Topics in Algebraic Geometry assignments.

Problem 1 (for 29/1). Take the following curves in $\mathbb{A}^2_{x,y}$

 $C:y^2\!=\!x^3,\qquad D:y^2\!=\!x^3\!+\!x^2,\qquad E:y^2=x^3+x,$

Prove that the completed local rings at p = (0, 0) are

$$\hat{\mathcal{O}}_{C,p} \cong k[[t^2, t^3]], \qquad \hat{\mathcal{O}}_{D,p} \cong k[[s, t]]/st, \qquad \hat{\mathcal{O}}_{E,p} \cong k[[t]],$$

and that they are pairwise non-isomorphic when char $k \neq 2$.

Problem 2 (for 5/2).

- (1) Show that $\mathbb{P}^1 \times \mathbb{P}^1 \ncong \mathbb{P}^2$. (You may want to use 'weak Bezout'.)
- (2) If V is any variety, a rational map $f: V \rightsquigarrow \mathbb{P}^n$ is given by n+1 rational functions $f_0, ..., f_n \in k(V)$ (not all identically zero on V),

$$V \ni P \longmapsto [f_0(P) : \dots : f_n(P)] \in \mathbb{P}^n,$$

and $gf_0, ..., gf_n$ give the same map, for $g \in k(V)^{\times}$. If, for a point $P \in V$, there is such a g that the gf_i are all defined and not all zero at P, we say that f is regular (or defined) at P, and f(P) is the corresponding value. Use this to show that \mathbb{P}^n is complete, by verifying the valuative criterion.

Problem 3 (for 12/2). Suppose C/k is a complete non-singular curve that admits a map $x : C \to \mathbb{P}^1$ of degree 2, in other words C is hyperelliptic. For simplicity, assume char k = 0.

- (1) Show that C is birational to a curve $y^2 = f(x) \subset \mathbb{A}^2$, with $f \in k[x]$ square-free. (Hint: Describe k(C).)
- (2) Conversely, if $f(x) \in k[x]$ is squarefree, of degree 2g + 1 or 2g + 2, for some g > 0, the two affine charts

$$y^2 = f(x)$$
 and $Y^2 = X^{2g+2}f(\frac{1}{X})$

glue via $Y = \frac{y}{x^{g+1}}, X = \frac{1}{x}$ to a complete, non-singular curve C. (You may use this.) Show that C has genus g, with regular differentials

$$\Omega_C = \left\langle \frac{dx}{y}, \frac{xdx}{y}, \dots, \frac{x^{g-1}dx}{y} \right\rangle$$

Now let C be any complete non-singular curve of genus 2. Use deg $K_C = 2$ and dim $\mathcal{L}(K_C) = 2$ to prove that C is hyperelliptic.

Problem 4 (for 19/2). Suppose C/k (char $k \neq 2$) is a hyperelliptic curve of genus $g \geq 1$, given by an equation

$$y^2 = x^{2g+1} + a_{2g}x^{2g} + \ldots + a_0.$$

Write ∞ for the unique point at infinity of C.

(1) Use Cantor's description of divisors to describe the 2-torsion elements (elements of order 2) in $\operatorname{Pic}^{0}(C)$. Show that they form a group $\cong \mathbb{F}_{2}^{2g}$, and describe how to add them explicitly.

(2) Suppose $P \in C \cap \mathbb{A}^2$ is a 'torsion point of order 2g + 1', in the sense that the divisor $D = (P) - (\infty)$ is (2g + 1)-torsion,

$$(2g+1)D \sim 0.$$

E.g. by considering the function $f \in \mathcal{L}((2g+1)(\infty))$, that defines the latter equivalence, its image under the hyperelliptic involution, and the natural basis of $\mathcal{L}((2g+1)(\infty))$, show that C has an equation of the form

$$y^2 = x^{2g+1} + (b_q x^g + \ldots + b_1 x + b_0)^2.$$

(This illustrates the fact that high-order torsion points on curves are rare.)

Problem 5 (for 26/2).

- (1) Prove that $\operatorname{Aut} \mathbb{P}^1 \cong \operatorname{PGL}_2(k)$.
- (2) Find Aut \mathbb{A}^1 and Aut $(\mathbb{A}^1 \setminus \{0\})$.
- (3) Find Aut \mathbb{G}_m (isomorphisms $\mathbb{G}_m \to \mathbb{G}_m$ as an algebraic group).

Problem 6 (for 3/3).

- (1) Prove that over $K = \mathbb{R}$, the unit circle group $S^1 : x^2 + y^2 = 1$ is the only non-trivial form of \mathbb{G}_m up to isomorphism (as algebraic groups).
- (2) Similarly, over $K = \mathbb{F}_p$, prove that \mathbb{G}_m has a unique non-trivial form. Write it down an an algebraic group (equations + structure morphisms), and determine its number of points over K.

Problem 7 (for 10/3). In any category C, we can define a 'group object' as one for which the functor

$\operatorname{Hom}(-,X): \ \mathcal{C} \longrightarrow \mathbf{Sets}$

factors through the category of groups. Prove that group objects in the category of varieties are (connected) algebraic groups, as we defined them.