SOME HOMEWORK PROBLEMS

Andrew Granville

1. Suppose that d is a non-square, positive integer. Let u, v be the smallest pair of positive integers for which $u^{2}-d v^{2}=1$. Prove that if $x^{2}-d y^{2}=N$ then there exists a solution to

$$
x_{0}^{2}-d y_{0}^{2}=N \quad \text { with } \quad\left|x_{0}\right| \leq \sqrt{|N| x_{0}}
$$

and an integer $k \geq 0$ for which

$$
x+\sqrt{d} y=\left(x_{0}+\sqrt{d} y_{0}\right)(u+\sqrt{d} v)^{k}
$$

2. Using the identity

$$
u(u+2 v)^{3}+v(-v-2 u)^{3}=(u+v)(u-v)^{3}
$$

show that there exist non-zero and coprime integers a, b, c for which there are infinitely many integer solutions x, y, z to

$$
a x^{3}+b y^{3}+c z^{3}=0
$$

Explain "geometrically" why this works.
3. We call m a powerful number if p^{2} divides m, whenever p does, for every prime p.
a) Prove that there are infinitely many pairs of consecutive powerful numbers $m, m+1$.

Use the $a b c$-conjecture to prove that
b) There are only finitely many triples of consecutive powerful numbers $m-1, m, m+1$.
c) Show that if $p_{1}=1, p_{2}=4, p_{3}=8, p_{4}=9, \ldots$ is the sequence of powerful numbers then $p_{n+2}-p_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
d) There are only finitely many powerful Fibonacci numbers. (Hint: Study solutions to $x^{2}-5 y^{2}= \pm 4$).
4. Use the $a b c$-conjecture to prove that there are only finitely many pairs of distinct positive integers x, y for which $x-j$ and $y-j$ have exactly the same prime factors for $j=-1,0$ and 1. (Hint: Obtain a lower bound for the product of the distinct prime factors of $x^{3}-x$.)
5. Use the $a b c$-Roth conjecture to show that if f and g are two quadratic polynomials, such that $f g$ has four distinct roots, and $r \in \mathbb{Q}$ such that $f(r)$ is a square and $g(r)$ is a cube, then r can be bounded as a function of coefficients of f and g.
6. Calculate a Belyi map from a given elliptic curve $y^{2}=x^{3}+a x+b$, with a, b integers, to \mathbb{P}^{1}. (Hint: Be careful with the points at ∞.)

