# CIRCLE METHOD: PROBLEMS 

TREVOR D. WOOLEY

1. Let $X$ and $Y$ be large real numbers, and for the sake of concreteness suppose that $X^{1 / 2} \leqslant Y \leqslant X^{2}$. Also, let $a \in \mathbb{Z}, q \in \mathbb{N}$ and $\beta \in \mathbb{R}$. Write

$$
g(\alpha)=\sum_{1 \leqslant x \leqslant X} \sum_{1 \leqslant y \leqslant Y} e\left(\alpha x y^{2}\right) .
$$

(a) By applying the relation

$$
g(\beta+a / q)=\sum_{r=1}^{q} \sum_{\substack{1 \leqslant x \leqslant X \\ x \equiv r(\bmod q)}} \sum_{s=1}^{q} \sum_{\substack{1 \leqslant y \leqslant Y \\ y \equiv s(\bmod q)}} e\left((\beta+a / q) x y^{2}\right),
$$

deduce that

$$
g(\beta+a / q)=\sum_{r=1}^{q} \sum_{s=1}^{q} e\left(a r s^{2} / q\right) V(\beta ; r, s),
$$

where

$$
V(\beta ; r, s)=\sum_{(1-r) / q \leqslant u \leqslant(X-r) / q(1-s) / q \leqslant v \leqslant(Y-s) / q} e\left(\beta(q u+r)(q v+s)^{2}\right) .
$$

(b) Hence, by applying the mean value theorem, deduce that

$$
g(\beta+a / q)=q^{-2} S(q, a) w(\beta)+O\left(q(X+Y)\left(1+|\beta| X Y^{2}\right)\right),
$$

where

$$
S(q, a)=\sum_{r=1}^{q} \sum_{s=1}^{q} e\left(a r s^{2} / q\right) \quad \text { and } \quad w(\beta)=\int_{1}^{X} \int_{1}^{Y} e\left(\beta \theta \phi^{2}\right) \mathrm{d} \phi \mathrm{~d} \theta .
$$

(c) Let $\delta=1 / 1000$ and put $Q=X^{\delta}$. When $0 \leqslant a \leqslant q \leqslant Q$ and $(a, q)=1$, put $\mathfrak{M}(q, a)=\left\{\alpha \in[0,1):|\alpha-a / q| \leqslant Q\left(X Y^{2}\right)^{-1}\right\}$. Define $\mathfrak{M}$ to be the union of these intervals, and put $\mathfrak{m}=[0,1) \backslash \mathfrak{M}$. Show that for each positive integer $t$, and for any $c_{1}, \ldots, c_{t} \in \mathbb{Z}$, one has

$$
\int_{\mathfrak{M}} g\left(c_{1} \alpha\right) \ldots g\left(c_{t} \alpha\right) \mathrm{d} \alpha=\mathfrak{S}(Q) \mathfrak{J}(Q)+o\left(X^{t-1} Y^{t-2}\right)
$$

where

$$
\mathfrak{S}(Q)=\sum_{1 \leqslant q \leqslant Q} \sum_{\substack{a=1 \\(a, q)=1}}^{q} q^{-2 t} S\left(q, c_{1} a\right) \ldots S\left(q, c_{t} a\right)
$$

and

$$
\mathfrak{J}(Q)=\int_{-Q X^{-1} Y^{-2}}^{Q X^{-1} Y^{-2}} w\left(c_{1} \beta\right) \ldots w\left(c_{t} \beta\right) \mathrm{d} \beta
$$

2. Recall that

$$
g(\alpha)=\sum_{1 \leqslant x \leqslant X} \sum_{1 \leqslant y \leqslant Y} e\left(\alpha x y^{2}\right) .
$$

(a) By imitating the argument underlying the proof of Weyl's inequality, but making use of Cauchy's inequality in the shape

$$
|g(\alpha)|^{2} \leqslant X \sum_{1 \leqslant x \leqslant X}\left|\sum_{1 \leqslant y \leqslant Y} e\left(\alpha x y^{2}\right)\right|^{2},
$$

show that whenever $\alpha \in \mathbb{R}$, and $r \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfy $(r, q)=1$ and $|\alpha-r / q| \leqslant q^{-2}$, then one has

$$
|g(\alpha)| \ll(X Y)^{1+\varepsilon}\left(q^{-1}+X^{-1}+Y^{-1}+q\left(X Y^{2}\right)^{-1}\right)^{1 / 2} .
$$

(b) (i) Apply divisor function estimates to show that when $n \neq 0$, the number of solutions of the Diophantine equation $x y^{2}=n$ is $O\left(n^{\varepsilon}\right)$. Hence prove that

$$
\int_{0}^{1}|g(\alpha)|^{2} \mathrm{~d} \alpha \ll(X Y)^{1+\varepsilon} .
$$

(ii) By imitating the argument underlying the proof of Hua's lemma, but making use of Cauchy's inequality again in the above shape, show that

$$
\int_{0}^{1}|g(\alpha)|^{4} \mathrm{~d} \alpha \ll\left(X^{3} Y^{2}\right)^{1+\varepsilon} .
$$

(c) Define $\mathfrak{m}$ as in question 1 , and suppose that $t \geqslant 5$. Establish that for any non-zero integers $c_{1}, \ldots, c_{t}$, one has

$$
\int_{\mathfrak{m}} g\left(c_{1} \alpha\right) \ldots g\left(c_{t} \alpha\right) \mathrm{d} \alpha=o\left(X^{t-1} Y^{t-2}\right)
$$

Conclude that

$$
\int_{0}^{1} g\left(c_{1} \alpha\right) \ldots g\left(c_{t} \alpha\right) \mathrm{d} \alpha=\mathfrak{S}(Q) \mathfrak{J}(Q)+o\left(X^{t-1} Y^{t-1}\right)
$$

3. Let

$$
f(\alpha)=\sum_{1 \leqslant x \leqslant P} e\left(\alpha x^{k}\right) .
$$

Recall Weyl's inequality. Thus, when $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfy $(a, q)=1$ and $|\beta-a / q| \leqslant q^{-2}$, one has

$$
f(\beta) \ll P^{1+\varepsilon}\left(q^{-1}+P^{-1}+q P^{-k}\right)^{2^{1-k}} .
$$

Carry out the following procedure to establish that, whenever $\alpha \in \mathbb{R}, b \in \mathbb{Z}$ and $r \in \mathbb{N}$ satisfy $(b, r)=1$, then one has

$$
f(\alpha) \ll P^{1+\varepsilon}\left(\frac{r+P^{k}|r \alpha-b|}{P^{k}}+P^{-1}+\frac{1}{r+P^{k}|r \alpha-b|}\right)^{2^{1-k}} .
$$

(i) Apply Dirichlet's theorem on Diophantine approximation to show that there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ with $1 \leqslant q \leqslant 2 r$ and $|q \alpha-a| \leqslant(2 r)^{-1}$. By considering $|a / q-b / r|$, show that either $a / q=b / r$, or else $q^{-1} \leqslant 2|r \alpha-b|$.
(ii) When $a / q \neq b / r$, obtain the desired conclusion from Weyl's inequality.

Assume in the remaining parts of this problem that $a / q=b / r$.
(iii) Show that when $\alpha=b / r$, then the desired conclusion follows from Weyl's inequality. Assume henceforth that $\alpha \neq b / r$.
(iv) Use Dirichlet's theorem to find $c \in \mathbb{Z}$ and $s \in \mathbb{N}$ with

$$
(c, s)=1, \quad s \leqslant 2|r \alpha-b|^{-1} \quad \text { and } \quad|s \alpha-c| \leqslant \frac{1}{2}|r \alpha-b| .
$$

Show that $c / s \neq b / r$ by comparing $|\alpha-b / r|$ with $|\alpha-c / s|$.
(v) By considering $|b / r-c / s|$, show that $(2 s)^{-1} \leqslant|r \alpha-b|$.
(vi) Use Weyl's inequality with the rational approximation $c / s$ to $\alpha$, and establish the claimed result.
$\mathbf{3}^{\dagger}$. (Supplement) (a) Define

$$
g(\alpha)=\sum_{1 \leqslant x \leqslant X} \sum_{1 \leqslant y \leqslant Y} e\left(\alpha x y^{2}\right) .
$$

Show that whenever $\alpha \in \mathbb{R}, a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfy $(a, q)=1$, then one has

$$
|g(\alpha)| \ll(X Y)^{1+\varepsilon}\left(\frac{q+X Y^{2}|q \alpha-a|}{X Y^{2}}+X^{-1}+Y^{-1}+\frac{1}{q+X Y^{2}|q \alpha-a|}\right)^{1 / 2}
$$

(b) Interpret $\lim _{Q \rightarrow \infty} \mathfrak{S}(Q)$ and $\lim _{Q \rightarrow \infty} \mathfrak{J}(Q)$ in terms of real and $p$-adic densities of solutions associated with the equation

$$
c_{1} x_{1} y_{1}^{2}+\ldots+c_{t} x_{t} y_{t}^{2}=0
$$

first proving convergence of these limits. Hence obtain an asymptotic formula for the number of solutions of this equation with $1 \leqslant x_{i} \leqslant X$ and $1 \leqslant y_{i} \leqslant Y$ $(1 \leqslant i \leqslant t)$.

