, j ∈ Ω, i 6= j we have

(28)

∫

u∈U

|Πu(i) − Πu(j)|−t dM(u) < c2 ·
(
φt(Ai∧j)

)−1
.

Proof. Fix t > 0 and i, j ∈ Ω. Observe that we can write∫

u∈U

|Πu(i) − Πu(j)|−t dM(u)

= t

∞∫

ρ=0

M{u ∈ U : |Πu(i) − Πu(j)| < ρ} ρ−t−1dρ.

Thus using (28) it is enough to prove that there exists a constant such
that if we write

(29) It
i∧j :=

∞∫

ρ=0

Zi∧j(ρ)ρ
−t−1dρ
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then

(30) It
i∧j ≤ const ·

[
α1(i ∧ j) · · ·αk−1(i ∧ j) · αt−(k−1)

k (i ∧ j)
]−1

,

where

k − 1 < t ≤ k.

Henceforth, for notational simplicity, we shall write Z(ρ), αk and I in
place of Zi∧j(ρ), αk(i ∧ j) and It

i∧j. We can write the integral in (29)
as a sum of the integrals over the intervals [0, αk] and [αk,∞]. More
precisely, if we write

I1 :=

αk∫

ρ=0

Z(ρ)ρ−t−1dρ and I2 :=

∞∫

ρ=αk

Z(ρ)ρ−t−1dρ,

then we have

(31) It
i∧j = I1 + I2.

First we prove I1 is bounded by the expression on the Right Hand Side
of (30) and then we show the same holds for I2. The proof then follows.
Next observe that

0 < ρ < αi implies
ρi

α1 · · ·αi
<

ρi−1

α1 · · ·αi−1
.

Thus

(32) I1 <

αk∫

ρ=0

ρk

α1 · · ·αk
ρ−t−1dρ =

1

k − t

[
α1 · · ·αk−1α

t−(k−1)
k

]−1

which verifies the required inequality with the constant 1
k−t

. We now
bound

(33) I2 =

k−1∑

`=0

∫

J`

Z(ρ)ρ−t−1dρ.

Observe that∫

J`

Z(ρ)ρ−t−1dρ =
1

t− `
(α1 · · ·α`)

−1 [α`−t
`+1 − α`−t

`

]
,

where for ` = 0 we set α−t
0 = 0. Using that

1

t− (`+ 1)
(α1 · · ·α`+1)

−1 α`+1−t
`+1 >

1

t− `
(α1 · · ·α`)

−1 α`−t
`+1
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one can see that the number which we add in the sum (33) for each `
is smaller than that which we subtract for `+ 1. Therefore

I2 <
1

t− (k − 1)
·
(
α1 · · ·αk−1α

t−(k−1)
k

)−1

.

This completes the proof of the required inequality for I2. It follows
from this (31) and (32) that (30) holds for I with the constant 1

t−(k−1)
+

1
k−t

. �

We now use Lemma 5 to prove Proposition 2. This proposition is
important in the proofs of all of the main results in this paper.

The proof of Proposition 2. We first prove part (a). Assume that s <
d. It follows from the potential theoretic characterization of the Haus-
dorff dimension (see e.g. [5, Theorem 4.13]) that for every measure ν
on � d we have

(34) dimH ν ≥ sup

{
α :

∫∫
|x− y|−αdν(x)dν(y) <∞

}
.

Fix t < s. It suffices to prove that

It :=

∫

u∈U

∫∫

(i,j)∈Ω×Ω

|Πu(i) − Πu(j)|−t dµ(i)dµ(j)dM(u) <∞.

since this, together with (34), implies that dimH(Πu
∗µ) ≥ t for M-

almost all u ∈ U . Using (27) and Lemma 5 we obtain

It < c2

∞∑

k=0

∑

|ω|=k

∫∫

i∧j=ω

(
φt(Aω)

)−1
dµ(i)dµ(j)(35)

≤ c2c1

∞∑

k=0

∑

|ω|=k

µ([ω])φs(Aω)
(
φt(Aω)

)−1
.

It follows from (14) and (15) that

φs(Aω) ·
(
φt(Aω)

)−1
≤ b

k·(s−t)
F .

Using this and (35) we obtain that

It ≤ c1c2

∞∑

k=0

b
k·(s−t)
F

∑

|ω|=k

µ([ω])

︸ ︷︷ ︸
=1

<∞.

Since t can be chosen arbitrarily close to s this completes the proof of
part (a).
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We next prove part (b). It follows from the definition (24) of Zi∧j(ρ)
that for distinct i, j ∈ Ω and ρ > 0 we have the bound

Zi∧j(ρ) ≤
ρd

φd(Ai∧j)
.

Thus it follows from the self-affine transversality condition (26) that
for all distinct i, j ∈ Ω and ρ > 0,

(36) M{u ∈ U : |Πu(i) − Πu(j)| < ρ} < C ·
ρd

φd(Ai∧j)
.

Furthermore, from (16) we obtain that for ω ∈ Σ∗

(37)
µ([ω])

φd(Aω)
≤ c1 ·

φs(Aω)

φd(Aω)
≤ b

|ω|(s−d)
F .

To show absolute continuity of Πu
∗µ for M almost all u we will follow

a standard approach (introduced by Peres and Solomyak in [14]). In
particular, it suffices to show that

I :=

∫∫
lim inf

r→0

Πu
∗µ(B(x, r))

2rd
dΠu

∗µ(x)dM(u) <∞.

We apply Fatou’s Lemma, lift to the shift space, and apply Fubini’s
Theorem. Finally, using inequality (36) we have that

I ≤ lim inf
r→0

1

2rd

∫∫∫
� {(i,j):|Πu(i)−Πu(j)|≤r}dµ(i)dµ(j)dM(u)

≤ lim inf
r→0

1

2rd

∫∫
M{u : |Πu(i) − Πu(j)| ≤ r}dµ(i)dµ(j)

≤ C

∫∫
1

φd(Ai∧j)
dµ(i)dµ(j).

To complete the proof we split the integral up into an infinite summa-
tion and use (37) to get the bound

I ≤ C
∞∑

k=0

∑

|ω|=k

µ[ω]2(φd(A[ω]))
−1

≤ c1C + C

∞∑

k=0

b
k(s−d)
F

∑

|ω|=k

µ(ω) <∞.

This suffices to show the result (cf. [14]).
�
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5. The proof of the Theorems

In this section we will prove Theorems 6 and 7, and then deduce
from these Theorems 2 and 3.

The proof of Theorem 6. We first prove part (a). The upper bound fol-
lows immediately from the definition of the singular value function. To
get the lower bound we fix an arbitrary s < min {d, sΩ(A1, . . . , Am)}.
In particular, N s(Ω) = ∞ by (19). It then follows from Lemma 3 that
we can find a measure µ which is supported on Ω satisfying (27), i.e.,

µ([ω]) ≤ c1φ
s(Aω).

In particular, we now can apply Proposition 2 to deduce that for M
almost all u we have dimH Πu(Ω) ≥ s. This completes the proof of part
(a) of the theorem.

Next we prove part (b). Since we are assuming that d < sΩ(A1, . . . , Am)
we can choose

d < s < sΩ(A1, . . . , Am).

Using definition (19) of sΩ(A1, . . . , Am) it follows from Lemma 3 that
there exists a measure µ supported by Ω and a constant c0 > 0 such
that for every ω ∈ Σ∗ we have

µ([ω]) ≤ c0 · φ
s(Aω).

Thus we can apply part (b) of Proposition 2 to deduce that for M a.e.
u ∈ U we have Πu

∗(µ) � Lebd and thus Lebd (Πu
∗(Ω)) > 0. �

Proof of Theorem 7. We first prove part (b). It is apparent from the
definitions of Zi∧j(ρ) and φd that

Zi∧j(ρ) ≤
ρd

φd(Ai∧j)

for distinct i, j (cf. Figure 2). Since we are assuming the self-affine
transversality condition (26), there exists C > 0 such that

M{u ∈ U : |Πu(i) − Πu(j)| ≤ ρ} ≤ C
ρd

φd(Ai∧j)
.

Recall that by the Shannon-McMillan-Breiman Theorem we have that
for ν almost all i ∈ Ω

(38) lim
n→∞

1

n
log ν([i0, . . . , in−1]) = −h(ν)

and that we have already shown that for ν almost all i ∈ Ω

lim
n→∞

1

n
logαk(Ai|n) = λk(ν),
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which implies that for ν almost all i ∈ Ω

(39) lim
n→∞

n

√
α1(Ai|n) · · ·αd(Ai|n) = eλ1(ν)+···+λd(ν).

To show that νu := Πu
∗ν is absolutely continuous it suffices to show

that for an arbitrary ε > 0 we can find a measure νε which is the
restriction of ν to a set with measure greater than 1− ε and for which
Πu

∗νε is absolutely continuous. For any ε > 0 we have that by Egorov’s
Theorem there exists a set Xε ⊂ Ω such that ν(Xε) > 1 − ε and the
convergence in both (38) and (39) is uniform. We let νε be ν restricted
to this set. Choose δ > 0 such that

(40) hν − δ > −(λ1 + · · · + λd) + δ

(where we write λi for λi(ν) for convenience). By the uniform conver-
gence in (38) and (39) we can choose N ∈ � such that for n ≥ N and
i ∈ Xε

ν([i|n]) ≤ en(−hν+δ) and φd(Ai|n) ≥ en(λ1+···+λd−δ).

It is now enough to check the absolute continuity of the measure Πu
∗νε.

To see this we observe that by (40) there exists d < s and a constant
c1 such that for every ω ∈ Σ∗ we have νε([ω]) < c1φ

s(Aω). Using
Proposition 2 we obtain that Πu

∗νε � Lebd. Since this holds for all
ε > 0 this completes the proof of part (b).

We next turn to the proof of part (a). We can assume that D(ν) < d.
Let k := k(ν) be defined as in (13). In particular, k < D(ν) ≤ k + 1
and we can choose k < s < D(ν). Let ε > 0 satisfy

D(ν) − s =
2ε

−λk+1

.

Then it follows from Lemma 4 that

Eν(s) > −hν + 2ε.

Using Egorov’s Theorem it follows from (20), the definition of Eν(s),
(17) and the Shannon-McMillan-Breiman Theorem that for every δ > 0
there exists a set Hδ ⊂ Ω with ν(Hδ) > 1 − δ and there exists an N
such that for all n ≥ N and for all i ∈ Hδ we have

ν(i|n) ≤ exp(n(−hν + ε)) < exp(nEν(s)) < φs(Ai|n).

In this way we see there is a c > 0 such that for all i ∈ Hδ we have

ν(i|n) < cφs(Ai|n).
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Let νδ := ν|Hδ
. Then by Proposition 2 we obtain that for M a.e. u ∈ U

we have
dimH(Πu

∗ν) ≥ dimH(Πu
∗νδ) ≥ s.

Since s < D(ν) was arbitrary this gives the lower estimate in part (a)
of the theorem.

To get the upper bound in part(a) assume that D(ν) < d. We fix
an arbitrary u ∈ U and then we can prove the upper estimate for
Λ := Πu(Ω). Since u is fixed, we write Π instead of Πu to simplify the
notation. Given any γ > D(ν), it is enough to prove that

dimH(Π∗ν) ≤ γ.

We choose ε > 0 to satisfy

(41) γ >
hν + λ1 + · · ·λk

−λk+1 + ε
+ k +

(k + 1)ε

−λk+1 + ε
.

By the self-affine Hölder condition (25) there is a K > 0 such that for
every i ∈ Ω and n ∈ � the set Π(i|n) can be covered by a rectangular
box Bi|n with sides K · α1(i|n), . . . , K · αd(i|n). Without loss of gener-
ality, let us assume that K = 1. Let k := k(ν) be as in (13). For every
i ∈ Ω and n ∈ � we fix a subdivision of the box Bi|n into

N(i|n) :=
α1(i|n) · · ·αk(i|n)

αk
k+1(i|n)

boxes of sides

`(i|n) := αk+1(i|n), . . . , αk+1(i|n)︸ ︷︷ ︸
k+1

, αk+2(i|n), . . . , αd(i|n).

Let Pn(i) denote the box which contains Π(i). We denote by Qn(i) the
set in Ω which corresponds to Pn(i). That is

Qn(i) := {j ∈ Ω : j ∈ [i|n] and Π(j) ∈ Pn(i)} ,

where [i|n] denotes the nth level cylinder. In generalQn(i) $ Π−1(Pn(i))
for Π is not 1 − 1. Furthermore, let

An
ε :=

{
i ∈ Ω : ν(Qn(i)) ≥ ε ·

ν(i|n)

N(i|n)

}
.

Observe that for every n we have

(42) ν ((An
ε )c) ≤ ε.

In particular,

ν ((An
ε )c) =

∑

|ω|=n

ν ([ω] ∩ (An
ε )c) ≤

∑

|ω|=n

N(ω) · ε ·
ν([ω])

N(ω)
≤ ε.
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Using (42) we see that the set

Aε := lim sup
n→∞

An
ε =

∞⋂

k=1

∞⋃

n=k

An
ε

satisfies

ν (Aε) > 1 − ε.

It follows from Egorov’s Theorem that there exists a Gε ⊂ Aε such
that ν(Gε) > 1 − 2ε and we have that

1

n
log ν(i|n) → −hν and

1

n
logα`(i|n) → λ`(ν),

where the convergence if uniform for all 1 ≤ ` ≤ d and all i ∈ Gε.
Thus, for every i ∈ Gε we can find arbitrary large n simultaneously
satisfying the following four conditions:

(i): ν (Qn(i)) > ε ν(i|n)
N(i|n)

;

(ii): en(−hν−ε) < ν(i|n) < en(−hν+ε);
(iii): en(λ`−ε) < α`(i|n) < en(λ`+ε) for every 1 ≤ ` ≤ d;
(iv): log ε

log αk+1(i|n)
< ε.

Fix i ∈ Gε and choose n satisfying (i)-(iv) above. We want to apply
Frostman’s Lemma to the measure Π∗ν, and to this end we need to
estimate

Rn(i) :=
log Π∗ν [B (Π(i), αk+1(i|n))]

logαk+1(i|n)
.

In particular,

Rn(i) ≤
log ν(Qn(i))

logαk+1(i|n)
≤

log ε

logαk+1(i|n)
+

log ν(i|n) − logN(i|n)

logαk+1(i|n)

≤ ε+
logN(i|n) − log ν(i|n)

− logαk+1(i|n)

≤ ε+
n (λ1 + · · ·λk + kε− kλk+1 + kε) + n(hν + ε)

−n(λk+1 − ε)

=
hν + λ1 + · · · + λk

−λk+1 + ε
+ k +

(k + 1)ε

−λk+1 + ε
.

For ε satisfying (41) we can find n arbitrarily large such that

Rn(i) < γ.

From this we deduce that for every i ∈ Gε we can bound

(43) lim inf
n→∞

log Π∗ν [B (Π(i), αk+1(i|n))]

logαk+1(i|n)
< γ.
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By construction, Gε1
⊃ Gε2

whenever ε1 < ε2 and thus we obtain that
(43) holds for ν-a.e. i ∈ Ω. Frostman’s Lemma ([3], Theorem 3.3.14)
now implies that, dimH ν ≤ γ. This completes the proof of the upper
estimate since γ > D(ν) was chosen arbitrarily.

�

In order to apply Theorems 6 and 7 to deduce Theorems 2 and 3, we
need to show that the self-affine transversality condition holds. This is
the purpose of the next Lemma.

Lemma 6. The self-affine transversality condition (26) holds for Πy,
y ∈ D∞, i.e., there exists a constant C > 0 such that for all distinct
i, j ∈ Σ we have

(44) � {y ∈ D∞ : |Πy(i) − Πy(j)| < ρ} < C · Zi∧j(ρ).

Proof. Fix y ∈ D∞ and consider the natural projection Πy : Σ → Λy

defined in (8). It follows from (9) that for every i, j ∈ Σ with |i∧ j| = n
there exists a random variable qn(i, j,y) which is independent of yi0...in

such that

(45) |Πy(i) − Πy(j)| = |Ai∧j [yi0...in + qn(i, j,y)]| .

Let us fix all of the terms in y except yi0...in ∈ D. Using the product
structure of � and the fact that the measure η is absolutely continuous
with respect to Lebd with bounded density we see that in order to
verify (44) it is enough to prove that

Lebd {yi0...in ∈ D : |Πy(i) − Πy(j)| < ρ} < C · Zi∧j(ρ).

Let us write Boxρ := [−ρ, ρ]d and let r be the radius of the ball D. Let
ϕ be a rotation of � d which sends the coordinate axes to the mutually
orthogonal singular vectors of A−1

i∧j and let Boxi∧j := ϕ([−r, r]d). It is
clear that for all distinct i, j we have D ⊂ Boxi∧j. Then using (45) we
get that

Lebd {yi0...in ∈ D : |Πy(i) − Πy(j)| < ρ} ≤ Lebd

{
A−1

i∧j (Boxρ) ∩ Boxi∧j

}
.

Finally, it follows from elementary geometry that

Lebd

{
A−1

i∧j (Boxρ) ∩ Boxi∧j

}
≤ C · Zi∧j(ρ),

which completes the proof of the Lemma. �

We are now in a position to complete the proofs of Theorems 2 and
3.

Proof of Theorem 2. Theorem 2 is an immediate consequence of Lemma
6 and Theorem 6. �
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Proof of Theorem 3. Theorem 3 is an immediate consequence of Lemma
6 and Theorem 7. �

In order to deduce Theorem 4, we need the following Lemma. This
is an adaptation of related results proved by Falconer [4] and Solomyak
[18].

Lemma 7. Consider a contractive self-affine IFS F of the form (1).
Let U be an arbitrary ball in � md and let M be the measure Lebmd

restricted to U . Given u = (u1, . . . , um) ∈ U we define

Πu(i) := lim
n→∞

(fi0 + ui0) ◦ · · · ◦ (fin−1
+ uin−1

)(0).

Then the self-affine transversality condition (26) holds.

Proof. Let T be a d × d matrix with singular values 0 < αd ≤ . . . ≤
α1 < 1. We can bound

(46) Leb{x ∈ B(0, δ) : |Tx| ≤ ρ} ≤ C0

d∏

i=1

min

{
ρ

αi

, δ

}

for some constant C0 > 0. This is easily seen by observing that
T−1B(0, ρ) is contained in a box with sides of length 2r

αi
aligned in

the direction of the singular vector associated with αi. Fix distinct
i, j ∈ Σ and let

L := Lebmd{‖u‖ ≤ δ : |Πu(i) − Πu(i)| ≤ ρ}.

Let k = |i ∧ j| and then we can write

|Πu(i) − Πu(j)| = Ai∧j(uik+1
− ujk+1

+ (fik+1
uik+2

+ fik+1
fik+2

uik+3
+ · · · )

− (fjk+1
ujk+2

+ fjk+1
fjk+2

ujk+3
+ · · · ))

= Ai∧j(uik+1
− ujk+1

+ E(u)).

It follows from [18, p. 540] that provided ‖Ai‖ <
1
2

for all 1 ≤ i ≤ m

then ‖E‖ < 1. Thus as in [4] the linear transformation from � md → � md

defined by

(u1, u2 . . . , um) → (y, u2 . . . , um) ,

where y = uik+1
− ujk+1

+ E(u) will be invertible. Thus there exists a
constant C1 > 0 such that

L ≤ C1Lebd{(y, u2, . . . , ud) ∈ B : ‖fi∧j(y)‖ ≤ ρ}

where B is the product of the interval [−(2 + m)δ, (2 + m)δ] in the y
direction and the d − 1 dimensional δ-ball. It now follows from (46)
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that there exists C2 = C2(δ) and C3 = C3(δ) such that

L ≤ C2

d∏

i=1

min

{
ρ

αi
, δ

}
≤ C3Zi∧j(ρ).

�

Finally, we can use Lemma 7 to prove Theorem 4.

Proof of Theorem 4. Theorem 4 immediately follows from Theorem 7,
Theorem 6 and Lemma 7. �

6. An application in fractal image compression

In this section we will compute the almost sure Hausdorff dimension
of certain randomly perturbed graph directed IFS which appear in the
theory of fractal image compression.

The following graph directed Iterated Function System (GIFS) arose
naturally in the field of fractal image compression. Given a large nat-
ural number K we partition the unit square Q into M := 2K × 2K

subsquares of size 2−K which we denote by R1, . . . , RM . This is the
family of range squares. We define the family of domain squares as the
set of all N := (2K − 1) × (2K − 1) squares D1, . . . , DN which are the
union of four range squares having a common vertex. We associate a
domain square to every range square. More precisely, we are given a
map

(47) ϕ : {1, . . . ,M} → {1, . . . , N} .

This defines a directed graph Γ = (V, E) as follows The vertices are
V = {1, . . . ,M}. There is a directed edge (k, `) ∈ E from k ∈ V to
` ∈ V if R` is one of the four squares of Dϕ(k). In this way Γ is a
directed graph with exactly four edges going out of every vertex.

We also assume that for each 1 ≤ k ≤ M and ` = ϕ(k) we have
associated a self-affine map Sk : (D`× [0, 1]) → (Rk × [0, 1]) of the form

Sk(x, z) := (Tk(x), fk(z)) ,

where Tk : D` → Rk is onto, fk : [0, 1] → [0, 1], and they satisfy

(48) DTk(x) =

[
1
2

0
0 1

2

]
and fk(z) := λk · z + tk

where 0 < λk < 1. See Figure 3
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Figure 3. The function Sk

We define the graph directed sets Λ1, . . . ,ΛM to be the unique family
of compact sets satisfying

(49) Λi =
⋃

(i,j)∈E
Si(Λj),

and the attractor of the GIFS is

(50) Λ :=

M⋃

i=1

Λi.

Note that if we write Se := Si whenever (i, j) = e ∈ E then (49) can
be written as

Λi =

m⋃

j=1

⋃

e=(i,j)∈E
Se(Λj).

In particular, {Si}
M
i=1 is a graph directed IFS in the sense of [12].

The attractor Λ can also be written as

Λ =
∞⋂

n=1

⋃

i0...in−1

Si0...in−1
(B),
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where B := [0, 1]3 and the union is over admissible words i0, . . . , in−1.
We suppose that at each application of the functions we make a random
translational error in the vertical direction. More precisely, for every
admissible in := (i0, . . . , in−1) we consider

(51) S
yin

in
:=
(
Si0 + yi1

)
◦ · · · ◦

(
Sin−1

+ yi1...in−1

)
,

where yi0...in−1
= (0, 0, yi0...in−1

) ∈ � 3 and the numbers yi0...in−1
are

chosen independently in every step, from an arbitrary small interval
I centered at the origin using an absolutely continuous distribution
η with bounded density. Gathering the random errors in an infinite
vector as in (7) we can write,

y := (y1, . . . , ym, y11 . . . , ym,m, . . . ) ∈ I × I × · · · =: I∞.

As in (10) we define the product measure on I∞ by

(52) � := η × η × · · · .

It is our aim to compute the dimension of the attractor,

Λy :=
∞⋂

n=0

⋃

in

S
yin

in
(B),

where B = [0, 1]2 × [−u, u] ⊂ � 3, where u is sufficiently large, and the
union is over admissible words in, for � a.e perturbation y.

Theorem 8. Let E be a d × d matrix such that Eij = λi if (i, j) ∈ E
and Eij = 0 otherwise.We denote by %(E) the spectral radius of the
matrix E. Assume that the matrix E is irreducible. Then for � a.e.
y ∈ I∞ we have

(53) dimH Λy = max

{
2, 1 +

log %(E)

log 2

}
.

We remark that a related result for box dimension was obtained in
[9] for almost all deterministic attractors of a similar type. The main
difference between the GIFS considered here and the ones considered
in [9] is that in [9] the authors considered deterministic GIFS with a
restriction on the family of domain squares. This restriction allowed the
use of a technique which cannot be used in this more general setting.

Proof. Let Ω :=
{
i ∈ Σ : Eikik+1

> 0
}

and let Ωn be the set of n cylin-
ders of Ω.

The upper estimate: This is independent of the vertical translations.
Let Λn be the n-th approximation of the Cantor set Λ consisting of 4n

boxes Bi0...in−1
, for (i0 . . . in−1) ∈ Ωn. Each of these has a face parallel to

the (x, y) plane which is a square of side 1
2n and a vertical side of length
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2uλi0...in−1
. Thus, for all (i0 . . . in−1) ∈ Ωn the box Bi0...in−1

can be

covered by
2uλi0 ...in−1

1/2n cubes of size 1/2n where λi0,...,in−1
= λi0 · · ·λin−1

.

Therefore,

(54) Hs
1/2n(Λ) ≤

2u

2n(s−1)




∑

i0...in−1

λs
i0...in−1

︸ ︷︷ ︸
‖En‖1

+
∑

i0...in−1

1/2n

︸ ︷︷ ︸
2n




where the summations are taken over all (i0 . . . in−1) ∈ Ωn. This implies
that whenever %(E) ≤ 2 we have dimH(Λ) = 2. If %(E) > 2 it also

follows immediately from (54) that dimH(Λ) ≤ 1 + log %(E)
log 2

.

The lower estimate: In the case that %(E) ≤ 2 we have already seen
that dimH(Λ) = 2. Therefore, for the rest of the proof we may assume
that

%(E) > 2.

If we could verify the self-affine transversality condition (26) then
we would be able to apply Theorem 6 which would imply the required
lower estimate. Unfortunately there is no way to check condition (26)
for the GIFS under consideration. However, we will introduce another
GIFS which is the same in the vertical direction and which is shrunk
by a small amount in the direction of both the x and y axes. In this
way there will be a gap in between any two shrunken range squares
in the plane which will allows us to verify the self-affine transversality
condition. Thus the Hausdorff dimension of its attractor gives a lower
bound for the Hausdorff dimension of the original attractor.

Let us fix an arbitrary 0 < r < 1/2K. We use the same directed graph
Γ as above and let ϕ be the same as in (47). For every 1 ≤ k ≤ M
let Rr

k be a square having the same center and sides parallel to the
sides of Rk, but with sides of length 1

2K − r. Similarly, for 1 ≤ ` ≤ N
we define Dr

` as the square having the same center as D` and sides of
length 1

2K−1 − r parallel to the sides of D`. For every k and ` = ϕ(k)
then we define the surjective affine map Sr

k : Dr
` → Rr

k of the form

Sr
k(x, z) := (T r

k (x), fk(z)),

where fk is defined as in (48) and T r
k : Dr

` → R`
k is surjective. Further-

more,

DT r
k (x) =

[
β 0
0 β

]
,
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where

β = β(r) =
1

2
·

1
M

− 2
r

1
M

− 1
r

.

Then as in (49) and in (50) there exists a unique family of compact
nonempty sets Λr

1, . . . ,Λ
r
m and Λr satisfying

Λr
i =

⋃

(i,j)∈E
Sr

j (Λ) and Λr :=

M⋃

j=1

Λr
j .

Let us write s
(r)
Ω for the singularity dimension of this system (see

(19)). To proceed we need the following result.

Claim 1. If %(E) > 2 and 0 < r < 1
2K is sufficiently small such that

(55)
1

β
< %(E)

then

s
(r)
Ω = 1 +

log %(E)

− log β
.

Proof of the Claim. For (i0, . . . , in−1) ∈ Ωn we have

DSr
i0,...,in−1

≡



βn 0 0
0 βn 0
0 0 λi0...in−1




Since the dimension of the attractor is larger than 2 it suffices to con-
sider s > 2 for which we have that

φs(DSr
i0,...,in−1

) = max
{
λi0...in−1

βn(s−1), λs−2
i0...in−1

β2n
}
.

Using that on the one hand
∑

i0...in−1

λs−2
i0...in−1

β2n <
∑

i0...in−1

β2n = (2β)2n < 1

and on the other hand
∑

i0...in−1

λi0...in−1
= ‖En‖1 we obtain that

βn(s−1)‖En‖1 ≤
∑

i0...in−1

φs(DSr
i0,...,in−1

) ≤ βn(s−1)‖En‖1 + 1,

which immediately implies that

∑

n

∑

i0...in−1

φs(DSr
i0,...,in−1

)

{
<∞, if s > s

(r)
Ω ;

= ∞, if s < s
(r)
Ω .

Using (6) this completes the proof of the Claim. �
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To complete the proof of the lower estimate in (53) the only thing
we need to do is to verify the self-affine transversality condition 26 for
the GIFS

{
Sr

j

}
. It would then follow from Theorem 6 that for � a.e.

y ∈ I∞ we have

(56) dimH Λr
y = s

(r)
Ω .

Since this holds for all sufficiently small r > 0 and since sΩ = limr→0 s
(r)
Ω

this would complete the proof of the lower estimate.
Now we prove that the self-affine transversality condition holds for

the GIFS
{
Sr

j

}
.

Claim 2. For sufficiently small r > 0 there exists a constant, C > 0,
such that for all distinct i, j ∈ Ω we have

�
{
y ∈ I∞ : |Πr

y(i) − Πr
y(j)| < ρ

}
< C · Zi∧j(ρ).

Where Πr
y : Σ → Λr

y is the natural projection defined by:

Πr
y(i) := lim

n→∞
S

r,yin

in
(0, 0, 0),

where

(57) S
r,yin

in
:=
(
Sr

i0
+ yi0

)
◦ · · · ◦

(
Sr

in−1
+ yi0...in−1

)
.

Proof. We fix 0 < r < 1/2K which is sufficiently small such that
β = β(r) satisfies (55). Henceforth we will not explicitly show the
dependence of variables on r. For simplicity we write

Ai0,...,in−1
:= DSr

i0,...,in−1
≡



βn 0 0
0 βn 0
0 0 λi0...in−1


 .

We can write the projection Πy as

Πy(i) = Π̃(i) + Π̂y(i),

where

Π̃(i) := ti0 +

∞∑

k=1

Ai0...ik−1
tik ,

is the deterministic part and

Π̂y(i) := yi0 +
∞∑

k=1

Ai0...ik−1
yi0...ik

,

is the random part. Furthermore, let p12(i) ∈ � 2 be the component of

Π̃(i) in the (x, y) plane and let p3(i) be the third component.
Given distinct i, j ∈ Ω set ω := i ∧ j. Let k := |ω| and set

γk(i,y) := λikyi0...ik+1
+ λikik+1

yi0...ik+2
+ · · · .
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Finally we denote

qk(i, j,y) := −yj0...jk
+ γk(i,y) − γk(j,y) + p3(σ

ki) − p3(σ
kj),

which is independent of yi0...ik . With this notation we can write

Πy(i) − Πy(j) = Aω ·

[
p12(σ

ki) − p12(σ
kj)

yi0...ik + qk(i, j,y).

]

=

[
βk
(
p12(σ

ki) − p12(σ
kj)
)

λωyi0...ik + λωqk(i, j,y).

]

For all ` and for all (n1 . . . n`) ∈ Ω` we fix yn1...n`
, with the exception

of yi0...ik , which is allowed to vary. For convenience, we denote our
free variable yi0...ik by y ∈ I. Recall that the measure η is absolutely
continuous with bounded density. Thus it follows from (52) that it is
sufficient to check that there exists a constant c (independent of i and
j) such that for every ρ > 0 we have

(58) Leb

{
y ∈ I :

[
βk
(
p12(σ

ki) − p12(σ
kj)
)

λωyi0...ik + λωqk(i, j,y).

]
∈ Boxρ

}
< c · Zω(ρ),

where Boxρ := [−ρ, ρ]3. Since we have assumed that |ω| = k the vectors
p12(σ

k(i)) and p12(σ
k(j)) are in the same domain square, which we

denote by Dr
` . However, these two vectors are in two different range

squares Rr
u, R

r
v, say, contained in Dr

` . In particular, at least one of the
two components of the vector p12(σ

ki) − p12(σ
kj) has absolute value

greater than 2r. Thus, whatever value y = yi0...ik takes we have

if ρ < 2rβk then

[
βk
(
p12(σ

ki) − p12(σ
kj)
)

λωyi0...ik + λωqk(i, j,y).

]
6∈ Boxρ.

Hence, in this case (58) holds. Next we consider the case when ρ > βk.
If we additionally assume ρ > λω then Z(ρ) = 1 and (58) holds with
c = 1. Therefore we may assume that

βk < ρ < λω

holds. Then, by definition, Zω(ρ) = ρ
λω

. On the other hand, since

qk(i, j,y) is independent of y = yi0...ik the Lebesgue measure of those y
for which the absolute value of the third component of the vector

[
βk
(
p12(σ

ki) − p12(σ
kj)
)

λωyi0...ik + λωqk(i, j,y).

]

is smaller than ρ is equal to 2ρ
λω

. Hence, (58) holds with constant c = 2.

Finally, we assume that 2rβk < ρ < βk. By an obvious case analysis
one can see that for every ω
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Zω(βk)

Zω(2rβk)
<

1

(2r)3
=: c1.

Using that the function ρ → Zω(ρ) is monotone increasing we obtain
that for all such ρ

Leb

{
y ∈ I :

[
βk
(
p12(σ

ki) − p12(σ
kj)
)

λωyi0...ik + λωqk(i, j,y).

]
∈ Boxρ

}
< 2c1 · Zω(ρ).

Hence, (58) holds with constant c = 2c1. This completes the proof of
the Claim. �

We can now complete the proof of Theorem 8. Using Theorem 6 we
obtain that for � a.e y ∈ I∞ (56) holds. A simple computation shows
that for every r > 0 and for every y we have dimH Λy ≥ dimH Λr

y. This
completes the proof of the Theorem. �
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