Topics in Algebraic Geometry assignments.

Problem 1 (for 29/1). Take the following curves in $\mathbb{A}_{x, y}^{2}$

$$
C: y^{2}=x^{3}, \quad D: y^{2}=x^{3}+x^{2}, \quad E: y^{2}=x^{3}+x,
$$

Prove that the completed local rings at $p=(0,0)$ are

$$
\hat{\mathcal{O}}_{C, p} \cong k\left[\left[t^{2}, t^{3}\right]\right], \quad \hat{\mathcal{O}}_{D, p} \cong k[[s, t]] / s t, \quad \hat{\mathcal{O}}_{E, p} \cong k[[t]],
$$

and that they are pairwise non-isomorphic when char $k \neq 2$.

Problem 2 (for 5/2).

(1) Show that $\mathbb{P}^{1} \times \mathbb{P}^{1} \not \equiv \mathbb{P}^{2}$. (You may want to use 'weak Bezout'.)
(2) If V is any variety, a rational map $f: V \rightsquigarrow \mathbb{P}^{n}$ is given by $n+1$ rational functions $f_{0}, \ldots, f_{n} \in k(V)$ (not all identically zero on V),

$$
V \ni P \quad \longmapsto \quad\left[f_{0}(P): \ldots: f_{n}(P)\right] \in \mathbb{P}^{n}
$$

and $g f_{0}, \ldots, g f_{n}$ give the same map, for $g \in k(V)^{\times}$. If, for a point $P \in V$, there is such a g that the $g f_{i}$ are all defined and not all zero at P, we say that f is regular (or defined) at P, and $f(P)$ is the corresponding value. Use this to show that \mathbb{P}^{n} is complete, by verifying the valuative criterion.

Problem 3 (for 12/2). Suppose C / k is a complete non-singular curve that admits a map $x: C \rightarrow \mathbb{P}^{1}$ of degree 2 , in other words C is hyperelliptic. For simplicity, assume char $k=0$.
(1) Show that C is birational to a curve $y^{2}=f(x) \subset \mathbb{A}^{2}$, with $f \in k[x]$ square-free. (Hint: Describe $k(C)$.)
(2) Conversely, if $f(x) \in k[x]$ is squarefree, of degree $2 g+1$ or $2 g+2$, for some $g>0$, the two affine charts

$$
y^{2}=f(x) \quad \text { and } \quad Y^{2}=X^{2 g+2} f\left(\frac{1}{X}\right)
$$

glue via $Y=\frac{y}{x^{g+1}}, X=\frac{1}{x}$ to a complete, non-singular curve C. (You may use this.) Show that C has genus g, with regular differentials

$$
\Omega_{C}=\left\langle\frac{d x}{y}, \frac{x d x}{y}, \ldots, \frac{x^{g-1} d x}{y}\right\rangle
$$

Now let C be any complete non-singular curve of genus 2. Use deg $K_{C}=2$ and $\operatorname{dim} \mathcal{L}\left(K_{C}\right)=2$ to prove that C is hyperelliptic.

Problem 4 (for 19/2). Suppose $C / k(\operatorname{char} k \neq 2)$ is a hyperelliptic curve of genus $g \geq 1$, given by an equation

$$
y^{2}=x^{2 g+1}+a_{2 g} x^{2 g}+\ldots+a_{0}
$$

Write ∞ for the unique point at infinity of C.
(1) Use Cantor's description of divisors to describe the 2-torsion elements (elements of order 2) in $\operatorname{Pic}^{0}(C)$. Show that they form a group $\cong \mathbb{F}_{2}^{2 g}$, and describe how to add them explicitly.
(2) Suppose $P \in C \cap \mathbb{A}^{2}$ is a 'torsion point of order $2 g+1$ ', in the sense that the divisor $D=(P)-(\infty)$ is $(2 g+1)$-torsion,

$$
(2 g+1) D \sim 0
$$

E.g. by considering the function $f \in \mathcal{L}((2 g+1)(\infty))$, that defines the latter equivalence, its image under the hyperelliptic involution, and the natural basis of $\mathcal{L}((2 g+1)(\infty))$, show that C has an equation of the form

$$
y^{2}=x^{2 g+1}+\left(b_{g} x^{g}+\ldots+b_{1} x+b_{0}\right)^{2} .
$$

(This illustrates the fact that high-order torsion points on curves are rare.)

Problem 5 (for 26/2).
(1) Prove that Aut $\mathbb{P}^{1} \cong \mathrm{PGL}_{2}(k)$.
(2) Find $\operatorname{Aut} \mathbb{A}^{1}$ and $\operatorname{Aut}\left(\mathbb{A}^{1} \backslash\{0\}\right)$.
(3) Find Aut \mathbb{G}_{m} (isomorphisms $\mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ as an algebraic group).

Problem 6 (for 3/3).

(1) Prove that over $K=\mathbb{R}$, the unit circle group $S^{1}: x^{2}+y^{2}=1$ is the only non-trivial form of \mathbb{G}_{m} up to isomorphism (as algebraic groups).
(2) Similarly, over $K=\mathbb{F}_{p}$, prove that \mathbb{G}_{m} has a unique non-trivial form. Write it down an an algebraic group (equations + structure morphisms), and determine its number of points over K.

Problem 7 (for $\mathbf{1 0 / 3}$). In any category \mathcal{C}, we can define a 'group object' as one for which the functor

$$
\operatorname{Hom}(-, X): \mathcal{C} \longrightarrow \text { Sets }
$$

factors through the category of groups. Prove that group objects in the category of varieties are (connected) algebraic groups, as we defined them.

