GEOMETRY OF NUMBERS

We make the Delone-Fadeev correspondence explicit. We will construct a cubic ring R from the \mathbb{Z}-basis $1, W, T$.
(1) Show that one can pick a new \mathbb{Z}-basis $1, \omega, \theta$, satisfying

$$
\omega \theta=n, \quad n \in \mathbb{Z} .
$$

We call $\{1, \omega, \theta\}$ the normalized basis. This process of choosing ω and θ is equivalent to picking a \mathbb{Z}-basis of $R / \mathbb{Z} \cong \mathbb{Z}^{2}$.
(2) This normalized basis further satisfies

$$
\begin{aligned}
\omega^{2} & =m-b \omega+a \theta, \quad m, b, a \in \mathbb{Z} \\
\theta^{2} & =\ell-d \omega+c \theta, \quad \ell, d, c \in \mathbb{Z}
\end{aligned}
$$

What are the additional conditions that need to be imposed for R to be a cubic ring? (These conditions should be imposed on n, m, ℓ to see the Delone-Fadeev correspondence.)
(3) Now, we have the set bijection

$$
\{\text { cubic rings with a choice of basis of } R / \mathbb{Z}\} \stackrel{1: 1}{\longleftrightarrow}\left\{(a, b, c, d) \in \mathbb{Z}^{4}\right\}
$$

Show that this is a discriminant-preserving bijection.
(4) Finally, convince yourself that the statement of the Delone-Fadeev correspondence given in the lecture is correct.

