Galois Representations

Tim Dokchitser
Course notes by Emma Bailey

Oct 13 - Dec 1, 2016

1 Riemann ζ-function

Definition. Recall that we define Riemann's zeta function via

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

Riemann proved that ζ can be extended meromorphically to \mathbb{C}.
Theorem 1.1. We have that $\zeta(s)$ has meromorphic continuation to \mathbb{C} with a simple pole at $s=1$ of residue 1. The completed function has the form

$$
\hat{\zeta}(s)=\frac{1}{\pi^{s / 2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

and it satisfies the functional equation

$$
\hat{\zeta}(s)=\hat{\zeta}(1-s)
$$

Proof. This is proved using the Poisson summation formula and is a standard proof.
Definition (L-function). We define an L-function as a Dirichlet series of the form

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

where $a_{n} \in \mathbb{C}$, and $a_{n}=O\left(n^{r}\right)$ for some r. Then the series 'makes sense' since it will converge on the half plane for $\operatorname{Re}(s)>r+1$. It has an Euler product and has degree d if can be written as a product

$$
L(s)=\prod_{p} \frac{1}{F_{p}\left(p^{-s}\right)}
$$

with $F_{p}(t) \in \mathbb{C}[t]$ polynomials of degree $\leq d$, and $=d$ for almost all primes. The terms are called local factors and $F_{p}(T)$ the local polynomials.

Example 1.1. The Riemann zeta function has Euler product and degree 1.

All L-fns we will see will satisfy this, and are conjectured to
(a) have meromorphic continuation to \mathbb{C} with finitely many poles (usually none)
(b) Function equation: \exists weight k, a sign w, conductor N and a Γ-factor

$$
\gamma(s)=\Gamma\left(\frac{s+\lambda_{1}}{2}\right) \cdots \Gamma\left(\frac{s+\lambda_{d}}{2}\right)
$$

such that

$$
\hat{L}(s)=\left(\frac{N}{\pi^{d}}\right)^{s / 2} \gamma(s) L(s)
$$

satisfies

$$
\hat{L}(s)=w \cdot \hat{\bar{L}}(k-s)
$$

(c) Riemann hypothesis: all non-trivial zeros lie on the line $\operatorname{Re}(s)=k / 2$.

Remarks.

- If $L(s)$ satisfies (a) and (b) then as in the proof of theorem 1.1 (here this theta function is not the Jacobi one)

$$
\hat{L}(s)=\int_{1}^{\infty}\left(x^{s / 2}+w \cdot x^{(k-s) / 2}\right) \Theta(\sqrt{N} \cdot x) \frac{d x}{x}
$$

where $\Theta(x)=\sum_{n=1}^{\infty} a_{n} \phi_{n, \gamma}(x)$ where the ϕ function depends only on $\gamma(s)$ and decays exponentially with n. In fact, (b) is equivalent to

$$
\Theta\left(\frac{1}{N x}\right)=w \cdot \bar{\Theta}(x)
$$

This gives a way to compute L-functions numerically (with $\sim \sqrt{N}$ terms). This gives an idea of measure of arithmetic complexity of an L-function by looking at how bit the square root of the conductor is (larger means harder).

- There are functions called modular forms f (technically, newforms of weight k, level N and w-eigenform for the Atkin-Lehner involution)

$$
f:\{z \in \mathbb{C}: \operatorname{Im}(z)>0\} \rightarrow \mathbb{C}
$$

such that $\Theta(x)=f(i x)$ satisfies (\star) by definition. Thus, their L-functions satisfy (a) and (b), again pretty much by definition.

- 2 categories of L-fns $L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$:
(i) With a direct formula for the a_{n}. Generally, we know how to prove (a) and (b) for these.
(ii) Only defined by an Euler product, for example $L(\rho, s)$ Artin, $L(E, s)$ elliptic curves, other varieties... We never know how to prove (a) and (b) for these except by reducing to (i).

Function	a_{n}
$\zeta(s)$	1
$L(\chi, s)$	$\chi(n)$
$\zeta_{K}(s)$	\# ideals of norm n in \mathcal{O}_{K}

2 Dedekind ζ-functions

Definition. Let K be a number field, with $[K: \mathbb{Q}]=d$ so $K \cong \mathbb{Q}^{d}$ as $a \mathbb{Q}$-vector space. Then let $\mathcal{O}=\mathcal{O}_{K}$ be the ring of integers, so $\mathcal{O} \cong \mathbb{Z}^{d}$ as abelian group. Take $I \subset \mathcal{O}_{K}$ a non-zero ideal. Define the norm

$$
N I=\left(\mathcal{O}_{K}: I\right) .
$$

It is finite, and satisfies nice properties like being multiplicative:

$$
N(I J)=N I \cdot N J,
$$

and I can be written as a unique product of prime ideals,

$$
I=\prod_{i=1}^{r} \mathfrak{p}_{i}^{n_{i}}
$$

where $\mathcal{O} / \mathfrak{p}_{i}$ is a finite integral domain, which implies it is a field $\mathbb{F}_{p^{r}}$ and hence $\mathfrak{p}_{i} \subset\left(p_{i}\right)$ for some primes $p_{i} \in \mathbb{Z}$.

In particular, if we take an ideal $I=(p)$ where $p \in \mathbb{Z}$ and factor it

$$
(p)=\prod_{i=1}^{r} \mathfrak{p}_{i}^{e_{i}},
$$

we call the ideals \mathfrak{p}_{i} primes above p, and the e_{i} 's are ramification indices (theese are usually equal to 1 for all but finitely many p, namely $p \nmid \Delta_{k}$ called unramified primes p). Finally, we say that

$$
f_{i}=\left[\mathcal{O} / \mathfrak{p}_{i}: \mathbb{F}_{p}\right]
$$

are the residue degrees. Thus $\mathcal{O} / \mathfrak{p}_{i} \cong \mathbb{F}_{p}$.
Then $N(p)=(\mathcal{O}: p \mathcal{O})=p^{d}$ since $\mathcal{O} \cong \mathbb{Z}^{d}$ and $p \mathcal{O} \cong p \cdot \mathbb{Z}^{d}$. This implies that

$$
d=\sum_{i=1}^{r} e_{i} f_{i}
$$

in general, and $d=\sum_{i=1}^{r} f_{i}$ for unramified primes.
Note that if the extension K / \mathbb{Q} is Galois then $e_{1}=\cdots=e_{d}, f_{1}=\cdots=f_{d}$ since $\operatorname{Gal}(K / \mathbb{Q})$ permutes \mathfrak{p}_{i} transitively. Hence in this case $d=e f r$.

In practice,

Theorem 2.1 (Kummer-Dedekind). Let $K=\frac{\mathbb{Q}[x]}{(g(X))}$ where $g(X) \in \mathbb{Z}[X]$ monic. Then $\Delta_{K} \mid \Delta_{g}$, and for all primes $p \nmid \Delta_{g}$,

$$
p=\prod_{i=1}^{r} \mathfrak{p}_{i}
$$

is unramified, and we have

$$
g(X)=g_{1} \ldots g_{r} \quad \bmod p
$$

with $\operatorname{deg} g_{i}=f_{i}$.
Definition (Dedekind ζ-function of K). Let

$$
\zeta_{K}(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

where $a_{n}=\left\{\#\right.$ of ideas of norm n in $\left.\mathcal{O}_{K}\right\}$. Alternatively, we can write

$$
\begin{aligned}
\zeta_{K}(s) & =\sum_{\substack{I \subset \mathcal{O}_{K} \text { ideal } \\
I \neq 0}} \frac{1}{N I^{s}} \\
& =\prod_{\mathfrak{p} \text { prime ideal } \neq 0} \frac{1}{1-N \mathfrak{p}^{-s}} \\
& =\prod_{p \text { prime of } \mathbb{Z}} \frac{1}{F_{p}\left(p^{-s}\right)} \quad \text { This follows from } K D
\end{aligned}
$$

Here $F_{p} \in \mathbb{Z}[x]$ is of degree d for $p \nmid \Delta_{K}$ and of degree $<d$ for $p \mid \Delta_{K}$. These are degree d L-functions.

Example 2.1. Take $K=\mathbb{Q}(i), \mathcal{O}=\mathbb{Z}[i]$ Gaussian integers, and $\mathcal{O}^{\times}=\{ \pm 1, \pm i\}$ units.
As for Riemann ζ,

$$
\begin{aligned}
\zeta_{K}(s) & =\sum_{\substack{I \subset \mathbb{Z}[i] \\
I \neq 0}} \frac{1}{N I^{s}} \\
& =\sum_{\substack{0 \neq \alpha \in \mathbb{Z}[i] \\
\bmod \mathbb{Z}[i]^{\times}}} \frac{1}{(\alpha \bar{\alpha})^{s}} \quad \text { Since } \mathbb{Z}[i] \text { is a PID } \\
& =\frac{1}{4} \sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}} \frac{1}{\left(m^{2}+n^{2}\right)^{s}} .
\end{aligned}
$$

The same computation as before (for RZF) gives that

$$
\frac{2^{s}}{\pi^{s}} \Gamma(s) \zeta_{K}(s)=\text { Mellin transform of } \frac{\Theta(x)-1}{4}
$$

and

$$
\begin{aligned}
\Theta(x) & =\sum_{m, n \in \mathbb{Z}} e^{-\pi\left(m^{2}+n^{2}\right) x} \\
& =\sum_{m} e^{-\pi m^{2} x} \sum_{n} e^{-\pi n^{2} x} \\
& =\frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \Theta\left(\frac{1}{x}\right) .
\end{aligned}
$$

This trick as before gives a functional equation for $\zeta_{\mathbb{Q}(i)}(s)$. For general number fields, the extra statement we need is a generalised Poisson summation formula:

Let $V=\mathbb{R}^{d}, f: V \rightarrow \mathbb{C}$ decaying fast. Take V^{*} the dual vector space, and define the Fourier transform $\mathcal{F} f: V^{*} \rightarrow \mathbb{C}$ by

$$
(\mathcal{F} f)(\underline{m})=\int_{V} e^{-2 \pi i\langle m, n\rangle} f(\underline{n}) d \underline{n}
$$

Take $\Gamma \subset V$ a rank d lattice. Then

$$
\sum_{\underline{n} \in \Gamma} f(\underline{n})=\frac{1}{\operatorname{vol}(V / \Gamma)} \sum_{\underline{m} \in \Gamma^{*}}(\mathcal{F} \hat{f})(\underline{m}) .
$$

Use this to compare $\sum_{I \neq 0} \frac{1}{N I^{s}}$ to $\sum_{\substack{\alpha \in \mathcal{O} \\ \alpha \neq 0}} \frac{1}{N \alpha^{s}}$. This will involve

- the class number, $h=\#\{$ ideals/principal ideals $\}$ and
- units, roots of unity,

If we have K a number field of degree $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}$, then

- $r_{1}=\#$ real embeddings $K \hookrightarrow \mathbb{R}$
- $r_{2}=$ \#pairs of non-real embeddings $K \hookrightarrow \mathbb{C}$.

Then $\mathcal{O} \subset \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}} \cong \mathbb{R}^{d}$ is a lattice.
After these considerations, we find that Poisson summation gives that
Theorem 2.2. We have that $\zeta_{K}(s)$ is meromorphic on \mathbb{C}, it has a simple pole at $s=1$, a residue at $s=1$ of value

$$
\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{\# \text { roots of unity in } K \cdot \sqrt{\left|\Delta_{K}\right|}} .
$$

The above expression for the value of the residue is called the class number formula, where h is again the class number, and R is the regulator (of units). Further, $\zeta_{K}(s)$ satisfies the functional equation,

$$
\hat{\zeta}_{K}(1-s)=\hat{\zeta}_{K}(s)
$$

Exercise 2.1 (Answer on MO 218759). If $[K: \mathbb{Q}]=d$, and K is Galois, then there exists infinitely many primes that 'split completely in K ' (i.e. they have the maximal possible number of primes above them, and $e=f=1$), and have density $\frac{1}{d}$.

3 Dirichlet L-functions

Within this section, we will show that we can relate Dirichlet L-functions and the Dedekind zeta function over a cyclotomic field. First we begin with some standard definitions.

Definition. Let $n \geq 2$. Then a $(\bmod n)$ Dirichlet character is a group homomorphism

$$
\chi:(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}
$$

and they form a group $\left(\widehat{\mathbb{Z} / n \mathbb{Z})^{\times}}\right.$. The two main invariants of a character are:

- Order of χ : the smallest such d such that $\chi^{d}=1$, so χ maps to the $d^{\text {th }}$ roots of unity. Those characters where $d=2$ are called quadratic.
- Modulus of χ : the smallest $m \mid n$ such that $\exists \chi_{0}:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$such that $\chi(a)=$ $\chi_{0}(a)$ for all a such that $(a, n)=1$. We extend $\chi:(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$to

$$
\chi: \mathbb{Z} \rightarrow \mathbb{C}
$$

by

$$
\chi(a)= \begin{cases}\chi_{0}(a) & (a, m)=1 \\ 0 & \text { o.w. }\end{cases}
$$

Then χ is almost a homomorphism (it is except on 'bad' primes) - but it is totally multiplicative.

Example 3.1. For $n=1, \chi(a)=1$ for all $a \in \mathbb{Z}$, which we call the trivial character. It has order 1 and modulus 1 . We write $\mathbb{1}$ for the trivial character.

Example 3.2. For $n=3$, then $\chi:(\mathbb{Z} / 3 \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$and $(\mathbb{Z} / 3 \mathbb{Z})^{\times} \cong C_{2}$ so there are 2 characters. The first is the trivial character $\mathbb{1}$, and the second is

$$
\chi_{3}(n)=\left\{\begin{array}{lll}
1 & a \equiv 1 & \bmod 3 \\
-1 & a \equiv 2 & \bmod 3 \\
0 & a \equiv 0 & \bmod 3
\end{array}\right.
$$

Then χ_{3} has modulus 3 and order 2.
For $n=4$, there are also 2 characters, with the non-trivial being

$$
\chi_{4}(a)=\left\{\begin{array}{lll}
1 & a \equiv 1 & \bmod 4 \\
-1 & a \equiv 3 & \bmod 4 \\
0 & \text { a even } .
\end{array}\right.
$$

Then χ_{4} has order 2 and modulus 4.
Example 3.3. When $n=5$ then the domain is isomorphic to C_{4} so

$$
\chi_{5}: C_{4} \rightarrow \mathbb{C}^{\times}
$$

so we could send $2 \mapsto i$ then $\chi_{5}^{2}, \overline{\chi_{5}}=\chi_{5}^{3}$ and $\chi_{5}^{4}=\mathbb{1}$ are the possible characters.

	1	5	7	11
$\mathbb{1}$	1	1	1	1
χ_{3}	1	-1	1	-1
χ_{4}	1	1	-1	-1
$\chi_{3} \chi_{4}$	1	-1	-1	1

Example 3.4. $n=12$ then there are 4 characters (isom to $C_{2} \times C_{2}$), and
Note that χ_{3} looks like $\left(\frac{-3}{\cdot}\right)$ and has modulus 3, order $2 ; \chi_{4}$ is $\left(\frac{-1}{\cdot}\right)$ and has modulus 4 , order $2 ; \chi_{3} \chi_{4}$ is ($\frac{3}{.}$) and has modulus 12 order 2 .

Recall that in the particular case $q=2$, we have

$$
\begin{aligned}
\left(\frac{n}{2}\right) & =\left\{\begin{array}{lll}
0 & n \not \equiv 1 & \bmod 4 \\
1 & n \equiv 1 & \bmod 8 \\
-1 & n \equiv 5 & \bmod 8
\end{array}\right. \\
& = \begin{cases}0 & 2 \text { ramifies in } \mathbb{Q}(\sqrt{n}) \\
1 & 2 \text { splits in } \mathbb{Q}(\sqrt{n}) \\
-1 & 2 \text { inert in } \mathbb{Q}(\sqrt{n})\end{cases}
\end{aligned}
$$

Definition. We define the Dirichlet L-function modulus m to be, for a Dirichlet character χ : $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$,

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\chi(p) p^{-s}}
$$

These are local polynomials: 1 if $p \mid m$ and $1-\chi(p) T$ if $p \nmid m$.
Further $|\chi(n)| \leq 1$ thus they are absolutely convergent on $\operatorname{Re}(s)>1$. In fact, for $\chi \neq \mathbb{1}$, using some yoga called Abel summation and the fact that

$$
\left|\sum_{n=A}^{B} \chi(n)\right| \leq m
$$

for all A, B, the L-series converges (not absolutely) on $\operatorname{Re}(s)>0$.
Theorem 3.1. $L(\chi, s)$ is entire for χ not the trivial character. The completed form is

$$
\hat{L}(\chi, s)=\left(\frac{m}{\pi}\right)^{s / 2} \Gamma\left(\frac{s+\lambda}{2}\right) L(\chi, s)
$$

and it satisfies the functional equation

$$
\hat{L}(\chi, 1-s)=w \cdot L(\bar{\chi}, s)
$$

where bar is complex conj, with

$$
\lambda= \begin{cases}0 & \chi(-1)=1, \chi \text { even } \\ 1 & \chi(-1)=-1, \chi \text { odd }\end{cases}
$$

Note that $w=1$ for Riemann zeta but in this case is defined as

$$
w=\frac{1}{\sqrt{m}} \sum_{a=0}^{m-1} \chi(a) \zeta_{m}^{a}
$$

the $\zeta_{m}=e^{\frac{2 \pi i}{m}}$ are primitive $m^{\text {th }}$ roots of unity. Note that this is the Gauss sum and $w \in \mathbb{C}^{\times}$ with $|w|=1$.

Proof. The outline of the proof uses Poisson summation with

$$
\begin{aligned}
e^{-\pi(m x+a)^{2} t} & \text { even } \chi \\
e^{-\pi x^{2} t} & \text { odd } \chi
\end{aligned}
$$

We now want to show that the Dedekind zeta satisfies

$$
\zeta_{\mathbb{Q}\left(\zeta_{m}\right)}(s)=\prod L(\chi, s)
$$

where the χ vary all over $\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$.
Note that a corollary of this is that $L(\chi, 1) \neq 0$ for all non-trivial characters: from the Dedekind zeta product form above, there is a simple pole in LHS at $s=1$ and on the right we have $L(\mathbb{1}, s)=\zeta(s)$ (which has the pole) and all the other characters give analytic L-functions at $s=1$. This proves Dirichlet's theorem on primes in arithmetic progressions:

Take

$$
\underline{p}=\{\operatorname{primes} p \equiv a \quad \bmod m\} \quad \text { for }(a, m)=1
$$

then consider

$$
\sum_{p \in \underline{p}} \frac{1}{p^{s}}
$$

Since we can consider

$$
\log \zeta(s)=\sum_{p} \frac{1}{p^{s}}+\{\text { terms analytic at } s=1\}
$$

we can say

$$
\sum_{p \in \underline{p}} \frac{1}{p^{s}}=\frac{1}{\varphi(m)} \sum_{\chi} \overline{\chi(a)} \log L(\chi, s)+\{\text { analytic at } s=1\}
$$

Note that all the functions are analytic except when we are considering Riemann zeta which contributes a pole.

The LHS diverges for $s=1$ because of the contribution from $L(\mathbb{1}, s)$ on the right which then gives a growth independent of the choice of a. Thus \underline{p} is infinite and has density $\frac{1}{\varphi(m)}$.

4 Cyclotomic Fields

Fix $m \geq 1$ and assume that m is not twice an odd number. Then $K=\mathbb{Q}\left(\zeta_{m}\right)$ is the field of interest, and is called the $m^{t h}$ cyclotomic field, where $\zeta_{m}=e^{\frac{2 \pi i}{m}}$ and the degree of K over \mathbb{Q} is $\varphi(m)$:

Clearly $K=\mathbb{Q}\left(\right.$ roots of $\left.x^{m}-1\right)=\mathbb{Q}\left(\right.$ roots of $\left.\Phi_{m}\right)$ where Φ_{m} is the $m^{t h}$ cyclotomic polynomial, $\Phi_{1}(x)=x-1$,

$$
x^{m}-1=\prod_{d \mid m} \Phi(d)
$$

so $\operatorname{deg} \Phi_{m}=\varphi(m)=(\mathbb{Z} / m \mathbb{Z})^{\times}$.
Note that K is Galois over \mathbb{Q}.
Further, when $m=q^{k}$ then it is easy to verify that

- $\Phi_{m}(x+1)=x^{\varphi(m)}+\cdots+q$, and it is Eisenstein and hence irreducible. This in particular shows that $\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right]=\varphi(m)$.
- $(q)=\left(1-\zeta_{m}\right)^{\phi(m)}$ so we have equality as ideals in \mathcal{O}_{K}. Thus q is totally ramified in K / \mathbb{Q}.
- All other primes are $p \nmid \Delta_{x^{m}-1} \Longrightarrow$ are unramified in K / \mathbb{Q} with residue degree

$$
f=\text { order of } p \text { in }(\mathbb{Z} / m \mathbb{Z})^{\times}
$$

Proof. We have that $p \equiv 1 \bmod m$ iff $m^{t h}$ roots of unity are all contained in \mathbb{F}_{p}^{\times}. Equivalently, $\Phi_{m}=\frac{x^{q^{k}}-1}{x^{q^{k-1}}-1}$ splits completely over \mathbb{F}_{p}. Similarly, if $p^{r} \equiv 1 \bmod m$ for some r, this is equivalent as above (except with $\mathbb{F}_{p^{r}}^{\times}$) and Φ_{m} has irreducible factors of degree dividing r over \mathbb{F}_{p}. Thus, since the order of p in $(\mathbb{Z} / m \mathbb{Z})^{\times}$is the smallest such r, then $f=r$ by KD.

Now, in the general case, $m=q_{1}^{k_{1}} \ldots q_{j}^{k_{j}}$, the field that we consider $K=\mathbb{Q}\left(\zeta_{m}\right)$ is the compositum of $\mathbb{Q}\left(\zeta_{q_{1}}^{k_{1}}\right), \ldots, \mathbb{Q}\left(\zeta_{q_{j}}^{k_{j}}\right)$, and in particular, if we look at ramification of primes, we see that these fields have no common overlap so

$$
\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right]=\prod \varphi\left(q_{i}^{k_{i}}\right)=\varphi(m)
$$

which proves that all Φ_{m} are irreducible.
Then if $p \nmid m$ then p is unramified in $\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}$ with residue degree $f_{p}=$ order of p in $(\mathbb{Z} / m \mathbb{Z})^{\times}$.
If otherwise $p \mid m$ so $m=p^{k} m_{0}$ so p ramifies in $\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}$ with ramification degree $e_{p}=$ $\left[\mathbb{Q}\left(\zeta_{p^{k}}\right): \mathbb{Q}\right]=p^{k=1}(p-1)$ and has residue degree $f_{p}=$ order $p \bmod m_{0}$.

4.1ζ-function of $\mathbb{Q}\left(\zeta_{m}\right)$

Recall that

$$
\zeta_{K}(s)=\prod_{p} F_{p}\left(p^{-s}\right)
$$

Then

$$
F_{p}(T)=\left(1-T^{f_{p}}\right)^{\frac{\varphi(m)}{e_{p} f_{p}}}
$$

and recall that $1-N \mathfrak{p}^{-s}=1-p^{-f_{p} s}=1-T^{f_{p}}$, and $\frac{\varphi(m)}{e_{p} f_{p}}$ is the number of primes above p. The degree of F_{p} is usually $\varphi(m)$ since most primes are unramified, and in general deg $F_{p}=\varphi\left(m_{0}\right)$.

We can hence observe,

$$
F_{p}(T)=\prod_{a \in\left(\mathbb{Z} / f_{p} \mathbb{Z}\right)^{\times}}\left(1-\zeta_{f_{p}}^{a} T\right)^{\frac{\varphi\left(m_{0}\right)}{f_{p}}}=\prod_{\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}}(1-\chi(p) T) .
$$

Combining over all primes, we have shown that

$$
\zeta_{\mathbb{Q}\left(\zeta_{m}\right)}(s)=\prod_{\chi:(\mathbb{Z} / m \mathbb{Z})^{x} \rightarrow \mathbb{C}^{\times}} L(\chi, s) .
$$

Example 4.1. Let $m=12, K=\mathbb{Q}\left(\zeta_{12}\right)=\mathbb{Q}(i, \sqrt{-3})$, a biquadratic extension. It is also the splitting filed of $x^{12}-1=\Phi_{12}(x)$. Recall that we can write

$$
\begin{aligned}
\Phi_{12}(x) & =\Phi_{1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{6} \Phi_{12} \\
& =(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right) .
\end{aligned}
$$

Here are some local factors for $\zeta_{\mathbb{Q}\left(\zeta_{12}\right)}(s)$:

$$
\begin{array}{cc|ccccc}
& & F_{2}(T) & F_{3}(T) & F_{5}(T) & \ldots & F_{13}(T) \\
\hline & \zeta(s)=L(\mathbb{1}, s) & 1-T & 1-T & 1-T & \ldots & 1-T \\
\times & L\left(\chi_{3}, s\right) & 1+T & 1 & 1+T & \ldots & 1-T \\
\times & L\left(\chi_{4}, s\right) & 1 & 1+T & 1-T & \ldots & 1-T \\
\times & L\left(\chi_{12}, s\right) & 1 & 1 & 1+T & \ldots & 1-T \\
\hline= & \zeta_{\mathbb{Q}\left(\zeta_{12}\right)}(s) & 1-T^{2} & 1-T^{2} & \left(1-T^{2}\right)^{2} & \ldots & (1-T)^{4}
\end{array}
$$

The prime decomposition is

$$
\begin{array}{rlrl}
(2) & =\mathfrak{p}_{2}^{2} & N \mathfrak{p}_{2}=4 & e=2, f=2 \\
(3) & =\mathfrak{p}_{3}^{2} & N \mathfrak{p}_{3}=9 & e=2, f=2 \\
& & \text { ramified } \\
(5) & =\mathfrak{p}_{5 A} \mathfrak{p}_{5 B} & & e=1, f=2
\end{array}
$$

[^0]
4.2 Abelian extensions of \mathbb{Q}

Figure 1: Extension map
We have the extension map figure 1 . Note that we have the following decompositions,

$$
\begin{aligned}
\zeta_{\mathbb{Q}\left(\zeta_{12}\right)} & =\zeta \cdot L\left(\chi_{3}\right) L\left(\chi_{4}\right) L\left(\chi_{12}\right) \\
\zeta_{\mathbb{Q}\left(\zeta_{4}\right)} & =\zeta \cdot L\left(\chi_{4}\right) \\
\zeta_{\mathbb{Q}\left(\zeta_{3}\right)} & =\zeta \cdot L\left(\chi_{3}\right) \\
\zeta_{\mathbb{Q}(\sqrt{3})} & =\zeta \cdot L\left(\chi_{12}\right)=\zeta \cdot L\left(\left(\frac{3}{\cdot}\right)\right) .
\end{aligned}
$$

Theorem 4.1 (Kronecker-Weber). We say that K / \mathbb{Q} is abelian if it is Galois with $\operatorname{Gal}(K / \mathbb{Q})$ abelian. Then

$$
K / \mathbb{Q} \text { is abelian } \Longleftrightarrow K \subset \mathbb{Q}\left(\zeta_{m}\right) \quad \text { for some } m
$$

In fact, from representation theory (justified more later),

$$
\Longleftrightarrow \zeta_{K}(s)=\prod_{i=1}^{[K: \mathbb{Q}]} \text { Dirichlet L-fns. }
$$

Generalisation

Due to Hecke: can we do the same type of procedure over a number field F in place of \mathbb{Q} ? So we would fix a non-zero ideal $\mathfrak{m} \subset \mathcal{O}_{F}$ called a 'modulus'. Then we would define

$$
L(\chi, s)=\sum_{\substack{I \subset \mathcal{O}_{F} \\ \text { ideal } \neq 0}} \chi(I) N I^{-s}=\prod_{\mathfrak{p}} \frac{1}{1-\chi(\mathfrak{p})(N \mathfrak{p})^{-s}},
$$

with $\chi: I_{\mathfrak{m}}=\{$ fractional ideals of F prime to $\mathfrak{m}\} \rightarrow \mathbb{C}^{\times}$of finite order,

$$
\chi(I)=1 \text { on } P_{\mathfrak{m}}=\{\text { principal ideals }(\alpha) \text { such that } \alpha \equiv 1 \bmod \mathfrak{m}\} .
$$

Then extend to all other ideals, by mapping them to 0 .

$\mathbb{R}^{\times} \rightarrow \mathbb{C}^{\times}$	$x \mapsto \operatorname{sgn}(x)^{u}\|x\|^{v+i w}$	$u \in\{0,1\}$
$\mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$	$x \mapsto\left(\frac{x}{x \mid}\right)^{u}\|x\|^{v+i w}$	$u \in \mathbb{Z}$.

Table 1: Possibilities for φ.

Example 4.2. $L(\mathbb{1}, s)=\zeta_{F}(s)$.
Hecke showed analytic continuation and a functional equation for these L-functions. Thus these are truly analogues to Dirichlet L-functions, but over F. There is a further slight generalisation, called Hecke characters and/or Grössencharakters. These allow $\left.\chi\right|_{P_{m}}: \alpha \mapsto \mathbb{C}^{\times}$instead of 1 , to agree with

$$
F^{\times} \hookrightarrow\left(\mathbb{R}^{\times}\right)^{r_{1}} \times\left(\mathbb{C}^{\times}\right)^{r_{2}} \rightarrow \mathbb{C}^{\times}
$$

via some continuous homomorphism φ, cally 'infinity type'.
At real places, possibilities for φ (see Table 1) are just shifts.

Example 4.3.

$$
\zeta(s-1)=\prod_{p} \frac{1}{1-p \cdot p^{1-s}}=L(\chi, s),
$$

with $\chi(p)=p$ the cyclotomic character.
This is a Hecke character with infinite typy $\mathbb{R}^{\times} \rightarrow \mathbb{C}^{\times}, z \mapsto|z|$. That is, takes generator $\pm n$ of an ideal (n) and maps it to n. The modern formulation is:

Hecke characters on $F=$ continuous group homomorphisms,

$$
\mathbb{A}_{F}^{\times} \rightarrow \mathbb{C}^{\times} \quad \text { with } F^{\times} \text {in the kernel. }
$$

Tate's thesis gives an alternative proof of meromorphic continuation and functional equation for Hecke characters using Fourier analysis on adeles.

5 Decomposition, inertia, Frobenius

Let K be a number field, $\mathfrak{p} \subset \mathcal{O}_{K}$ a prime (e.g. $\mathbb{Q},(p)$). Then assume F / K is a finite Galois extension, $G=\operatorname{Gal}(F / K),|G|=[F: K]=d$.

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be the primes above \mathfrak{p} in F. Recall that if e is the ramification degree, f the residue degree, then here efr $=d$.

Remark (Fact 1). G permutes the \mathfrak{p}_{i} transitively.
Definition. We define the decomposition group of the primes \mathfrak{p}_{i} as the stabiliser of \mathfrak{p}_{i} in G. We write it as $D_{\mathfrak{p}_{i}}$, so

$$
D_{\mathfrak{p}_{i}}=\left\{\sigma \in \operatorname{Gal}(F / K): \sigma\left(\mathfrak{p}_{i}\right)=\mathfrak{p}_{i}\right\},
$$

and has index r in G.

Then $D_{\mathfrak{p}_{i}}$ acts on the residue fields $\mathcal{O}_{F} / \mathfrak{p}_{i} \cong \mathbb{F}_{q^{f}}$ so we get

$$
D_{\mathfrak{p}_{i}} \xrightarrow[\sigma \mapsto \bar{\sigma}]{\bmod \mathfrak{p}_{i}} \operatorname{Gal}\left(\mathbb{F}_{q^{f}} / \mathbb{F}_{q}\right) \cong C_{f} \quad \text { cyclic, gen. by } x \mapsto x^{q}
$$

with the map being the reduction map on automorphisms.
Remark (Fact 2). This map is onto.
Definition. The kernel of $\sigma \mapsto \bar{\sigma}$ is the inertia group of \mathfrak{p}_{i}. Then

$$
I_{\mathfrak{p}_{i}}=\left\{\sigma \in D_{\mathfrak{p}_{i}} \mid \bar{\sigma}=i d\right\}
$$

that is they are the elements of G that map $\mathfrak{p}_{i} \rightarrow \mathfrak{p}_{i}$ that are invisible on $\mathcal{O}_{F} / \mathfrak{p}_{i}$. Then $I_{\mathfrak{p}_{i}} \stackrel{f}{\triangleleft} D_{\mathfrak{p}_{i}}$, and $\left|I_{\mathfrak{p}_{i}}\right|=e$.

Definition. A Frobenius element at \mathfrak{p}_{i},

$$
\text { Frob }_{\mathfrak{p}_{i}}=\text { any element of } D_{\mathfrak{p}_{i}} \text { that acts as } x \mapsto x^{q} \text { on } \mathcal{O}_{F} / \mathfrak{p}_{i}
$$

So G has a subgroup of index $r, D_{\mathfrak{p}_{i}}$. Inside $D_{\mathfrak{p}_{i}}$ there is a normal subgroup of index $f, I_{\mathfrak{p}_{i}}$. Inside $I_{\mathfrak{p}_{i}}$ there is the trivial normal subgroup of index e :

$$
G \stackrel{r}{>} D_{\mathfrak{p}_{i}} \stackrel{f}{\triangleright} I_{\mathfrak{p}_{i}} \stackrel{e}{\triangleright}\{1\} .
$$

By Galois theory, this corresponds to

$$
K \frac{\mathfrak{p} \text { split }}{r} K_{1} \frac{\tilde{\mathfrak{p}}_{i} \text { totally inert }}{f} K_{2} \frac{\tilde{\mathfrak{p}}_{i} \text { totally ramified }}{e} F .
$$

Remark. For $\tau \in G$,

$$
\begin{aligned}
D_{\tau\left(\mathfrak{p}_{i}\right)} & =\left\{\sigma \in G \mid \sigma\left(\tau\left(\mathfrak{p}_{i}\right)\right)=\tau\left(\mathfrak{p}_{i}\right)\right\} \\
& =\left\{\tau \sigma \tau^{-1} \mid \sigma\left(\mathfrak{p}_{i}\right)=\mathfrak{p}_{i}\right\} \\
& =\tau D_{\mathfrak{p}_{i}} \tau^{-1}
\end{aligned}
$$

Thus $D_{\mathfrak{p}_{1}}, \ldots, D_{\mathfrak{p}_{r}}$ are conjugate in G. It is then convenient to descend to K :
Definition. Let F / K be Galois, \mathfrak{p} prime of K. Then

- $D_{\mathfrak{p}}:=$ decomposition group of some prime $\mathfrak{p}_{i} \mid \mathfrak{p}$. Therefore, this is defined up to conjugacy.
- $I_{\mathfrak{p}}:=$ intertia group of some $\mathfrak{p}_{i} \mid \mathfrak{p}$, also defined up to conjugacy.
- $\operatorname{Frob}_{\mathfrak{p}}:=$ Frob. element of $D_{\mathfrak{p}_{i}}$. This is defined up to conjugacy and modulo inertia.

Figure 2: Extension map

Example 5.1. Take $F=\mathbb{Q}(\sqrt{3}, i)$, the biquadratic extension, structure given in Figure 2, and $K=\mathbb{Q}$. Then the Galois group is isomorphic to $C_{2} \times C_{2}$ generated by

$$
\begin{aligned}
\sigma(i)=-i & \sigma(\sqrt{3})=\sqrt{3} \\
\tau(i)=i & \tau(\sqrt{3})=-\sqrt{3}
\end{aligned}
$$

We look at (2) in F / K. Then (2) is inert in $\mathbb{Q}(\sqrt{-3})$ so its inertia degree is 2 so $2 \mid f$. Similarly it ramifies in $\mathbb{Q}(i)$ so $2 \mid e$. (This is expanded in HW3). Thus $e=f=2$ and $r=1$ (since $F / K=4$ and $(2)=\mathfrak{p}_{2}^{2}$ whose norm is 4 . Hence, we have that

$$
\begin{gathered}
K \frac{\mathfrak{p} \text { split }}{r} K_{1} \frac{\tilde{\mathfrak{p}}_{\text {i totally inert }}}{f} K_{2} \frac{\tilde{\mathfrak{p}}_{\text {}} \text { totally ramified }}{e} F \\
\mathbb{Q}^{n o ~ s p l i t t i n g} \mathbb{Q} \xrightarrow{2 \text { inert }} \mathbb{Q}(\sqrt{-3}) \frac{2 \text { ramifies }}{=} F .
\end{gathered}
$$

Then

$$
D_{2}=D_{\mathfrak{p}_{2}}=G, \quad I_{2}=I_{\mathfrak{p}_{2}}=\langle\sigma \tau\rangle, \quad \text { Frob }_{2}=\tau \text { or } \sigma
$$

In the last thing we have to choose anything that isn't in $I_{2}=\langle\sigma \tau\rangle$.
Explicitly, write $\zeta=\zeta_{3}=\frac{-1+\sqrt{-3}}{2} ; \zeta^{2}=-1-\zeta$. Then

$$
\mathcal{O}_{F}=\{a+b i+c \zeta+d i \zeta \mid a, b, c, d \in \mathbb{Z}\}
$$

and

$$
\mathfrak{p}_{2}=(1+i)=\{a+b i+c \zeta+d i \zeta \mid a, b, c, d \in \mathbb{Z}, a \equiv b, c \equiv d \quad \bmod 2\}
$$

Note that $\mathfrak{p}_{2}^{2}=(2)$. Further,

$$
\mathcal{O}_{F} / \mathfrak{p}_{2}=\{\overline{0}, \overline{1}, \bar{\zeta}, \overline{1+\zeta}\} \cong \mathbb{F}_{4}
$$

Consider $\sigma \tau$:
$\sigma \tau\left(\mathfrak{p}_{2}\right)=(1-i)=\mathfrak{p}_{2}$, and $\sigma \tau$ fixes $0,1, \zeta, 1+\zeta$ so it's trivial on \mathbb{F}_{4}. Hence $\sigma \tau \in I_{\mathfrak{p}_{2}}$ also note here that $I_{2}=\operatorname{Gal}(F: \mathbb{Q}(\sqrt{-3}))$.

Also, $\tau\left(\mathfrak{p}_{2}\right)=\mathfrak{p}_{2}$ as τ fixes $1+i$. Now τ fixes 0,1 and sends $\zeta \mapsto \zeta_{2} \equiv 1+\zeta($ map is mod (2) and the congruence is $\bmod \left(\mathfrak{p}_{2}\right)$).

That is $\bar{\tau}: \mathbb{F}_{4} \rightarrow \mathbb{F}_{4}, x \mapsto x^{2}$ so it acts on the residue field by squaring everything, and this is precisely what it means to be the Frobenius element for this prime, so $\tau=\mathrm{Frob}_{2}$. Thus $D_{2}=\left\langle I_{2}, \mathrm{Frob}_{2}\right\rangle=G$.

6 Galois Representations

Definition. Take G a finite group. Then a d-dimensional (complex) representation of G is a group homomorphism,

$$
\rho: G \rightarrow \mathrm{GL}(d, \mathbb{C})=\mathrm{GL}_{d}(\mathbb{C})=\mathrm{GL}(V)
$$

for V some complex d-dimensional vector space.
Example 6.1. Suppose $G \cong C_{4}=\langle g\rangle$. Then we could construct ρ via

$$
g \mapsto\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

a rotation by $\pi / 2$. Thus we 'represent G as a group of matrices'.
Definition. When $G=\operatorname{Gal}(F / K)$, where F / K is some finite Galois extension, then we call the representation of this group a Galois representation,

$$
\rho: \operatorname{Gal}(F / K) \rightarrow \mathrm{GL}_{d}(\mathbb{C})
$$

or

$$
\rho: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{Gal}(F / K) \rightarrow \mathrm{GL}_{d}(\mathbb{C})
$$

When F, K are number fields, then these representations are called Artin representations (over K).

Definition. To each such Artin representation, we can associate an L-function. Take

$$
\rho: \operatorname{Gal}(F / K) \rightarrow \operatorname{GL}(V)
$$

an Artin representation. Then we define the (Artin) L-function,

$$
L(\rho, s)=L(V, s):=\prod_{\mathfrak{p} \text { prime of } K} F_{\mathfrak{p}}\left(N \mathfrak{p}^{-s}\right) .
$$

with

$$
F_{\mathfrak{p}}(T)=\operatorname{det}\left(1-\rho\left(\operatorname{Frob}_{\mathfrak{p}}^{-1}\right) T \mid V^{I_{\mathfrak{p}}}\right)
$$

Recall that $I_{\mathfrak{p}}=\left\{v \in V \mid \sigma(v)=v \forall \sigma \in I_{\mathfrak{p}}\right\}$. Also, note that mostly the inertia group is trivial - so it's not usually as scary as it looks. Thus for all but finitely many primes, $F_{\mathfrak{p}}(T)$ has degree d. It will have smaller degree for those which are ramified.

Exercise 6.1 (Do it!). This is well-defined.
Example 6.2. Let $F=\mathbb{Q}(i), K=\mathbb{Q}$. Then $G=\operatorname{Gal}(F / K) \cong C_{2}=\langle 1, \sigma\rangle$. Recall that primes here fall in to 3 categories,

$$
p=\left\{\right.
$$

As an example, take $G \rightarrow \mathbb{C}^{\times}=\mathrm{GL}\left(V_{1}\right)$, where $\operatorname{dim} V_{1}=1$. Then

$$
1, \sigma \mapsto \mathrm{Id}
$$

So $V_{1}^{I_{p}}=V_{1}$ for all p and has dimension 1. Then we need to examine the characteristic polynomial of Frob $_{p}$:

$$
\rho\left(\operatorname{Frob}_{p}\right)=\operatorname{Id} \quad \forall p, \quad F_{p}(T)=\operatorname{det}(1-\operatorname{Id} \cdot T)=1-T
$$

Thus the L-function $L\left(V_{1}, s\right)=\zeta(s)$ (unsurprisingly).
Now take a different rep, $G \rightarrow \mathbb{C}^{\times}=\mathrm{GL}\left(V_{-1}\right)$, where $\operatorname{dim} V_{-1}=1$ with

$$
1 \mapsto \mathrm{Id}, \quad \sigma \mapsto-\mathrm{Id}
$$

Then

$$
V_{-1}^{I_{p}}= \begin{cases}0 & p=2 \\ V_{-1} & p>2\end{cases}
$$

Turning to the characteristic polynomials,

$$
F_{p}(T)=\left\{\begin{array}{lll}
1 & p=2 & \\
\operatorname{det}(1-\mathrm{Id} \cdot T)=1-T & p \equiv 1 & \bmod 4 \\
\operatorname{det}(1+\mathrm{Id} \cdot T)=1+T & p \equiv 3 & \bmod 4
\end{array}\right.
$$

Therefore $L\left(V_{-1}, s\right)=L\left(\chi_{4}, s\right)$, where χ_{4} is the Dirichlet character of conductor 4 (defined earlier on).

Final example of a rep: $G \rightarrow \mathrm{GL}(V)$ where V has dimension 2. Consider $V=\mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{C}$ - look at G acting on $\mathbb{Q}(i)=\mathbb{Q} \cdot 1+\mathbb{Q} \cdot i, \mathbb{Q}$-linearly, and take the same matrices over \mathbb{C}. Thus

$$
1 \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Thus our space V decomposes as $V \cong V_{1} \oplus V_{-1}$. We can see that $V^{I_{p}}=V_{1}^{I_{p}} \oplus V_{-1}^{I_{p}}$ and whatever determinant we are computing, it is going to be the product of determinants on the two subspaces. Thus,

$$
L(V, s)=L\left(V_{1}, s\right) L\left(V_{-1}, s\right)=\zeta(s) L\left(\chi_{4}, s\right)=\zeta_{\mathbb{Q}(i)}(s)
$$

In fact, any representation of $\operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q}) \cong C_{2}$ is

$$
V_{1} \oplus \cdots V_{1} \oplus V_{-1} \oplus \cdots \oplus V_{-1}=V_{1}^{a} \oplus V_{-1}^{b}
$$

so we will always get

$$
\zeta(s)^{a} L\left(\chi_{4}, s\right)^{b}
$$

Question Why do we define Artin L-functions $L(V, s)$ like this, with

$$
F_{\mathfrak{p}}(T)=\operatorname{det}\left(1-\rho\left(\operatorname{Frob}_{\mathfrak{p}}^{-1}\right) T \mid V^{I_{\mathfrak{p}}}\right) ?
$$

Write $G_{K}=\operatorname{Gal}(\bar{K} / K)$ where K is a number field. Then these are a collection of 'semigood' reasons:
(1) $L\left(\mathbb{1}_{G_{\mathbb{Q}}}, s\right)=\zeta(s)$ where $\mathbb{1}_{G_{\mathbb{Q}}}$ is the trivial representation on $\operatorname{Gal}(\bar{Q} / Q)$. More generally, $L\left(\mathbb{1}_{G_{\mathbb{K}}}, s\right)=\zeta_{K}(s)$.
(2) Generally, 1-dimensional representations of $G_{\mathbb{Q}}$ correspond to Dirichlet L-functions. When K is a number field, we get Hecke L-functions of finite order.
(3) Suppose $[K: \mathbb{Q}]=d$ (not necessarily Galois) then K determines a natural d-dimensional representation V_{K} of $G_{\mathbb{Q}}$, the absolute Galois group of \mathbb{Q}. For example, let $K=\mathbb{Q}[X] / f(x)$ with roots $\alpha_{1}, \ldots, \alpha_{d}$. Then

$$
V_{K}=\mathbb{C} \alpha_{1} \oplus \cdots \oplus \mathbb{C} \alpha_{d}
$$

and the Galois group acts by permuting the basis elements $\alpha_{1}, \ldots, \alpha_{d}$. Then

$$
V_{K} \cong \operatorname{Ind}_{G_{K}}^{G_{\mathbb{Q}}} \mathbb{1}_{G_{K}}
$$

and $\zeta_{K}(s)=L\left(V_{K}, s\right)$. The decomposition of V_{K} into irreducible representations leads to

$$
\zeta_{K}(s)=\prod \text { Artin } L \text {-functions of irreps. }
$$

(4) We have that (1) and (3) combine to give $L\left(\mathbb{1}_{G_{K}}, s\right)=L\left(\operatorname{Ind}_{G_{K}}^{G_{\mathbb{Q}}} \mathbb{1}_{G_{K}}, s\right)$ and the same is true for any V of G_{K} in place of $\mathbb{1}_{G_{K}}$.
(5) The Brauer induction gives that (1)-(4) recovers all $L(V, s)$ uniquely from Dirichlet/Hecke L-functions, which shows that our definition of $F_{\mathfrak{p}}(T)$ is the only possible one, and gives meromorphic continuation of all $L(V, s)$ and the corresponding functional equation.
(6) Everything works in exactly the same way for non-finite image representations (elliptic curves etc.).

7 Special Case: $L(\chi, s)$

Theorem 7.1. There is a bijection

$$
\begin{aligned}
\{\text { Dirichlet characters } \chi\} & \longleftrightarrow\left\{1-\operatorname{dim} \text { Artin reps } \rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{C}^{\times}\right\} \\
\chi & \mapsto \rho_{\chi}
\end{aligned}
$$

such that

- χ is of modulus $m \Longleftrightarrow \rho_{\chi}$ factors through $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$ and not for smaller $d \mid m$
- $L(\chi, s)=L\left(\rho_{\chi}, s\right)$.

Proof. Take χ of modulus m. Then

$$
\rho_{\chi}: \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right) \xrightarrow{\text { can. }} \cong(\mathbb{Z} / m \mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}
$$

where

$$
\sigma: \zeta_{m} \mapsto \zeta_{m}^{a} \underset{\text { Artin map }}{\mapsto} a^{-1} \mapsto \chi(a)^{-1}
$$

Note that $p^{-1} \in(\mathbb{Z} / m \mathbb{Z})^{\times}$corresponds to $\zeta_{m} \rightarrow \zeta_{m}^{p}$ which is Frob ${ }_{p}$, (or in other words $p \leftrightarrow$ $\operatorname{Frob}_{p}^{-1}$). Then χ of modulus m implies that it does not come from $(\mathbb{Z} / d \mathbb{Z})^{\times}$for $d \mid m, d<m$ so this implies (\star).

Kronecker-Weber gives that every representation of $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ that factors through an abelian group, in particular every 1-dim one, ρ, factors through some $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$. Thus $\rho=\rho_{\chi}$ for some χ.

Finally we need to compare L-functions - we do this by separately considering 'good' and 'bad' primes. For $p \nmid m, L(\chi, s)$ has

$$
F_{p}(T)=1-\chi(p) T, \quad \text { for } \chi(p) \in \mathbb{C}^{\times}, p \in(\mathbb{Z} / m \mathbb{Z})^{\times}
$$

Also, $L\left(\rho_{\chi}, s\right)$ has $F_{p}(T)=1-\rho_{\chi}\left(\operatorname{Frob}_{p}^{-1}\right) T$ (inertia at p is trivial because p is unramified in $\left.\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$. So $\rho_{\chi}\left(\right.$ Frob $\left._{p}^{-1}\right)=\chi(p)$. For $p \mid m, L(\chi, s)$ has $F_{p}(T)=1($ as $p \mid m$ implies $\chi(p)=0$ since this is how we extend characters).

Figure 3: Extension Diagram for $\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}$.

Since χ has modulus m (it is primitive), ρ_{χ} does not factor through $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m_{0}}\right) / \mathbb{Q}\right)$. Thus I_{p} acts non-trivially on $V_{\chi}(\cong \mathbb{C})$. Then we also note $V_{\chi}^{I_{p}}=0 \Longrightarrow F_{p}(T)=1$.

Remark. The same result holds for the one-to-one correspondence
Hecke chars of finite order over $K \stackrel{1: 1}{\longleftrightarrow}$ 1-dim reps $G_{K} \rightarrow \mathbb{C}^{\times}$.
The proof of this doesn't use Kronecker-Weber, but instead uses the full force of global CFT.

8 Permutation representations and Dedekind ζ

Let F / K be a finite Galois extension, with $G=\operatorname{Gal}(F / K)$. Then there are 1-1 correspondences (one from basic group theory and the Galois correspondence)

Transtive G-sets	$\stackrel{1: 1}{\stackrel{1}{4}}$	Sbyps of G		$\stackrel{1: 1}{\longrightarrow}$	$\text { flds } K \subset M \subset F$
		up to conj			up to isom $/ K$
X	\leftarrow	Stabiliser (of an elmt) (of an elmt)	H	\rightarrow	F^{H}
G / H	\leftrightarrow	H	$\operatorname{Gal}(F / M)$	\leftarrow	M.

Here $G / H=\left\{\right.$ left cosets $g_{1} H \ldots g_{d} H$ with left mult action $\}$.
If $[M: K]=d$ then we find a transitive G-set X of size d. Or, it can be thought of as a $\operatorname{Gal}(\bar{K} / K)$-set which does not depend on F.

Explicitly, if $M=K(\alpha), \alpha$ the root of some irreducible degree d-polynomial $f(x) \in K[x]$. Then set $H=\operatorname{Stab}_{G}(\alpha)$ and

$$
\begin{aligned}
X=X_{M / K} & =\{\text { roots of } f\} \rightharpoondown G \\
& \stackrel{1: 1}{=}\{K-\text { embeddings } M \hookrightarrow \bar{K}\} \Im G_{K} .
\end{aligned}
$$

Example 8.1. Let $G=S_{3}, K=\mathbb{Q}, F=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{m}\right)$.
Take a G-set X of size d. Then we get out a d-dim permutation representation $\mathbb{C}[X]$ - for the basis take elements of X and let G permute them.

Fields M	SubGrps H	G-sets X	Acts \mathbb{C}
\mathbb{Q}	S_{3}	\cdot	G acts trivially
$\mathbb{Q}\left(\zeta_{3}\right)$	C_{3}	\cdots	G acts through $S_{3} / C_{3} \cong C_{2}$.
$\mathbb{Q}(\sqrt[3]{m})$	C_{2}	\therefore	G acts as $S_{3} \subset\{1,2,3\}$
F	$\{1\}$	\because	Regular action (left mult).

Table 2: Galois correspondence for Exercise 8.1

Note that any G-set X can be written as a union of transitive G-sets,

$$
X=X_{1} \Perp X_{2} \Perp \ldots
$$

so $\mathbb{C}[X] \cong \mathbb{C}\left[X_{1}\right] \oplus \mathbb{C}\left[X_{2}\right] \oplus \cdots$, so it's enough just to consider transitive ones.
[Aside: Prime decomposition in arbitrary extensions.]
Example 8.2. Let $K=\mathbb{Q}, F=\mathbb{Q}\left(\right.$ roots, α_{i} of $\left.x^{5}-5 x^{2}-3\right)$, so $G=\operatorname{Gal}(F / K) \cong D_{5}$. Then

Let's consider $D_{\mathfrak{p}_{1}} \in F / K$ so $D_{\mathfrak{p}_{1}}=C_{2 A}$ say, and $I_{\mathfrak{p}_{1}} \in F / K$ with $I_{\mathfrak{p}_{1}}=\{1\}$. In the top 'layer' F / M :

$$
D_{\mathfrak{p}_{i}}^{F / M}=D_{\mathfrak{p}_{i}}^{F / K} \cap H= \begin{cases}C_{2 A} & i=1 \leftarrow f_{\mathfrak{p}_{1}}^{F / M}=2 \\ 1 & i=2,3,4,5 \leftarrow f_{\mathfrak{p}_{i}}^{F / M}=1\end{cases}
$$

Recall that $H=C_{2 A}$ and $D_{\mathfrak{p}_{1}} \in\left\{C_{2 A}, \ldots, C_{2 E}\right\}$. Since the f's are multiplicative in towers (see HW3), we have that

In practice of course we go the other way:

$$
x^{5}-5 x^{2}-3=(x-1)\left(x^{2}+3 x-2\right)\left(x^{2}-2 x+2\right) \quad \bmod 7
$$

therefore $(7)=\mathfrak{q}_{1} \mathfrak{q}_{2} \mathfrak{q}_{3}$ with $f=1, f=2, f=2$ respectively in M / K. This implies that the decomposition group of 7 in $F / K, D_{7}^{F / K}=C_{2}$ (and not C_{1}, C_{5}, D_{5}).

Proposition 8.1. Let K be a number field,

So $D_{i}=D_{\mathfrak{p}_{i}}^{F / K}<G, I_{i}=I_{\mathfrak{p}_{i}}^{F / K} \triangleleft D_{i}$. So now write $I=I_{1}, D=D_{1}, F r o b_{\mathfrak{p}} \in D$.
(i) $D_{\mathfrak{p}_{i}}^{F / M}=D_{i} \cap H, I_{\mathfrak{p}_{i}}^{F / M}=I_{i} \cap H$
(ii) In M / K, primes $\mathfrak{q}_{j} \mid \mathfrak{p}$ are in a 1-1 correspondence with 'double cosets' $D g_{i} H \in D \backslash G / H$. They are also in a 1-1 correspondence with orbits of D on G / H. Each orbit has length $e_{j} f_{j}\left(e_{j}\right.$ the ramification and f_{j} the residue degree of \mathfrak{q}_{j} in $\left.M / K\right)$ and is a union of f_{j} I-orbits of length e_{j} cyclically permuted by $\mathrm{Frob}_{\mathfrak{p}}$.

Proof. (i) is clear. (ii) By considering how H acts on $\left\{\mathfrak{p}_{i}\right\}$, we see that the orbits are in a 1-1 correspondence with \mathfrak{q}_{j} and the stabilisers are $D_{\mathfrak{p}_{i}}^{F / M}$. Now, how does H act on G / D ? Orbits are now in $1-1$ correspondence with the double cosets, and stabilisers are $D_{i} \cap H$. By (i) the stabilisers are equal, so the orbits are the same. The rest of the proposition is bookwork.

Definition. The relative ζ-function is

$$
\zeta_{M / K}(s)=\prod_{\mathfrak{q} \subset \mathcal{O}_{M}} \frac{1}{1-N_{M / K}\left(\mathfrak{q}^{-s}\right)}
$$

Note that this is equal to ζ_{M} when $K=\mathbb{Q}$.
Theorem 8.2. Let M / K be a finite extension. Then

$$
\zeta_{M / K}(s)=L\left(\mathbb{C}\left[X_{M / K}\right], s\right)
$$

The RHS is the Artin L-function for the representation $\mathbb{C}\left[X_{M / K}\right] \supset \operatorname{Gal}(\bar{K} / K)$.
On the level of local polynomials, for every prime \mathfrak{p} of K,

$$
\prod_{\mathfrak{q} \mid \mathfrak{p}}\left(1-T^{f_{q}}\right) \stackrel{\text { Thm }}{=} \operatorname{det}\left(1-\operatorname{Frob}_{\mathfrak{p}}^{-1} T \mid \mathbb{C}\left[X_{M / K}\right]^{I_{p}}\right)
$$

Proof. Recall that if X is a G-set then we have the representation $\mathbb{C}[X]^{G} \cong \mathbb{C}^{\# \text { orbits }}$. For example if

$$
x_{1} \frown x_{2} \quad x_{3} \leadsto x_{4} \frown x_{5}
$$

then $\mathbb{C}^{G}=\left\langle x_{1}+x_{2}, x_{3}+x_{4}+x_{5}\right\rangle$. As a D-set,

$$
X_{M / K}=G / H=\underset{D g_{i} H}{\Perp} D / D \cap g_{j} H g_{j}^{-1}
$$

Recall that I acts with f_{i} orbits of size $I \cap g_{i} H g_{i}^{-1}$ and they are cyclically permuted by Frob ${ }_{\mathfrak{p}}$. Therefore $\mathbb{C}[G / H]^{I} \cong \oplus_{j} \mathbb{C}^{f_{j}} \supset$ Frob $_{\mathfrak{p}}$ cyclically (and therefore the inverse of Frob as well). Therefore,

$$
\operatorname{det}\left(1-\operatorname{Frob}_{\mathfrak{p}}^{-1} T \mid \mathbb{C}[G / H]^{I_{\mathfrak{p}}}\right)=\prod_{j}\left(1-T^{f_{j}}\right)=\text { local factor of } \zeta_{M / K}(s) \text { at } \mathfrak{p}
$$

9 Characters and Induction

There is the topic of character theory that says for G finite, $\rho: G \rightarrow \mathrm{GL}(V)$, there exists an object called a 'character' that encodes information about ρ.

Definition. The character of V (or of ρ) is

$$
\chi_{\rho}=\chi_{V}: G \rightarrow \mathbb{C}
$$

where $g \mapsto \operatorname{tr}(\rho(g))$.
Then note that $\chi_{V}(e)=\operatorname{dim} V$ and for ρ a one dimensional representation then ' $\chi_{\rho}=\rho$ '. Two conjugate elements have the same trace so characters are class functions.

Definition. We have the following inner product,

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \overline{\chi_{W}(g)}
$$

Example 9.1. Let $V=\mathbb{C}[X]$ be a permutation rep. Then

$$
\chi_{\rho}=\chi_{V}=\#\{\text { fixed points under } V\}=\#\{x \in X: g \cdot x=x\}
$$

Example 9.2. If $G=S_{3}$ which acts naturally on $X=\{1,2,3\}$. Then if $V=\mathbb{C}[X]$, we have that the conjugacy classes, $\mathcal{C}=\{[e],[(1,2)],[(1,2,3)]\}$. Thus

$$
\chi_{V}=(3,1,0): \mathcal{C} \rightarrow \mathbb{C}
$$

To examine the inner product:

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle=\frac{1}{6}[3 \cdot 3 \cdot 1+1 \cdot 1 \cdot 3+0]=2
$$

Theorem 9.1. Suppose G is a finite group, $\mathcal{C}=\{$ conj classes $\}$, and $\mathcal{I}=\left\{\right.$ irreps $\left.V_{1}, V_{2}, \ldots\right\}$ up to isomorphism. Then

- $|\mathcal{I}|=|\mathcal{C}|, \operatorname{dim} V_{i}$ divides $|G|, \sum_{i=1}^{k} \operatorname{dim} V_{i}^{2}=|G|$.
- Complete reducibility: every representation can be written

$$
V \cong V_{1}^{\oplus n_{1}} \oplus \cdots \oplus V_{k}^{\oplus n_{k}}
$$

some $n_{i} \geq 0$ unique, V_{i} irreducible.

- If $W=V_{1}^{\oplus m_{1}} \oplus \cdots \oplus V_{k}^{\oplus m_{k}}, m_{i} \geq 0$, then

$$
\left\langle\chi_{W}, \chi_{V}\right\rangle=\left\langle\chi_{V}, \chi_{W}\right\rangle=\sum_{i=1}^{k} n_{i} m_{i}=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G}(V, W)
$$

So in particular,

- $\left\langle\chi_{V}, \chi_{V}\right\rangle=\sum_{i=1}^{k} n_{i}^{2}$
$-V$ is irreducible $\Longleftrightarrow\left\langle\chi_{V}, \chi_{V}\right\rangle=1$.
$-\left\langle\chi_{V_{i}}, \chi_{V_{j}}\right\rangle=\delta_{i j}$.
- $\chi_{V}+\chi_{W}=\chi_{V \oplus W}$
- $\chi_{V} \chi_{W}=\chi_{V \otimes W}$
- $\overline{\chi_{V}}=\chi_{V^{\star}}$ - the character of the dual rep $g \mapsto\left(\rho(g)^{t}\right)^{-1}$.

Example 9.3. G is abelian if and only if $|\mathcal{C}|=|G|$ and $|\mathcal{I}|=|G|$. Further

$$
\sum \operatorname{dim}^{2}=|G| \Longrightarrow \text { all } V_{i} \in \mathcal{I} \text { are 1-dimensional. }
$$

We also have that

$$
\{\text { irreps of } G\}=\hat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)
$$

For any group G,

$$
\{1-\operatorname{dim} \text { reps of } G\}=\hat{G}=\frac{\widehat{G}}{[G, G]} \text {, }
$$

where $\frac{G}{[G, G]}$ is the maximal abelian quotient of G, so

$$
\#\{1 \text {-dim reps }\}=(G:[G, G])
$$

Example 9.4. Let $G=S_{4}$, so $\mathcal{C}=\{e,[(1,2)],[(1,2,3)],[(1,2,3,4)],[(1,2)(3,4)]\}$ and $|\mathcal{I}|=5$. So every rep of S_{4} has the form

$$
V_{1}^{\oplus n_{1}} \oplus \cdots \oplus V_{5}^{\oplus n_{5}}
$$

We have 5 irreps ρ_{i} of dimension 1,1 (from $G /[G, G]=S_{4} / A_{4}=C_{2}$) and three others of currently unknown dimensions. However

$$
\sum_{i=1}^{5} \operatorname{dim} \rho_{i}^{2}=|G|=24 \Longrightarrow 1+1+2+3+3
$$

Then we have characters from the following representations representations,

- $\chi_{\rho_{1}}: \rho_{1}=\mathbb{1}: S_{4} \rightarrow \mathrm{GL}_{1}(\mathbb{C})$ the trivial rep so $\chi_{\rho_{1}}=(1,1,1,1,1)$.
- $\chi_{\rho_{2}}: \rho_{2}$ is the sign representation, so $\chi_{\rho_{2}}=(1,-1,1,-1,1)$.
- $\chi_{\rho_{4}}: \rho_{4}$ comes from S_{4} acting on $\{1,2,3,4\}$. Call this representation π then $\chi_{\pi}=$ $(4,2,1,0,0)$ shows number of fixed points. This is reducible and we get that the inner product: $\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle=2$. Further

$$
\left\langle\chi_{\pi}, \chi_{\rho_{1}}\right\rangle=1 \Longrightarrow \pi \cong \mathbb{1} \oplus \rho_{4} .
$$

Then $\chi_{\rho_{4}}=\chi_{\pi}-\chi_{\mathbb{1}}=(3,1,0,-1,-1)$.

- $\chi_{\rho_{5}}$: we get this by taking the product of $\chi_{\rho_{2}} \chi_{\rho_{4}}=(3,-1,0,1,-1)$.
- Finally $\chi_{\rho_{3}}=(2,0,-1,0,2)$. We can get this in a number of ways: orthogonality, lifting from $S_{4} / V_{4} \cong S_{3}$, from $\chi_{\mathbb{C}[G]}=\sum_{i=1}^{5} \operatorname{dim} \rho_{i} \chi_{\rho_{i}}$, or from $\chi_{5} \chi_{5}$ and reducing it.

In total, this gives the character table

	e	$[(1,2)]$	$[(1,2,3)]$	$[(1,2,3,4)]$	$[(1,2)(3,4)]$
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	-1	1
χ_{3}	2	0	-1	0	2
χ_{4}	3	1	0	-1	-1
χ_{5}	3	-1	0	1	-1

Alternatively, we could have recovered all the characters using induction:
Theorem 9.2. Let $H<G$ be a subgroup of index d. There are maps

$$
n-\operatorname{dim} \longleftarrow n-\operatorname{dim}
$$

$n-\operatorname{dim} \mapsto d n-\operatorname{dim}$
such that for all reps $\rho: G \rightarrow \mathrm{GL}(V), \sigma: H \rightarrow \mathrm{GL}(W)$.

- Frobenius Reciprocity holds: $\langle V, \operatorname{Ind} W\rangle_{G}=\langle\operatorname{Res} V, W\rangle_{H}$.
- $\operatorname{Res}_{H} V=$ same V with H action, i.e.

$$
\chi_{\operatorname{Res}_{H} V}(h)=\chi_{V}(h)
$$

- $\operatorname{Ind}_{H}^{G} W=\{f: G \rightarrow W: f(h g)=\sigma(h) f(g) \forall h \in H, g \in G\}$, and $g \in G$ acts by $f(x) \mapsto f(x g)$.

These are 'complicated' requirements, so instead often we use the following formula for the character of the induction representation:

$$
\chi_{\operatorname{Ind}_{H}^{G} W}(g)=\frac{1}{|G|} \sum_{x \in G} \chi_{W}^{0}\left(x g x^{-1}\right)
$$

where

$$
\chi_{W}^{0}= \begin{cases}\chi_{W} & \text { on } H \\ 0 & \text { else } .\end{cases}
$$

- $\operatorname{Ind}_{H}^{G} \mathbb{1} \cong \mathbb{C}[G / H]$.

10 Artin Formalism

Theorem 10.1 (L-functions are invariant under induction). If we have the following extension,

and if $\rho: H \rightarrow \mathrm{GL}_{d}(\mathbb{C})$ is an Artin representation then

$$
L(\rho, s)=L\left(\operatorname{Ind}_{H}^{G} \rho, s\right)
$$

where $L(\rho, s)$ is a rep of G_{M} of dimension n, and $L\left(\operatorname{Ind}_{H}^{G} \rho, s\right)$ is a rep of G_{K} of dimension nd where $d=(G: H)$.

Proof. Same argument as for $\rho=\mathbb{1}$,

$$
\operatorname{Ind}_{H}^{G} \rho=\mathbb{C}[G / H]
$$

but instead of as a D-set

$$
G / H=\Perp_{g_{i} \in D \backslash G / H} D / D \cap g_{i} H g_{i}^{-1}
$$

we use Mackey's formula,

$$
\operatorname{Res}_{D} \operatorname{Ind}_{H}^{G} \rho=\bigoplus_{g_{i} \in D \backslash G / H} \operatorname{Ind}_{D \cap g_{i} H g_{i}^{-1}}^{D} \rho^{g_{i}}
$$

Theorem 10.2 (Brauer Induction). Suppose we have a representation $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$. Then

$$
\chi_{\rho}=\sum_{i} n_{i} \operatorname{Ind}_{H_{i}}^{G} \chi_{\sigma(i)}
$$

for some $n_{i} \in \mathbb{Z}$ (in particular can be negative), $H_{i}<G$ may be taken to be of the form cyclic $\times p$-group, $\sigma_{i}: H_{i} \rightarrow \mathbb{C}^{\times}$are 1-dim representation with characters χ_{i}.

Remark. This is used to construct character tables of groups.

Corollary 10.2.1. Every Artin L-function can be written in terms of L-functions of 1-dimensional representations,

$$
L(\rho, s)=\prod_{i} L\left(\sigma_{i}, s\right)^{n_{i}} \leftarrow \text { Hecke L-fns }
$$

Recall that $\rho: G_{K} \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ then $\sigma_{i}: G_{M_{i}} \rightarrow \mathbb{C}^{\times}$where M_{i} / K are finite extensions. In particular, $L(\rho, s)$ is meromorphic on \mathbb{C} and satisfies functional equation under $s \leftrightarrow 1-s$.

Conjecture (Artin). If $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ is an irreducible Artin rep, $\rho \neq \mathbb{1}$, then $L(\rho, s)$ has analytic continuation to \mathbb{C}.

Remark. The two properties:

$$
L\left(V_{1} \oplus V_{2}, s\right)=L\left(V_{1}, s\right) L\left(V_{2}, s\right), \quad L(\operatorname{Ind} V, s)=L(V, s)
$$

that define L-functions uniquely from those of 1-dimensional representations are called Artin formalism.

Example 10.1. Let $K=\mathbb{Q}, M=\mathbb{Q}(\sqrt[4]{2})$, where $\sqrt[4]{2}$ is a root of $x^{4}-2$, and $F=\mathbb{Q}(\sqrt[4]{2}, i)$ which contains all four roots of $x^{4}-2$. Then the Galois groups contains maps, σ which permute the four roots cyclically, and a map τ acting as a reflection through complex conjugation:

Then $G=\langle\sigma, \tau\rangle=\operatorname{Gal}(F / K) \cong D_{4}$.

Figure 4: Galois correspondence between F / K and D_{4}.
Note ${ }^{3}$ that $\sqrt[4]{-2}=\zeta_{8} \cdot \sqrt[4]{2}$.
We also have a character table:

	1	σ^{2}	τ	σ	$\sigma \tau$
$\mathbb{1}$	1	1	1	1	1
χ_{4}	1	1	-1	1	-1
$\chi_{8 A}$	1	1	1	-1	-1
$\chi_{8 B}$	1	1	-1	-1	1
ψ	2	-2	0	0	0

Table 3: Characters of irreps of D_{4}.
The final character ψ is the standard representation of $D_{4} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$. The commutator $G^{\prime}=Z(G)=\left\{e, \sigma^{2}\right\}$ cuts out the maximal abelian extension of \mathbb{Q} in F. Then

$$
F^{G^{\prime}}=\mathbb{Q}(i, \sqrt{2})=\mathbb{Q}\left(\zeta_{8}\right)
$$

and

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / 8 \mathbb{Z})^{\times} \cong C_{2} \times C_{2},
$$

has 1-dim reps $\mathbb{1}, \chi_{4}, \chi_{8 A}, \chi_{8 B}$ where

$$
\chi_{4} \leftrightarrow\binom{-1}{.}, \chi_{8 A} \leftrightarrow\binom{2}{.}, \chi_{8 B} \leftrightarrow\binom{2}{.} \rightsquigarrow \text { Dirichlet L-function. }
$$

The only exceptional Dirichlet L-function is the one coming from the 2-dim rep with character ψ. This yields $L(\psi, s)$ of degree 2 ,

$$
L(\psi, s)=1 \cdot \frac{1}{1-\left(3^{-s}\right)^{2}} \cdot \frac{1}{1+\left(5^{-s}\right)^{2}} \cdot \frac{1}{1-\left(7^{-s}\right)^{2}} \cdots
$$

[^1]The unit factor at the start comes from the case where we consider the prime 2 , then $I_{2}=D_{4}$ and there are no invariants on \mathbb{C}^{2}. Then by examining the third factor more, Frob ${ }_{5}$ is a rotation by $\pi / 2$ so it has characteristic polynomial $\left(1+T^{2}\right)$, and the fourth gives Frob_{7} is a reflection and has characteristic polynomial $\left(1-T^{2}\right)$. This can be expanded in to a Dirichlet series,

$$
L(\psi, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}},
$$

with $a_{p}=\psi\left(\operatorname{Frob}_{p}\right)$ at least on those $p \nmid \Delta_{F}$.
Thus, all ζ-functions of subfields of F are products of these, for example

$$
\zeta_{\mathbb{Q}(\sqrt[4]{2})}(s)=L(\mathbb{C}[G /\langle\tau\rangle], s)
$$

where $\mathbb{C}[G /\langle\tau\rangle]$ is the G set $\{1,2,3,4\}$ with natural D_{4} action. So,

$$
\begin{aligned}
\chi_{\mathbb{C}[G /\langle\tau\rangle]} & =(4,0,2,0,0) \\
& =(1,1,1,1)+(1,1,1,-1,-1)+(2,-2,0,0,0) \\
& =\mathbb{1}+\chi_{8 A}+\psi
\end{aligned}
$$

so

$$
\begin{aligned}
\zeta_{\mathbb{Q}(\sqrt[4]{2})}(s) & =L(\mathbb{1}, s) L\left(\chi_{8 A}, s\right) L(\psi, s) \\
& =\zeta_{\mathbb{Q}(\sqrt{2})}(s) \cdot L(\psi, s)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\zeta_{\mathbb{Q}(\sqrt[4]{-2})}(s) & =L(\mathbb{1}, s) L\left(\chi_{8 B}, s\right) L(\psi, s) \\
& =\zeta_{\mathbb{Q}(\sqrt{-2})}(s) \cdot L(\psi, s)
\end{aligned}
$$

and

$$
\begin{aligned}
\zeta_{\mathbb{Q}(i, \sqrt{2})}(s) & =L(\mathbb{1}, s) L\left(\chi_{4}, s\right) L\left(\chi_{8 A}, s\right) L\left(\chi_{8 B}, s\right) \\
& =\frac{\zeta_{\mathbb{Q}(i)}(s) \cdot \zeta_{\mathbb{Q}(\sqrt{2})}(s) \cdot \zeta_{\mathbb{Q}(\sqrt{-2})}(s)}{\zeta(s)^{2}}
\end{aligned}
$$

Remark. This is in practice how $\zeta_{K}(s)$ are computed - e.g. in Magma.
Theorem 10.3. Suppose $\rho, \sigma: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{\star}(\mathbb{C})$ be two Artin representations. Then

$$
\rho \cong \sigma \Longleftrightarrow L(\rho, s)=L(\sigma, s)
$$

as analytic functions on $\operatorname{Re}(s) \gg 0$. So the L-function determines the representation uniquely.

Proof. The forward direction (\Longrightarrow) is clear. To show the reverse, (\Longleftarrow),
Step 1: For any Dirichlet series, $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ for $\operatorname{Re}(s) \gg 0$, then we can recover the coefficients:

$$
\begin{aligned}
& a_{1}=\lim _{x \rightarrow \infty} f(x) \\
& a_{2}=\lim _{x \rightarrow \infty} \frac{f(x)-a_{1}}{2^{x}}
\end{aligned}
$$

so the a_{i} are uniquely determined by $f(s)$ as a function. Hence ρ, σ have the same local factors at all primes. Then $\operatorname{dim} \rho=\operatorname{dim} \sigma=\operatorname{deg} F_{p}(T)$ for p large.

Step 2: $\rho: \operatorname{Gal}\left(F_{1} / \mathbb{Q}\right) \rightarrow \operatorname{GL}_{d}(\mathbb{C}), \sigma: \operatorname{Gal}\left(F_{2} / \mathbb{Q}\right) \rightarrow \operatorname{GL}_{d}(\mathbb{C})$. Thus if we take the compositum $F=F_{1} F_{2}$ then

$$
\rho, \sigma: G \rightarrow \mathrm{GL}_{d}(\mathbb{C}),
$$

where $G=\operatorname{Gal}(F / \mathbb{Q})$ is the same group.
Step 3: The Chebotarev density theorem implies that for every conjugacy class $C \subset G$, there exists infinitely many primes p such that $\operatorname{Frob}_{p}^{F / \mathbb{Q}} \in \mathbb{C}$. Then we have that

$$
\chi_{\rho}(\mathcal{C})=a_{p}=\chi_{\sigma}(C),
$$

where a_{p} is the $p^{t h}$ term of the Dirichlet series. Thus $\chi_{\sigma}=\chi_{\rho}$.
Step 4: From representation theorem, equality of characters implies an isomorphism of representations, so $\chi_{\rho}=\chi_{\sigma} \Longrightarrow \rho \cong \sigma$.

Remark. It is not true that $\zeta_{M_{1}}(s)=\zeta_{M_{2}}(s)$ implies that $M_{1} \cong M_{2}$. There exist Gassmann triples $\left(G, H_{1}, H_{2}\right)$ such that

$$
G / H_{1} \nsupseteq G / H_{2} \quad \text { as } G \text {-sets, but } \quad \mathbb{C}\left[G / H_{1}\right] \cong \mathbb{C}\left[G / H_{2}\right] \quad \text { as representations. }
$$

An example of this is the following: $G=\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$, order 168 , simple.

\{1\}
Above we have that H_{1}, H_{2} are two non-conjugate subgroups of index 7 such that $\mathbb{C}\left[G / H_{1}\right] \cong$ $\mathbb{C}\left[G / H_{2}\right]$. This leads to degree 7 fields M_{1}, M_{2} over $\mathbb{Q}($ for every realisation of G as $\operatorname{Gal}(F / \mathbb{Q})$) with $M_{1} \neq M_{2}$ but $\zeta_{M_{1}}(s)=\zeta_{M_{2}}(s)$.

This is the smallest possible example, it is easy to check that in degree less than $7, \zeta_{M}(s)$ determines M. Such M_{1}, M_{2} are called arithmetically equivalent fields. Many invariants of M_{1}, M_{2} are the same, for example

$$
\begin{aligned}
r_{1}, r_{2} & \leftarrow \text { functions of complex conj acting on } \mathbb{C}[G / H] . \\
\left|\Delta_{M}\right| & \leftarrow \text { conductor of } \mathbb{C}[G / H] \\
\frac{R \cdot h}{\# \text { roots of } 1} & \leftarrow \zeta_{M}(0)
\end{aligned}
$$

but for example h, R need not be the same (not functions of $\mathbb{C}[G / H]$).
Remark. The above phenomenon has been explored for class groups, non-isomorphic curves with isomorphic Jacobians, BSD conjecture, and notably Sunada 1985:
"Can you hear the shape of a drum?" : NO.
That is, there exists non-isomorphic manifolds with the same spectrum of the Laplacian (same construction).

11Γ-factors, ε-factors, and conductors

Suppose that we have an Artin representation $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{d}(\mathbb{C})$ with a degree $d L$-function $L(\rho, s)$, meromorphic. Then let us define the completed L-function:

$$
\hat{L}(\rho, s)=\left(\frac{N}{\pi^{d}}\right)^{s / 2} \gamma(s) L(\rho, s)
$$

and this satisfies the function equation

$$
\hat{L}(\rho, s)=w \cdot \hat{L}\left(\rho^{*}, s\right)
$$

Above we have written

$$
\begin{aligned}
N & =N(\rho), \text { conductor } \in \mathbb{N} \\
\gamma(s) & =\gamma_{\rho}(s), \Gamma \text {-factor } \\
& w=w_{\rho}, \text { root number, sign in functional eq., }|w|=1
\end{aligned}
$$

Recall that 1-dimensional ρ correspond exactly to Dirichlet characters χ (and for $\rho: G_{K} \rightarrow$ $\mathbb{C}^{\times} \leftrightarrow$ Hecke similarly). Then

$$
\begin{aligned}
N & =\text { modulus }^{4} \text { of } \chi=\mathrm{m} \\
\gamma(s) & = \begin{cases}\Gamma\left(\frac{s}{2}\right) & \text { if } \chi(-1)=1 \Longleftrightarrow \rho(\text { complex conj })=+1 \\
\Gamma\left(\frac{s+1}{2}\right) & \text { if } \chi(-1)=-1 \Longleftrightarrow \rho(\text { complex conj })=-1\end{cases} \\
w & =\frac{\varepsilon}{|\varepsilon|}, \varepsilon=\sum_{a=1}^{m-1} \chi(a) \zeta_{m}^{a}, \text { Gauss sum } .
\end{aligned}
$$

For general ρ, we can define $N, \varepsilon, w=\frac{\varepsilon}{|\varepsilon|}, \gamma(s)$ from 1-dimenisonals and Brauer induction. In fact, for ε-factors cannot do much better,

$$
\varepsilon(\rho)=\prod_{\substack{\mathbf{V} \\ \text { places of } \mathbb{Q}}} \varepsilon_{V}(\rho) \leftarrow \text { local } \varepsilon \text {-facors } \begin{cases}\operatorname{dim} \rho=1 & \text { Tate's thesis } \\ \operatorname{dim} \rho>1 & \text { Langlands-Deligne. }\end{cases}
$$

γ-factors: To work out the γ-factors for $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{d}(\mathbb{C})$, we look at how complex conjugation works,

$$
\begin{aligned}
& \text { complex conj } \mapsto \text { matrix of order } 2 \text { with } d_{+} \text {eigenvalues } \\
& \qquad \text { and } d_{-} \text {eigenvalues }-1 \text { with } d_{+}+d_{-}=d .
\end{aligned}
$$

Then

$$
\gamma(s)=\Gamma\left(\frac{s}{2}\right)^{d_{+}} \Gamma\left(\frac{s+1}{2}\right)^{d_{-}}
$$

To prove this just check that it is correct for 1-dimensionals and respects Artin formalism.
Example 11.1. Let M / \mathbb{Q} be finite. Then $\zeta_{M}(s)=L(\mathbb{C}[X], s)$ where $X=\{$ embeddings $M \hookrightarrow \mathbb{C}\}$ on which $\operatorname{Gal}(\mathbb{C} / \mathbb{Q})$ acts. Then complex conjugation fixes r_{1} real embeddings and swaps complex ones in pairs. So the matrix

$$
\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& \ddots & & & & & & \\
& & 1 & & & & & \\
& & & 0 & 1 & & & \\
& & & 1 & 0 & & & \\
& & & & & \ddots & & \\
& & & & & & 0 & \\
& & & & & & 0 & 1
\end{array}\right)
$$

so there are $r_{1}+r_{2}$ number of +1 eigenvalues and r_{2} number of -1 eigenvalues. Therefore

$$
\gamma(s)=\Gamma\left(\frac{s}{2}\right)^{r_{1}+r_{2}} \Gamma\left(\frac{s+1}{2}\right)^{r_{2}}
$$

as expected for $\zeta_{M}(s)$.

Conductors:

Definition (Artin conductor). Let $\rho: \operatorname{Gal}(F / K) \rightarrow \mathrm{GL}(V)$, where K is a finite extension of \mathbb{Q}, F / K is Galois with group G, and $\operatorname{dim} V=d$. Then we define $N(\rho)$, the global Artin conductor, to be an ideal in \mathcal{O}_{K},

$$
N(\rho)=\prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}}
$$

where $n_{\mathfrak{p}}$ is the local conductor exponent at \mathfrak{p} (sometimes $n_{\mathfrak{p}}$ is written $f_{\mathfrak{p}}$).

[^2]Theorem 11.1 (Local conductor exponent). Let $D=D_{\mathfrak{p}}, I=I_{\mathfrak{p}} \subset G=\operatorname{Gal}(F / K)$ be the decomposition and inertia group of some

$$
\mathfrak{q}|\mathfrak{p}| p
$$

where \mathfrak{q} is in F, \mathfrak{p} is in K, and $p \in \mathbb{Q}$. Then

$$
n_{\mathfrak{p}}=n_{\mathfrak{p}, \text { tame }}+n_{\mathfrak{p}, \text { wild }}
$$

(sometimes 'wild' is also called 'Swan'), and

$$
\begin{aligned}
n_{\mathfrak{p}, \text { tame }} & =d-\operatorname{dim} V^{I} \leftarrow ' \text { Missing degree for } F_{\mathfrak{p}}(T)^{\prime} \\
n_{\mathfrak{p}, \text { wild }} & =0 \text { if } p \nmid|I|
\end{aligned}
$$

In general,

$$
G>D \triangleright \underset{\text { inertia }}{=} I \triangleright I_{1}=\underset{\text { wild inertia }}{p-\operatorname{Sylow}(I) \triangleright I_{2} \triangleright \cdots}
$$

where

$$
I_{n}=\left\{\sigma \in D \mid \sigma=\text { id on } \mathcal{O}_{f} / \mathfrak{q}^{n+1}\right\}
$$

are higher ramification groups,

$$
=\{1\} \quad \text { for } n \text { large } .
$$

Then

$$
n_{\mathfrak{p}, \text { wild }}=\sum_{n \geq 1} \frac{\left|I_{n}\right|}{|I|}\left(d-\operatorname{dim} V^{I_{n}}\right) \in \mathbb{Z}
$$

which measures how 'badly ramified' V is.
Example 11.2. ρ is unramified at \mathfrak{p} - that is $\left(V^{I}=0\right) \Longleftrightarrow$

$$
n_{\mathfrak{p}, \text { tame }}=0 \Longleftrightarrow n_{\mathfrak{p}}=0
$$

In particular $n_{\mathfrak{p}}=0$ for all primes unramified in F / K.
Example 11.3. Let $\rho: G_{\mathbb{Q}} \rightarrow \mathbb{C}^{\times}$(thus they correspond to Dirichlet characters) then

$$
N(\rho)=\text { modulus of } \chi
$$

Theorem 11.2 (Conductor-discriminant formula, or Führerdiskriminantformel). Let M / K be a finite extension and

$$
\zeta_{M / K}(s)=L\left(\mathbb{C}\left[X_{M / K}\right], s\right)
$$

where $\mathbb{C}\left[X_{M / K}\right]$ is K-embeddings $M \hookrightarrow \bar{K}$. Then $N_{\mathbb{C}\left[X_{M / K}\right]}=\left|\Delta_{M / K}\right|$ as ideals in \mathcal{O}_{K}.
Remark. This gives a way to compute discriminants of number fields using Artin representations.

Example 11.4. Let $F=\mathbb{Q}(\zeta, \sqrt[3]{3})$, and

Then $\pi=\frac{1-\zeta}{\sqrt[3]{3}}$ which has valuation $1 / 2-1 / 3$. We have that

$$
\underset{3 \text {-Sylow }}{C_{3}=I_{1} \triangleleft I=D=G=S_{3} .}
$$

Then the generator σ^{-1} of I_{1} :

$$
\begin{aligned}
\sqrt[3]{3} & \rightarrow \zeta \sqrt[3]{3} \\
1-\zeta & \rightarrow 1-\zeta
\end{aligned}
$$

so $\sigma(\pi)=\zeta \pi$. How wild is the valuation σ ? We compute

$$
\begin{aligned}
v_{\mathfrak{q}}(\pi-\sigma(\pi)) & =v_{\mathfrak{q}}(\pi-\zeta \pi) \\
& =v_{\mathfrak{q}}(\pi) v_{\mathfrak{q}}(1-\zeta) \\
& =1+v_{\mathfrak{q}}(1-\zeta) \\
& =4
\end{aligned}
$$

Thus, σ is trivial mod π^{4}. However $\sigma \not \equiv 1 \bmod \pi^{5}$ since $\sigma(\pi) \not \equiv \pi \bmod \pi^{5}$. This tells us how deep σ lies in our inertia group:

$$
\underbrace{\cdots \triangleleft\{1\} I_{4}}_{\{1\}} \triangleleft \underbrace{I_{3}=I_{2}=I_{1}}_{C_{3}} \triangleleft I=S_{3}
$$

Take $V=\mathbb{C}\left[X_{M / K}\right]=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$, and S_{3} acts naturally on this (permuting the basis elements). Then S_{3}, C_{3} have 1-dim invariants ($\#\{$ orbits $\}$), and $\{1\}$ has 3-dim invariant.

Now

$$
n_{V, 3}=d-\operatorname{dim} V^{I}+n_{\mathfrak{p}, \text { wild }}=\overbrace{3-1}^{\text {tame }}+\overbrace{\frac{3}{6}(3-1)}^{I_{1}}+\overbrace{\frac{3}{6}(3-1)}^{I_{2}}+\overbrace{\frac{3}{6}(3-1)}^{I_{3}}+0=5 .
$$

At all other primes, $n_{V, p}=0$, since p unramified in F / \mathbb{Q}. So easily $\left|\Delta_{M}\right|=N_{V}=3^{5}$ (and $\left.\left|\Delta_{F}\right|=3^{11}\right)$.

Finally, conductors (and ε-factors as well) are inductive in degree 0 :
Theorem 11.3. Suppose $[K: \mathbb{Q}]=n$. Then take two Artin representations ρ_{1}, ρ_{2} of same dimension,

$$
\rho_{1}, \rho_{2}: G_{K} \rightarrow \mathrm{GL}_{d}(\mathbb{C})
$$

We consider the inductions

$$
\operatorname{Ind} \rho_{1}, \operatorname{Ind} \rho_{2}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n d}(\mathbb{C})
$$

then

$$
\operatorname{Norm}_{K / \mathbb{Q}} \frac{N\left(\rho_{1}\right)}{N\left(\rho_{2}\right)}=\frac{N\left(\operatorname{Ind} \rho_{1}\right)}{N\left(\operatorname{Ind} \rho_{2}\right)}
$$

that is $N\left(\rho_{1} \ominus \rho_{2}\right)$ behaves well under induction.
Corollary 11.3.1. Take $\rho=\rho_{1}, \rho_{2}=\overbrace{\mathbb{1} \oplus \cdots \oplus \mathbb{1}}^{d}$. Then

$$
N\left(\operatorname{Ind} \rho_{1}\right)=\operatorname{Norm}_{K / \mathbb{Q}} N(\rho) \cdot\left|\Delta_{K}\right|^{d}
$$

12 Local Fields

Let $K=\mathbb{Q}$, and p a prime then this gives rise to the p-adic absolute value, usually denoted

$$
|\cdot|_{p}
$$

on \mathbb{Q}. 'Absolute values' are multiplicative functions that satisfy the triangle inequality. In fact, the only absolute values on \mathbb{Q} (up to a natural equivalence) are the classical absolute value and the p-adic ones, defined as

$$
\left|p^{n} \frac{a}{b}\right|_{p}=\frac{1}{p^{n}}, \quad|0|=0
$$

The p-adic absolute value gives rise to a metric

$$
d_{p}(x, y)=|x-y|_{p}
$$

Definition (p-adic integers). Define the p-adic integers \mathbb{Z}_{p} by

$$
\begin{aligned}
\mathbb{Z}_{p} & =\text { the topological completion of } \mathbb{Z} \text { with respect to }|\cdot|_{p} \\
& =\frac{\left\{\text { Cauchy sequences }\left(x_{n}\right)_{n} \text { in } \mathbb{Z}\right\}}{\left\{\text { sequences } x_{n} \rightarrow 0\right\}} \\
& =\lim _{\leftarrow n} \mathbb{Z} / p^{n} \mathbb{Z} \\
& =\lim _{\leftarrow n}\left\{\text { seq. } x_{n} \in \mathbb{Z} / p^{n} \mathbb{Z} \text { s.t. } x_{n} \equiv x_{n+1} \quad \bmod p^{n}\right\} \\
& =\left\{\sum_{n=0}^{\infty} a_{n} p^{n} \mid a_{n} \in\{0, \ldots, p-1\}\right\} .
\end{aligned}
$$

Then \mathbb{Z}_{p} is a DVR, local ring, which has only one maximal ideal (p), and residue field \mathbb{F}_{p}. Further $\mathbb{Z}_{p} \supseteq \mathbb{Z}$.

Definition (p-adic numbers). The p-adic numbers \mathbb{Q}_{p} satisfy:

$$
\begin{aligned}
\mathbb{Q}_{p} & =\text { topological completion of } \mathbb{Q} \text { wrt } d_{p} \\
& =\text { Field of fractions of } \mathbb{Z}_{p} \\
& =\left\{\sum_{n=n_{0}}^{\infty} a_{n} p^{n} \mid a_{n} \in\{0, \ldots, p-1\}\right\}
\end{aligned}
$$

This is a field that contains \mathbb{Q}, and so has characteristic 0.
Example 12.1. In \mathbb{Q}_{2},

$$
\begin{aligned}
21 & =1+2^{2}+2^{4} \in \mathbb{Z}_{2} \\
\frac{3}{2} & =2^{-1}+1 \notin \mathbb{Z}_{2} \\
-1 & =1+2+2^{2}+2^{3}+\cdots \in \mathbb{Z}_{2}\left(=\frac{1}{1-x} \text { geo series with } x=2,|x|_{2}<1 .\right)
\end{aligned}
$$

Example 12.2. Similarly, for K / \mathbb{Q} finite, $\mathcal{O}, \mathfrak{p}$, with $\mathcal{O} / \mathfrak{p}=k$ finite. Then this gives \mathfrak{p}-adic absolute value:

$$
|x|_{\mathfrak{p}}=\left(\frac{1}{|k|}\right)^{v_{\mathfrak{p}}(x)}
$$

Then we say that $K_{\mathfrak{p}}$ is the topological completion of K with respect to $|\cdot|_{\mathfrak{p}}$ and is called the local or \mathfrak{p}-adic field. We have that $K_{\mathfrak{p}}$ is a finite extension of \mathbb{Q}_{p}, wrt $\mathfrak{p} \mid p$, and every finite extension of \mathbb{Q}_{p} arises this way. So

$$
K_{\mathfrak{p}}=\left\{\sum_{n=n_{0}}^{\infty} a_{n} \pi^{n} \mid a_{n} \in A\right\}
$$

where π is any uniformiser, $v_{\mathfrak{p}}(\pi)=1$ (e.g. $\pi \in \mathfrak{p} \backslash \mathfrak{p}^{2}$), and A is any set of reprsentatives of $\mathcal{O} / \mathfrak{p}$.

Proposition 12.1. Take

Then $F_{\mathfrak{q}} / K_{\mathfrak{p}}$ is Galois with $\operatorname{Gal}\left(F_{\mathfrak{q}} / K_{\mathfrak{p}}\right)=D_{\mathfrak{q}}$ - this is the same for all $\mathfrak{q} \mid \mathfrak{p}$. Passing to the algebraic closure,

We can think of these as the 'same' as number fields, but only one prime and much simpler (look at \mathbb{R}, \mathbb{C} versus \mathbb{Q}). Further, inertia, Frobenius, and tame inertia etc. take the same definition. The structure of $G_{\mathbb{Q}_{p}}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ is as follows,

Local fields have only finitely many extensions of a given degree. For example,

$$
\mathbb{Q}_{5}(\sqrt{-3})=\mathbb{Q}_{5}(\sqrt{2})=\mathbb{Q}_{5}\left(\zeta_{3}\right)=\mathbb{Q}_{5}\left(\zeta_{8}\right)=\mathbb{Q}_{5}\left(\zeta_{24}\right)
$$

all of which are the unique quadratic unramified extension of \mathbb{Q}_{5}.

$13 \quad l$-adic reprsentations

Example 13.1. Take

$$
G_{\mathbb{Q}} \subset\{\text { roots of unity in } \overline{\mathbb{Q}}\}=\left\{\text { torsion points in } \mathbb{G}_{m}(\overline{\mathbb{Q}})=\overline{\mathbb{Q}}^{\times}\right\}
$$

This action of does not factor through a finite Galois group. We want to associate to it a 1dimensional Galois representation as follows.

Take l prime.

$$
\begin{array}{rlr}
\downarrow & \downarrow \\
\left\{l^{3} \text { roots of unity }\right\} & \cong \mathbb{Z} / l^{3} \mathbb{Z} & \wp G_{\mathbb{Q}} \\
\downarrow x \mapsto x^{l} & \downarrow[l] & \\
\left\{l^{2} \text { roots of unity }\right\} & \cong \mathbb{Z} / l^{2} \mathbb{Z} & \wp G_{\mathbb{Q}} \\
\downarrow x \mapsto x^{l} & \downarrow[l] & \\
\left\{l^{\text {th }} \text { roots of unity }\right\} & \cong \mathbb{Z} / l \mathbb{Z} & \wp G_{\mathbb{Q}} .
\end{array}
$$

We have that in the final line, $G_{\mathbb{Q}}$ acts from $(\mathbb{Z} / l \mathbb{Z})^{\times}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{l}\right) / \mathbb{Q}\right)$. Pictorially:

Taking the inverse limit, we find that

$$
G_{\mathbb{Q}} \subset \lim _{\leftarrow n} \mathbb{Z} / l^{n} \mathbb{Z} \cong \mathbb{Z}_{l}
$$

In other words, we get a representation

$$
\chi_{l}: G_{\mathbb{Q}} \rightarrow \mathbb{Z}_{l}^{\times}=\mathrm{GL}_{1}\left(\mathbb{Z}_{l}\right)=\lim _{\leftarrow n}\left(\mathbb{Z} / l^{n} \mathbb{Z}\right)^{\times}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{l \infty}\right) / \mathbb{Q}\right)
$$

Then if we embed $\mathbb{Z}_{l} \hookrightarrow \mathbb{Q}_{l} \hookrightarrow \mathbb{C}$, we can view χ_{l} as mapping

$$
\chi_{l}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{1}(\mathbb{C})
$$

which is a 1-dimensional Galois representation (one for every l). This is called the l-adic cyclotomic character.

Definition. Let K be a number field, $G_{K}=\operatorname{Gal}(\bar{K} / K)$. An l-adic representation over K of dimension (or degree) d is a continuous homomorphism

$$
\rho_{l}: G_{K} \rightarrow \mathrm{GL}_{d}\left(\mathbb{Q}_{l}\right)
$$

A compatible system of l-adic representations (or 'a motive') is collection $\rho=\left(\rho_{l}\right)_{l \text { prime }}$ such that
(1) There is a finite set S of 'bad' primes of K such that each ρ_{l} is unramified outside $S_{l}=$ $S \cup\{$ primes $\mid l\}$, i.e.

$$
\mathfrak{p} \notin S_{l} \Longrightarrow \rho_{l}\left(I_{\mathfrak{p}}\right)=1
$$

(2) For every prime \mathfrak{p} of K, then the local polynomial

$$
F_{\mathfrak{p}}(T)=\operatorname{det}\left(1-\operatorname{Frob}_{\mathfrak{p}}^{-1} T \mid \rho_{l}^{I_{\mathfrak{p}}}\right) \in \mathbb{Q}_{l}[T]
$$

is a polynomial in $\mathbb{Q}[T]$ and is independent of l, for $\mathfrak{p} \nmid l$.
We then define the L-function of ρ to be

$$
L(\rho, s)=\prod_{\mathfrak{p}} F_{\mathfrak{p}}\left(N \mathfrak{p}^{-s}\right)
$$

The collection $\left(\rho_{l}\right)_{l}$ is really a 'poor man's version' of one global representation $\rho: G_{\mathbb{Q}} \rightarrow$ $\mathrm{GL}_{d}(\mathbb{Q})$.

We have the standard constructions \oplus, \otimes, Ind, Res, etc for compatible systems. Further, L-functions satisfy Artin formalism.

Example 13.2. Take $\rho: G_{K} \rightarrow \mathrm{GL}_{n}(\mathbb{Q})$, Artin representation (so this has finite image and factors through some finite Galois group $\operatorname{Gal}(F / K)$). So

$$
\rho_{l}: G_{K} \rightarrow \mathrm{GL}_{n}(\mathbb{Q}) \hookrightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{l}\right)
$$

is obviously a compatible system taking

$$
S=\{\text { primes ramified in } F / K\}
$$

 ber field, to include all Artin representations $G_{K} \rightarrow \mathrm{GL}_{n}(\mathbb{C})$, for example Dirichlet characters.

Example 13.3. Take $\chi=\left(\chi_{l}\right)_{l}$ a cyclotomic character. Recall that

$$
\chi_{l}: G_{\mathbb{Q}} \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{l^{\infty}}\right) / \mathbb{Q}\right)=\mathbb{Z}_{l}^{\times} \hookrightarrow \mathrm{GL}_{1}\left(\mathbb{Q}_{l}\right)
$$

Then we have that

$$
\begin{aligned}
I_{p} & \mapsto 1, \quad \text { for all } p \neq l \\
\mathrm{Frob}_{p} & \mapsto p^{-1} \quad \text { can take } S=\varnothing, \text { so } S_{l}=\{l\} \\
\zeta_{l^{n}} & \mapsto \zeta_{l^{n}}^{p}
\end{aligned}
$$

Then

$$
F_{p}(T)=\operatorname{det}\left(1-\operatorname{Frob}_{p}^{-1} T \mid \mathbb{Z}_{l}^{I_{p}}\right)=1-p T \in \mathbb{Q}[T]
$$

and recall that $G_{\mathbb{Q}} \subset \mathbb{Z}_{l}^{I_{p}}$. So $F_{p}(T)$ is independent of l. Thus the χ_{l} form a compatible system with

$$
L(\chi, s)=\prod_{p} \frac{1}{1-p \cdot p^{-s}}=\zeta(s-1)
$$

In modern language, χ_{l} are l-adic realisations of the 'Tate motive $\mathbb{Q}(1)$ ' (and the χ_{l} denoted $\left.\mathbb{Q}_{l}(1)\right)$ which has associated L-function $\zeta(s-1)$.

13.1 Étale Cohomology (Grothendieck, Deligne, Verdier)

Take V / \mathbb{Q} (or over some number field K) a non-signular projective variety of dimension d. Take $0 \leq i \leq 2 d$ then this leads to

$$
H^{i}(V)=H_{\text {êt }}^{i}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{l}\right)
$$

called the $i^{t h}$ étale cohomology group. It is a \mathbb{Q}_{l}-vector space of dimension $b_{i}(V(\mathbb{C}))\left(b_{i}\right.$ the $i^{\text {th }}$ Betti number) with a continuous action of $G_{\mathbb{Q}}$. This yields an l-adic representation of $G_{\mathbb{Q}}$ for every l - we check the conditions:
(1) We do have that it is unramified outside $S=\{$ primes of bad reduction for $V\} \cup\{l\}$.
(2) This is known to be compatible at $p \notin S$, and often (H^{0}, H^{1}, curves, abelian varieties) for $p \in S$ as well.

Example 13.4. Take $H^{0}(V)=\mathbb{Q}_{l}[$ connected components of $V / \overline{\mathbb{Q}}]$ and $G_{\mathbb{Q}} \subset H^{0}(V)$. We can take a permutation representation on connected components (factors through some finite $\operatorname{Gal}(F / \mathbb{Q})$).

Example 13.5. Take a variety V with $\operatorname{dim} V=0$ so we only have H^{0}. Then

$$
V: f(x)=0 \subset \mathbb{A}_{x}^{1}
$$

for $f \in \mathbb{Q}[x]$. So the absolute Galois group permutes the roots of f.

$$
H^{0}(V)=\mathbb{Q}_{l}[\text { roots of } f]
$$

If $f(x)=f_{1}(x) \cdots f_{n}(x), f_{i}(x) \in \mathbb{Q}[x]$ irreducible, then take

$$
K_{i}=\mathbb{Q}[x] /\left(f_{i}\right)
$$

Hence

$$
L\left(H^{0}(V), s\right)=\zeta_{K_{1}}(s) \cdots \zeta_{K_{n}}(s)
$$

14 Torsion Points on Elliptic Curves \& $H^{1}(E)$

Suppose we have an elliptic curve E and a number field K, where

$$
y^{2}=x^{3}+a x+b ; \quad a, b \in K
$$

defines an elliptic curve. Then $E(\bar{K})$ form an abelian group.

Figure 5: Plot of the elliptic curve $y^{2}=x^{3}-2 x$

Definition. Take $m \geq 1$ integer. Then

$$
E[m]=\{p \in E(\bar{K}) \mid m P=0\}
$$

is the set of m-torsion points, called m-torsion. As an abelian group,

$$
E[m] \cong(\mathbb{Z} / m \mathbb{Z})^{2} ⿹ G_{k} \quad \text { acts linearly }
$$

so $(P+Q)^{\sigma}=P^{\sigma}+Q^{\sigma}$.
This gives a representation ['mod m ' representation],

$$
\rho_{E, m}: G_{K} \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z})
$$

Example 14.1. Take $m=2$, so we are considering the 2 -torsion points. Then

$$
E[2]=\{0,(\alpha, 0),(\beta, 0),(\gamma, 0)\}
$$

where α, β, γ are the roots of f. Again

$$
E[2] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

and the Galois groups acts by permutation on the roots. Then we get

$$
\rho_{E, 2}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right) \cong S_{3} .
$$

Now take $m=l^{n}$ where l is prime. Then we get a compatible system:

$$
\begin{aligned}
& \rightarrow E\left[l^{n}\right] \xrightarrow{[l]} E\left[L^{n-1}\right] \quad \xrightarrow{[l]} \cdots \xrightarrow{[l]} E[l] \\
& \rightarrow\left(\mathbb{Z} / l^{n} \mathbb{Z}\right)^{2} \rightarrow\left(\mathbb{Z} / l^{n-1} \mathbb{Z}\right)^{2} \rightarrow \cdots \rightarrow(\mathbb{Z} / l \mathbb{Z})^{2} .
\end{aligned}
$$

Definition (The l-adic Tate module). We have

$$
T_{l} E=\lim _{\leftarrow n} E\left[l^{n}\right] \cong \mathbb{Z}_{l}^{2} \fallingdotseq G_{k}
$$

and

$$
V_{l} E=T_{l} E \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l} \cong \mathbb{Q}_{l}^{2} \fallingdotseq G_{k}
$$

Then by embedding $\mathbb{Q}_{l} \hookrightarrow \mathbb{C}$, we get a 2 -dimensional l-adic representation for E / K,

$$
H_{e t t}^{1}\left(E_{\bar{K}}, \mathbb{Q}_{l}\right)=V_{l} E^{*}
$$

as a G_{K} representation.
We will see that these form a compatible system so
Definition (The L-function of E / K).

$$
L(E / K, s)=\prod_{\mathfrak{p}} F_{\mathfrak{p}}\left(N \mathfrak{p}^{-s}\right)
$$

where

$$
F_{\mathfrak{p}}(T)=\operatorname{det}\left(1-\operatorname{Frob}_{\mathfrak{p}}^{-1} T \mid \rho_{l}^{I_{p}}\right)
$$

for any l such that $p \nmid l$. This is a degree 2 L-function.
Recall that we let E / \mathbb{Q} be an elliptic curve with:

We want to understand D_{p} on $E_{\overline{\mathbb{Q}}}\left[l^{n}\right]=$ action of $G_{\mathbb{Q}_{p}}$ on $E_{\overline{\mathbb{Q}}_{p}}\left[l^{n}\right]$. From now onwards let K be a p-adic field (i.e. local),

$$
\mathcal{O}_{K} /(\pi) \cong k \cong \mathbb{F}_{q}
$$

where (π) is a maximal ideal. Then $I \triangleleft G_{k}$ and Frob $\in G_{K}$. We write χ_{l} for the cyclotomic character $(I \mapsto 1$, Frob $\mapsto q)$.

15 Good and bad reduction

Let E / K be an elliptic curve. Then this gives rise to a "minimal Weierstrass model", with coefficients in \mathcal{O}_{K} and $v(\Delta)$ minimal. Upon reduction, \tilde{E} / K is possibly singular. The possible reduction types are:

\tilde{E}	Reduction	Example over \mathbb{Q}_{5}
	Good	$E_{1}: y^{2}=x^{3}-1$ (Distinct roots mod 5)
	Split Multiplicative	$E_{2}: y^{2}=(x-1)\left(x^{2}-5\right)$ (Double root mod 5)
Swapped by Frob	Non-split Multiplicative	$E_{2^{\prime}}: y^{2}=(x-2)\left(x^{2}-5\right)$ (Double root mod 5)
$<$	Additive	$\begin{gathered} E_{3}: y^{2}=x^{3}-5 \\ \quad(\text { Triple root }) \end{gathered}$

Note that $(0,0)$ is the singular point. Then we have the following reductions, and how they behave near $(0,0)$:

$$
\begin{aligned}
& \tilde{E}_{2}: y^{2}=4 x^{2}+\text { h.o.t. } / \mathbb{F}_{5} \xrightarrow{\text { near }(0,0)} \\
& \tilde{E}_{2^{\prime}}: y^{2}=3 x^{2}+\text { h.o.t. } / \mathbb{F}_{5} \xrightarrow{\text { near }(0,0)} \\
& y=-2 x \\
& y=\sqrt{3} x \\
& y=-\sqrt{3} x
\end{aligned}
$$

$$
\text { for } \sqrt{3} \in \mathbb{F}_{5^{2}} \text {. }
$$

Theorem 15.1. We have that
(a) The set of non-singular points, $E_{n s}(\bar{k})$ form a group, under the same group law (3 points on a line \Longleftrightarrow they add up to 0),
(b) $V_{l} E^{I} \cong V_{l} \tilde{E}_{n s}$ as G_{k}-modules,
(c) $\operatorname{det} V_{l} E=\chi_{l}$, that is for $\rho_{l}: G_{\pi} \rightarrow$ Aut $V_{l} E=\mathrm{GL}_{2}\left(\mathbb{Q}_{2}\right)$, and

$$
\operatorname{det} \rho_{l}(\sigma)= \begin{cases}1 & \text { for } \sigma \in I \\ q & \text { for } \sigma=\text { Frob }\end{cases}
$$

Remark. This is very important since it relats geometry of the reduction to arithmetic of ltorsion. No analogue for general varieties (only for curves and abelian varieties).

Remark. For the Néron model, (b) holds for $E\left[l^{n}\right]$ and $T_{l} E$ as well.
Example 15.1. 2-torsion on E_{1}, E_{2}, E_{3}.
$E_{1}: y^{2}=x^{3}-1$
\downarrow Reduction

$E_{2}: y^{2}=(x-1)\left(x^{2}-5\right)$

$E_{3}: y^{2}=x^{3}-5$

Figure 6: Plots showing how roots behave under different types of reduction. Note that the inertia group I swaps $-\sqrt{5} \leftrightarrow \sqrt{5}$ for E_{2} and I permutes the roots for E_{3}.

Recall that our theorem says that inertia invariant points are non-singular when reduced.

Theorem 15.2. The local factor $F(T)$ for the L-function of E is

Reduction	$\tilde{E}_{n s}(\bar{k})$	$V_{l} \tilde{E}_{n s}$	$\mathrm{~F}(\mathrm{~T})$
Good	Ell. curve	\mathbb{Q}_{l}^{2} 万 G_{K}	$1-a T+q T^{2}$
Split mult.	\bar{k}^{\times}	χ_{l} $\left(\mathbb{Q}_{l}\right.$ with Frob acting as $\left.q\right)$	$1-T$
Nonsplit mult.	\bar{k}^{\times}	Quad. twist of \mathbb{Q}_{l} $\left(\mathbb{Q}_{l}\right.$ with Frob acting as $\left.-q\right)$	$1+T$
Additive	$(\bar{k},+)$	0	1

In particular, $F(T) \in \mathbb{Z}[T]$ and is independent of l (i.e. $\left(V_{l} E\right)_{l}$ form a compatible system).

Proof. Good reduction

Let \tilde{E} / k be an elliptic curve. Then

$$
\begin{array}{c|c}
i^{t h} \text { Étale coho. group } & \text { Frob }^{-1} \text { eigenvalues } \\
\hline H_{\mathrm{et}}^{0}(\tilde{E})=\mathbb{Q}_{l} & 1 \\
H_{\mathrm{ett}}^{1}(E)=H_{\mathrm{ett}}^{1}(\tilde{E}) & \text { Some } \alpha, \beta \\
H_{\mathrm{ett}}^{2}(\tilde{E})=\chi_{l}^{-1} & q \\
\text { (Poincaré duality) } &
\end{array}
$$

Note that for the Frob^{-1}-eigenvalues, abs. value $|q|^{i / 2}$ on H^{i}. The Lefschetz trace formula gives

$$
\begin{aligned}
Z_{\tilde{E}\left(\mathbb{F}_{q}\right)}(T) & :=\exp \sum_{n=1}^{\infty} \frac{\# \tilde{E}\left(\mathbb{F}_{q^{n}}\right)}{n} T^{n} \\
& \stackrel{\text { Lefschetz }}{=} \frac{(1-\alpha T)(1-\beta T)}{(1-T)(1-q T)} .
\end{aligned}
$$

This implies that

$$
1+\# \tilde{E}\left(\mathbb{F}_{q}\right) T+O\left(T^{2}\right)=1+(q+1-\alpha-\beta) T+O\left(T^{2}\right)
$$

Hence

$$
\# \tilde{E}\left(\mathbb{F}_{q}\right)=q+1-\operatorname{tr}\left(\operatorname{Frob}^{-1} \mid H_{\mathrm{et}}^{1}(E)\right)
$$

and $\operatorname{det}\left(\operatorname{Frob}^{-1} \mid H_{\text {êt }}^{1}(E)\right)=q$, det $V_{l}=\chi_{l}$. Thus we see that

$$
\begin{aligned}
\operatorname{det}\left(1-\operatorname{Frob}^{-1} T \mid V_{l} E^{I}\right) & =\operatorname{det}\left(1-\operatorname{Frob}^{-1} T \mid V_{L} E\right) \\
& =1-a T+q T^{2}
\end{aligned}
$$

where $a=q+1-\# \tilde{E}\left(\mathbb{F}_{q}\right)$.

Bad reduction

We have that

$$
\tilde{E}_{n s} \stackrel{\text { normalisation }}{\cong} \begin{cases}\mathbb{P}^{\prime} \backslash\{2 \mathrm{pts} / k\} & =\mathbb{A}^{\prime} \backslash\{0\}=\mathbb{G}_{m} \\ \mathbb{P}^{\prime} \backslash\{2 \mathrm{pts} \text { swapped by Frob }\} & =\text { quad. twist of } \mathbb{G}_{m} \\ \mathbb{P}^{\prime} \backslash\{1 \mathrm{pt}\} & =\mathbb{A}^{\prime}=\mathbb{G}_{a}\end{cases}
$$

The only algebraic groups of dimension 1 are elliptic curves, \mathbb{G}_{a} and \mathbb{G}_{m}.
Additive
Then $\tilde{E}_{n s}(\bar{k})=\mathbb{G}_{a}(\bar{k})=(\bar{k},+)$ and \bar{k} is $\infty-\operatorname{dim} \mathbb{F}_{p}$ vector space, $p=\operatorname{char} k$. Thus there is no l torsion for $l \neq$ char k and

$$
T_{l} E_{n s}=0 \stackrel{\text { Thm }}{\Longrightarrow} V_{l} E^{I}=0
$$

Hence $F(T)=1$.
Split mult.
Now $\mathbb{G}_{m}(\bar{k})=\bar{k}^{\times}, V_{l} \mathbb{G}_{m}=\chi_{l}$. So G_{K} acts on $V_{l} E$ as

$$
\left(\begin{array}{cc}
\chi_{l} & \cdot \\
0 & 1
\end{array}\right)
$$

where \cdot is non-zero on inertia, and bottom row elements are 0 by I-invariants on $V_{l} E=V_{l} \mathbb{G}_{m}$ and 1 since $\operatorname{det} V_{l}=\chi_{l}$. Further, G_{K} acts on $H_{\text {êt }}^{1}(E)=V_{l} E^{*}$ as

$$
\left(\begin{array}{cc}
\chi_{l}^{-1} & 0 \\
\cdot & 1
\end{array}\right)
$$

Noting that $H_{\text {êt }}^{1}(E)^{I}$, trivial Frob action gives the second column as $\binom{0}{1}$. Thus

$$
F(T)=\operatorname{det}\left(1-\operatorname{Frob}^{-1} T \mid H^{\prime}(E)^{I}\right)=1-T
$$

Multiplicative

Similarly, unr. quad. \otimes split: I acts as

$$
\left(\begin{array}{ll}
1 & \cdot \\
0 & 1
\end{array}\right)
$$

and Frob as

$$
\left(\begin{array}{ll}
1 & 0 \\
\cdot & q
\end{array}\right)\left(\begin{array}{cc}
-q^{-1} & 0 \\
\cdot & -1
\end{array}\right) .
$$

So $F(T)=1+T$.
In the multiplicative case, $E\left[l^{n}\right]$ is also completely described using the Tate curve: For E / \mathbb{C},

$$
E(\mathbb{C}) \cong \mathbb{C} / \mathbb{Z}+\tau \mathbb{Z} \stackrel{\exp (2 \pi i \cdot)}{\cong} \mathbb{C}^{\times} / q^{\mathbb{Z}} \quad \text { for } q=e^{2 \pi i \tau}
$$

This isomorphism from $E(\mathbb{C})$ to $\mathbb{C}^{\times} / q^{\mathbb{Z}}$ is analytic.

Theorem 15.3 (Tate). Let K be a local field, E / K an elliptic curve with split mult. red. Then $\exists!q \in K, v(q)>0$ such that

$$
E(\bar{K}) \xrightarrow{\sim} \bar{K}^{\times} / q^{\mathbb{Z}}
$$

as G_{K}-modules. This is the same analytic isomorphism as described above, e.g.

$$
j(E)=q^{-1}+744+196884 q+\ldots ; \quad v(j)=-v(q)<0
$$

Corollary 15.3.1. As a $G_{K^{-}}$module,

$$
\begin{aligned}
E\left[l^{n}\right] & \cong\left\{l^{n}-\text { torsion pts in } \bar{K}^{\times} / q^{\mathbb{Z}}\right\} \\
& =\left\langle\zeta_{l^{n}}, \sqrt[l^{n}]{q}\right\rangle \\
& \cong\left(\mathbb{Z} / l^{n} \mathbb{Z}\right)^{2}
\end{aligned}
$$

So G_{K} acts on $T_{l} E$ as

$$
\left(\begin{array}{cc}
\chi_{l} & \cdot \\
0 & 1
\end{array}\right)
$$

I acts as

$$
\left(\begin{array}{cc}
1 & c \cdot \tau_{l} \\
0 & 1
\end{array}\right)
$$

where $c=v(q)=-v(j)$, and

$$
\begin{gathered}
\tau_{l}: I \rightarrow \mathbb{Z}_{l} \quad l \text {-adic tame char } \\
\sigma \mapsto\left(\frac{\sigma(\sqrt[l^{n}]{\pi})}{\sqrt[l^{n}]{\pi}}\right)_{n} \in \lim _{\leftarrow}\left(l^{n} \text { th roots of } 1\right)=\mathbb{Z}_{l} . \\
{\left[I_{\text {wild }} \triangleleft I, I_{\text {tame }}=I / I_{\text {wild }}=\prod_{l \neq \text { char } k} \mathbb{Z}_{l}, \quad \tau_{l}: I_{\text {tame }} \rightarrow \mathbb{Z}_{l} .\right]}
\end{gathered}
$$

Remark. In the additive reduction case, E / K acquires $\operatorname{good}(v(j) \geq 0)$ or multiplicative $(v(j)<0)$ reduction over some finite F / K. Thus, in the additive case, I has a finite index subgroup I_{F} (normally I_{p}) that acts on $T_{l} E$ as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \text { or as } \quad\left(\begin{array}{cc}
1 & c \cdot \tau_{l} \\
0 & 1
\end{array}\right)
$$

Remark. Good and multiplicative reduction are also called stable (stay the same in all finite extensions) and additive reduction is called unstable.

Theorem 15.4 (Grothendieck Monodromy Theorem). Let K be a local field, V / K a nonsingular projective variety. Then there exists a finite extension F / K such that I_{F} acts on $H_{e t}^{i}\left(V_{\bar{K}}, \mathbb{Q}_{l}\right)$ as $\operatorname{Id}+\tau_{l} N$ for some nilpotent matrix N. Such a representation of G_{K} is called a Weil representation if $N=0$, and a Weil-Deligne representation in general.

Example 15.2. Let E / K be an elliptic curve. Then we have
potentially good reduction $v(j) \geq 0, N=0, H_{e t t}^{1}(E)$ is a Weil rep
potentially mult. $v(j)<0, N=\left(\begin{array}{ll}0 & c \\ 0 & 0\end{array}\right), H^{1}(E)$ is a W-D rep.
Example 15.3. For varieties other than curves and abelian varieties, we do not have a geometric counterpart of this statement - it is conjectured, but not known, that any V/K acquires semistable reduction (only ordinary double points as singularities) after some finite extension F / K - if true this proves independence of l by roughly the same argument.

[^0]: ${ }^{1}$ c.f. $x^{4}-x^{2}+1=\left(x^{2}+2 x-1\right)\left(x^{2}-2 x-1\right) \bmod 5$
 ${ }^{2}$ c.f. $x^{4}-x^{2}+1=(x-2)(x-6)(x-7)(x-11) \bmod 13$

[^1]: ${ }^{3}$ Also see D_{4} on groupnames.org

[^2]: ${ }^{4}$ If $\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$primitive then the modulus of χ is m

