Galois Representations

Tim Dokchitser Course notes by Emma Bailey

Oct 13 - Dec 1, 2016

1 Riemann ζ -function

Definition. Recall that we define Riemann's zeta function via

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_p (1 - p^{-s})^{-1}.$$

Riemann proved that ζ can be extended meromorphically to \mathbb{C} .

Theorem 1.1. We have that $\zeta(s)$ has meromorphic continuation to \mathbb{C} with a simple pole at s = 1 of residue 1. The completed function has the form

$$\hat{\zeta}(s) = \frac{1}{\pi^{s/2}} \Gamma\left(\frac{s}{2}\right) \zeta(s),$$

and it satisfies the functional equation

$$\hat{\zeta}(s) = \hat{\zeta}(1-s).$$

 \square

Proof. This is proved using the Poisson summation formula and is a standard proof.

Definition (*L*-function). We define an *L*-function as a Dirichlet series of the form

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

where $a_n \in \mathbb{C}$, and $a_n = O(n^r)$ for some r. Then the series 'makes sense' since it will converge on the half plane for $\operatorname{Re}(s) > r + 1$. It has an Euler product and has degree d if can be written as a product

$$L(s) = \prod_{p} \frac{1}{F_p(p^{-s})}$$

with $F_p(t) \in \mathbb{C}[t]$ polynomials of degree $\leq d$, and = d for almost all primes. The terms are called local factors and $F_p(T)$ the local polynomials.

Example 1.1. The Riemann zeta function has Euler product and degree 1.

All L-fns we will see will satisfy this, and are conjectured to

- (a) have meromorphic continuation to \mathbb{C} with finitely many poles (usually none)
- (b) Function equation: \exists weight k, a sign w, conductor N and a Γ -factor

$$\gamma(s) = \Gamma\left(\frac{s+\lambda_1}{2}\right)\cdots\Gamma\left(\frac{s+\lambda_d}{2}\right)$$

such that

$$\hat{L}(s) = \left(\frac{N}{\pi^d}\right)^{s/2} \gamma(s) L(s)$$

satisfies

$$\hat{L}(s) = w \cdot \hat{\overline{L}}(k-s).$$

(c) Riemann hypothesis: all non-trivial zeros lie on the line $\operatorname{Re}(s) = k/2$.

Remarks.

• If L(s) satisfies (a) and (b) then as in the proof of theorem 1.1 (here this theta function is not the Jacobi one)

$$\hat{L}(s) = \int_{1}^{\infty} (x^{s/2} + w \cdot x^{(k-s)/2}) \Theta(\sqrt{N} \cdot x) \frac{dx}{x}$$

where $\Theta(x) = \sum_{n=1}^{\infty} a_n \phi_{n,\gamma}(x)$ where the ϕ function depends only on $\gamma(s)$ and decays exponentially with n. In fact, (b) is equivalent to

$$\Theta\left(\frac{1}{Nx}\right) = w \cdot \overline{\Theta}(x). \tag{(\star)}$$

This gives a way to compute L-functions numerically (with $\sim \sqrt{N}$ terms). This gives an idea of measure of arithmetic complexity of an L-function by looking at how bit the square root of the conductor is (larger means harder).

• There are functions called modular forms f (technically, newforms of weight k, level N and w-eigenform for the Atkin-Lehner involution)

$$f: \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\} \to \mathbb{C}$$

such that $\Theta(x) = f(ix)$ satisfies (*) by definition. Thus, their L-functions satisfy (a) and (b), again pretty much by definition.

- 2 categories of L-fns $L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$:
 - (i) With a direct formula for the a_n . Generally, we know how to prove (a) and (b) for these.
 - (ii) Only defined by an Euler product, for example $L(\rho, s)$ Artin, L(E, s) elliptic curves, other varieties... We never know how to prove (a) and (b) for these except by reducing to (i).

Function	a_n
$\zeta(s)$	1
$L(\chi, s)$	$\chi(n)$
$\zeta_K(s)$	# ideals of norm n in \mathcal{O}_K

2 Dedekind ζ -functions

Definition. Let K be a number field, with $[K : \mathbb{Q}] = d$ so $K \cong \mathbb{Q}^d$ as a \mathbb{Q} -vector space. Then let $\mathcal{O} = \mathcal{O}_K$ be the ring of integers, so $\mathcal{O} \cong \mathbb{Z}^d$ as abelian group. Take $I \subset \mathcal{O}_K$ a non-zero ideal. Define the norm

$$NI = (\mathcal{O}_K : I).$$

It is finite, and satisfies nice properties like being multiplicative:

$$N(IJ) = NI \cdot NJ,$$

and I can be written as a unique product of prime ideals,

$$I = \prod_{i=1}^{\prime} \mathfrak{p}_i^{n_i}$$

where $\mathcal{O}/\mathfrak{p}_i$ is a finite integral domain, which implies it is a field \mathbb{F}_{p^r} and hence $\mathfrak{p}_i \subset (p_i)$ for some primes $p_i \in \mathbb{Z}$.

In particular, if we take an ideal I = (p) where $p \in \mathbb{Z}$ and factor it

$$(p) = \prod_{i=1}^r \mathfrak{p}_i^{e_i},$$

we call the ideals \mathfrak{p}_i primes above p, and the e_i 's are ramification indices (theese are usually equal to 1 for all but finitely many p, namely $p \nmid \Delta_k$ called unramified primes p). Finally, we say that

$$f_i = [\mathcal{O}/\mathfrak{p}_i : \mathbb{F}_p]$$

are the residue degrees. Thus $\mathcal{O}/\mathfrak{p}_i \cong \mathbb{F}_{p^f}$.

Then $N(p) = (\mathcal{O} : p\mathcal{O}) = p^d$ since $\mathcal{O} \cong \mathbb{Z}^d$ and $p\mathcal{O} \cong p \cdot \mathbb{Z}^d$. This implies that

$$d = \sum_{i=1}^{r} e_i f_i$$

in general, and $d = \sum_{i=1}^{r} f_i$ for unramified primes.

Note that if the extension K/\mathbb{Q} is Galois then $e_1 = \cdots = e_d$, $f_1 = \cdots = f_d$ since $Gal(K/\mathbb{Q})$ permutes \mathfrak{p}_i transitively. Hence in this case d = efr.

In practice,

Theorem 2.1 (Kummer-Dedekind). Let $K = \frac{\mathbb{Q}[x]}{(g(X))}$ where $g(X) \in \mathbb{Z}[X]$ monic. Then $\Delta_K | \Delta_g$, and for all primes $p \nmid \Delta_g$,

$$p = \prod_{i=1}^{r} \mathfrak{p}_i$$

is unramified, and we have

$$g(X) = g_1 \dots g_r \mod p$$

with deg $g_i = f_i$.

Definition (Dedekind ζ -function of *K*). Let

$$\zeta_K(s) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

where $a_n = \{ \# \text{ of ideas of norm } n \text{ in } \mathcal{O}_K \}$. Alternatively, we can write

$$\begin{aligned} \zeta_K(s) &= \sum_{\substack{I \subset \mathcal{O}_K \text{ ideal}\\I \neq 0}} \frac{1}{NI^s} \\ &= \prod_{\substack{\mathfrak{p} \text{ prime ideal } \neq 0\\p \text{ prime ideal } \neq 0}} \frac{1}{1 - N\mathfrak{p}^{-s}} \\ &= \prod_{\substack{p \text{ prime of } \mathbb{Z}}} \frac{1}{F_p(p^{-s})} \quad \text{This follows from KD} \end{aligned}$$

Here $F_p \in \mathbb{Z}[x]$ is of degree d for $p \nmid \Delta_K$ and of degree < d for $p \mid \Delta_K$. These are degree d *L*-functions.

Example 2.1. Take $K = \mathbb{Q}(i)$, $\mathcal{O} = \mathbb{Z}[i]$ Gaussian integers, and $\mathcal{O}^{\times} = \{\pm 1, \pm i\}$ units.

As for Riemann ζ ,

$$\begin{split} \zeta_K(s) &= \sum_{\substack{I \subset \mathbb{Z}[i] \\ I \neq 0}} \frac{1}{NI^s} \\ &= \sum_{\substack{0 \neq \alpha \in \mathbb{Z}[i] \\ \text{mod } \mathbb{Z}[i]^{\times}}} \frac{1}{(\alpha \overline{\alpha})^s} \quad \text{Since } \mathbb{Z}[i] \text{ is a PID} \\ &= \frac{1}{4} \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{0\}} \frac{1}{(m^2 + n^2)^s}. \end{split}$$

The same computation as before (for RZF) gives that

$$\frac{2^s}{\pi^s}\Gamma(s)\zeta_K(s) = \text{Mellin transform of } \frac{\Theta(x) - 1}{4}$$

$$\Theta(x) = \sum_{m,n\in\mathbb{Z}} e^{-\pi(m^2+n^2)x}$$
$$= \sum_m e^{-\pi m^2 x} \sum_n e^{-\pi n^2 x}$$
$$= \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \Theta\left(\frac{1}{x}\right).$$

This trick as before gives a functional equation for $\zeta_{\mathbb{Q}(i)}(s)$. For general number fields, the extra statement we need is a generalised Poisson summation formula:

Let $V = \mathbb{R}^d$, $f : V \to \mathbb{C}$ decaying fast. Take V^* the dual vector space, and define the Fourier transform $\mathcal{F}f : V^* \to \mathbb{C}$ by

$$(\mathcal{F}f)(\underline{m}) = \int_{V} e^{-2\pi i \langle m,n \rangle} f(\underline{n}) d\underline{n}.$$

Take $\Gamma \subset V$ a rank d lattice. Then

$$\sum_{\underline{n}\in\Gamma} f(\underline{n}) = \frac{1}{\operatorname{vol}(V/\Gamma)} \sum_{\underline{m}\in\Gamma^*} (\mathcal{F}\hat{f})(\underline{m}).$$

Use this to compare $\sum_{I \neq 0} \frac{1}{NI^s}$ to $\sum_{\substack{\alpha \in \mathcal{O} \\ \alpha \neq 0}} \frac{1}{N\alpha^s}$. This will involve

- the class number, $h = #{ideals/principal ideals}$ and
- units, roots of unity,

If we have K a number field of degree $[K : \mathbb{Q}] = d = r_1 + 2r_2$, then

- $r_1 = \#$ real embeddings $K \hookrightarrow \mathbb{R}$
- $r_2 = \#$ pairs of non-real embeddings $K \hookrightarrow \mathbb{C}$.

Then $\mathcal{O} \subset \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \cong \mathbb{R}^d$ is a lattice.

After these considerations, we find that Poisson summation gives that

Theorem 2.2. We have that $\zeta_K(s)$ is meromorphic on \mathbb{C} , it has a simple pole at s = 1, a residue at s = 1 of value

$$\frac{2^{r_1}(2\pi)^{r_2}hR}{\#\text{roots of unity in }K\cdot\sqrt{|\Delta_K|}}.$$

The above expression for the value of the residue is called the class number formula, where h is again the class number, and R is the regulator (of units). Further, $\zeta_K(s)$ satisfies the functional equation,

$$\zeta_K(1-s) = \zeta_K(s).$$

Exercise 2.1 (Answer on MO 218759). If $[K : \mathbb{Q}] = d$, and K is Galois, then there exists infinitely many primes that 'split completely in K' (i.e. they have the maximal possible number of primes above them, and e = f = 1), and have density $\frac{1}{d}$.

and

3 Dirichlet *L*-functions

Within this section, we will show that we can relate Dirichlet *L*-functions and the Dedekind zeta function over a cyclotomic field. First we begin with some standard definitions.

Definition. Let $n \ge 2$. Then a (mod n) Dirichlet character is a group homomorphism

 $\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times},$

and they form a group $(\widehat{\mathbb{Z}/n\mathbb{Z}})^{\times}$. The two main invariants of a character are:

- Order of χ : the smallest such d such that $\chi^d = 1$, so χ maps to the dth roots of unity. Those characters where d = 2 are called quadratic.
- Modulus of χ : the smallest m|n such that $\exists \chi_0 : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ such that $\chi(a) = \chi_0(a)$ for all a such that (a, n) = 1. We extend $\chi : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ to

$$\chi:\mathbb{Z}\to\mathbb{C}$$

by

$$\chi(a) = \begin{cases} \chi_0(a) & (a,m) = 1 \\ 0 & o.w. \end{cases}$$

Then χ is almost a homomorphism (it is except on 'bad' primes) - but it is totally multiplicative.

Example 3.1. For n = 1, $\chi(a) = 1$ for all $a \in \mathbb{Z}$, which we call the trivial character. It has order 1 and modulus 1. We write 1 for the trivial character.

Example 3.2. For n = 3, then $\chi : (\mathbb{Z}/3\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ and $(\mathbb{Z}/3\mathbb{Z})^{\times} \cong C_2$ so there are 2 characters. The first is the trivial character 1, and the second is

$$\chi_3(n) = \begin{cases} 1 & a \equiv 1 \mod 3\\ -1 & a \equiv 2 \mod 3\\ 0 & a \equiv 0 \mod 3 \end{cases}$$

Then χ_3 has modulus 3 and order 2.

For n = 4, there are also 2 characters, with the non-trivial being

$$\chi_4(a) = \begin{cases} 1 & a \equiv 1 \mod 4\\ -1 & a \equiv 3 \mod 4\\ 0 & a \text{ even.} \end{cases}$$

Then χ_4 has order 2 and modulus 4.

Example 3.3. When n = 5 then the domain is isomorphic to C_4 so

$$\chi_5: C_4 \to \mathbb{C}^{\times}$$

so we could send $2 \mapsto i$ then χ_5^2 , $\overline{\chi_5} = \chi_5^3$ and $\chi_5^4 = 1$ are the possible characters.

	1	5	7	11
1	1	1	1	1
χ_3	1	-1	1	-1
χ_4	1	1	-1	-1
$\chi_3\chi_4$	1	-1	-1	1

Example 3.4. n = 12 then there are 4 characters (isom to $C_2 \times C_2$), and

Note that χ_3 looks like $\left(\frac{-3}{\cdot}\right)$ and has modulus 3, order 2; χ_4 is $\left(\frac{-1}{\cdot}\right)$ and has modulus 4, order 2; $\chi_3\chi_4$ is $\left(\frac{3}{\cdot}\right)$ and has modulus 12 order 2.

Recall that in the particular case q = 2*, we have*

$$\binom{n}{2} = \begin{cases} 0 & n \not\equiv 1 \mod 4 \\ 1 & n \equiv 1 \mod 8 \\ -1 & n \equiv 5 \mod 8 \end{cases}$$
$$= \begin{cases} 0 & 2 \text{ ramifies in } \mathbb{Q}(\sqrt{n}) \\ 1 & 2 \text{ splits in } \mathbb{Q}(\sqrt{n}) \\ -1 & 2 \text{ inert in } \mathbb{Q}(\sqrt{n}). \end{cases}$$

Definition. We define the Dirichlet L-function modulus m to be, for a Dirichlet character $\chi : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$,

$$L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_p \frac{1}{1 - \chi(p)p^{-s}}.$$

These are local polynomials: 1 *if* p|m *and* $1 - \chi(p)T$ *if* $p \nmid m$ *.*

Further $|\chi(n)| \leq 1$ thus they are absolutely convergent on $\operatorname{Re}(s) > 1$. In fact, for $\chi \neq 1$, using some yoga called Abel summation and the fact that

$$\left|\sum_{n=A}^{B} \chi(n)\right| \le m$$

for all A, B, the L-series converges (not absolutely) on $\operatorname{Re}(s) > 0$.

Theorem 3.1. $L(\chi, s)$ is entire for χ not the trivial character. The completed form is

$$\hat{L}(\chi,s) = \left(\frac{m}{\pi}\right)^{s/2} \Gamma\left(\frac{s+\lambda}{2}\right) L(\chi,s),$$

and it satisfies the functional equation

$$\hat{L}(\chi, 1-s) = w \cdot L(\bar{\chi}, s)$$

where bar is complex conj, with

$$\lambda = \begin{cases} 0 & \chi(-1) = 1, \ \chi \text{ even} \\ 1 & \chi(-1) = -1, \ \chi \text{ odd.} \end{cases}$$

Note that w = 1 for Riemann zeta but in this case is defined as

$$w = \frac{1}{\sqrt{m}} \sum_{a=0}^{m-1} \chi(a) \zeta_m^a,$$

the $\zeta_m = e^{\frac{2\pi i}{m}}$ are primitive m^{th} roots of unity. Note that this is the Gauss sum and $w \in \mathbb{C}^{\times}$ with |w| = 1.

Proof. The outline of the proof uses Poisson summation with

$$e^{-\pi(mx+a)^2t}$$
 even χ
 $e^{-\pi x^2t}$ odd χ .

We now want to show that the Dedekind zeta satisfies

$$\zeta_{\mathbb{Q}(\zeta_m)}(s) = \prod L(\chi, s),$$

where the χ vary all over $\chi : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.

Note that a corollary of this is that $L(\chi, 1) \neq 0$ for all non-trivial characters: from the Dedekind zeta product form above, there is a simple pole in LHS at s = 1 and on the right we have $L(\mathbb{1}, s) = \zeta(s)$ (which has the pole) and all the other characters give analytic L-functions at s = 1. This proves Dirichlet's theorem on primes in arithmetic progressions:

Take

$$\underline{p} = \{ \text{primes } p \equiv a \mod m \} \text{ for } (a, m) = 1,$$

then consider

$$\sum_{p \in \underline{p}} \frac{1}{p^s}.$$

Since we can consider

$$\log \zeta(s) = \sum_{p} \frac{1}{p^s} + \{\text{terms analytic at } s = 1\},\$$

we can say

$$\sum_{p \in \underline{p}} \frac{1}{p^s} = \frac{1}{\varphi(m)} \sum_{\chi} \overline{\chi(a)} \log L(\chi, s) + \{\text{analytic at } s = 1\}.$$

Note that all the functions are analytic except when we are considering Riemann zeta which contributes a pole.

The LHS diverges for s = 1 because of the contribution from L(1, s) on the right which then gives a growth independent of the choice of a. Thus \underline{p} is infinite and has density $\frac{1}{\varphi(m)}$.

4 Cyclotomic Fields

Fix $m \ge 1$ and assume that m is not twice an odd number. Then $K = \mathbb{Q}(\zeta_m)$ is the field of interest, and is called the m^{th} cyclotomic field, where $\zeta_m = e^{\frac{2\pi i}{m}}$ and the degree of K over \mathbb{Q} is $\varphi(m)$:

Clearly $K = \mathbb{Q}(\text{roots of } x^m - 1) = \mathbb{Q}(\text{roots of } \Phi_m)$ where Φ_m is the m^{th} cyclotomic polynomial, $\Phi_1(x) = x - 1$,

$$x^m - 1 = \prod_{d|m} \Phi(d)$$

so deg $\Phi_m = \varphi(m) = (\mathbb{Z}/m\mathbb{Z})^{\times}$.

Note that K is Galois over \mathbb{Q} .

Further, when $m = q^k$ then it is easy to verify that

- Φ_m(x+1) = x^{φ(m)} + · · · + q, and it is Eisenstein and hence irreducible. This in particular shows that [Q(ζ_m) : Q] = φ(m).
- $(q) = (1 \zeta_m)^{\phi(m)}$ so we have equality as ideals in \mathcal{O}_K . Thus q is totally ramified in K/\mathbb{Q} .
- All other primes are $p \nmid \Delta_{x^m-1} \implies$ are unramified in K/\mathbb{Q} with residue degree

$$f =$$
order of p in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

Proof. We have that $p \equiv 1 \mod m$ iff m^{th} roots of unity are all contained in \mathbb{F}_p^{\times} . Equivalently, $\Phi_m = \frac{x^{q^k} - 1}{x^{q^{k-1}} - 1}$ splits completely over \mathbb{F}_p . Similarly, if $p^r \equiv 1 \mod m$ for some r, this is equivalent as above (except with $\mathbb{F}_{p^r}^{\times}$) and Φ_m has irreducible factors of degree dividing r over \mathbb{F}_p . Thus, since the order of p in $(\mathbb{Z}/m\mathbb{Z})^{\times}$ is the smallest such r, then f = r by KD.

Now, in the general case, $m = q_1^{k_1} \dots q_j^{k_j}$, the field that we consider $K = \mathbb{Q}(\zeta_m)$ is the compositum of $\mathbb{Q}(\zeta_{q_1}^{k_1}), \dots, \mathbb{Q}(\zeta_{q_j}^{k_j})$, and in particular, if we look at ramification of primes, we see that these fields have no common overlap so

$$[\mathbb{Q}(\zeta_m):\mathbb{Q}] = \prod \varphi(q_i^{k_i}) = \varphi(m),$$

which proves that all Φ_m are irreducible.

Then if $p \nmid m$ then p is unramified in $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ with residue degree $f_p = \text{order of } p$ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$. If otherwise p|m so $m = p^k m_0$ so p ramifies in $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ with ramification degree $e_p = [\mathbb{Q}(\zeta_{p^k}) : \mathbb{Q}] = p^{k=1}(p-1)$ and has residue degree $f_p = \text{order } p \mod m_0$.

4.1 ζ -function of $\mathbb{Q}(\zeta_m)$

Recall that

$$\zeta_K(s) = \prod_p F_p(p^{-s}).$$

 $F_p(T) = (1 - T^{f_p})^{\frac{\varphi(m)}{e_p f_p}}$

and recall that $1 - N\mathfrak{p}^{-s} = 1 - p^{-f_p s} = 1 - T^{f_p}$, and $\frac{\varphi(m)}{e_p f_p}$ is the number of primes above p. The degree of F_p is usually $\varphi(m)$ since most primes are unramified, and in general deg $F_p = \varphi(m_0)$.

We can hence observe,

$$F_p(T) = \prod_{a \in (\mathbb{Z}/f_p\mathbb{Z})^{\times}} (1 - \zeta_{f_p}^a T)^{\frac{\varphi(m_0)}{f_p}} = \prod_{\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}} (1 - \chi(p)T).$$

Combining over all primes, we have shown that

$$\zeta_{\mathbb{Q}(\zeta_m)}(s) = \prod_{\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}} L(\chi, s).$$

Example 4.1. Let m = 12, $K = \mathbb{Q}(\zeta_{12}) = \mathbb{Q}(i, \sqrt{-3})$, a biquadratic extension. It is also the splitting filed of $x^{12} - 1 = \Phi_{12}(x)$. Recall that we can write

$$\Phi_{12}(x) = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12}$$

= $(x-1)(x+1)(x^2+x+1)(x^2+1)(x^2-x+1)(x^4-x^2+1).$

Here are some local factors for $\zeta_{\mathbb{Q}(\zeta_{12})}(s)$ *:*

		$F_2(T)$	$F_3(T)$	$F_5(T)$	 $F_{13}(T)$
	$\zeta(s) = L(1, s)$	1-T	1 - T	1 - T	 1-T
×	$L(\chi_3,s)$	1+T	1	1+T	 1 - T
×	$L(\chi_4,s)$	1	1+T	1 - T	 1 - T
\times	$L(\chi_{12},s)$	1	1	1+T	 1 - T
=	$\zeta_{\mathbb{Q}(\zeta_{12})}(s)$	$1 - T^2$	$1 - T^2$	$(1 - T^2)^2$	 $(1-T)^4$

The prime decomposition is

$(2) = \mathfrak{p}_2^2$	$N\mathfrak{p}_2=4$	e = 2, f = 2	ramified
$(3) = \mathfrak{p}_3^2$	$N\mathfrak{p}_3=9$	e=2, f=2	ramified
$(5) = \mathfrak{p}_{5A}\mathfrak{p}_{5B}$		e=1,f=2	partially split ¹
$(13) = \mathfrak{p}_{13A}\mathfrak{p}_{13}$	${}_B\mathfrak{p}_{13C}\mathfrak{p}_{13D}$		totally split ² .

¹c.f. $x^4 - x^2 + 1 = (x^2 + 2x - 1)(x^2 - 2x - 1) \mod 5$ ²c.f. $x^4 - x^2 + 1 = (x - 2)(x - 6)(x - 7)(x - 11) \mod 13$

Then

4.2 Abelian extensions of \mathbb{Q}

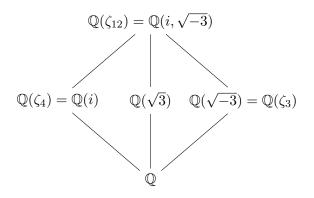


Figure 1: Extension map

We have the extension map figure 1. Note that we have the following decompositions,

$$\begin{aligned} \zeta_{\mathbb{Q}(\zeta_{12})} &= \zeta \cdot L(\chi_3)L(\chi_4)L(\chi_{12}) \\ \zeta_{\mathbb{Q}(\zeta_4)} &= \zeta \cdot L(\chi_4) \\ \zeta_{\mathbb{Q}(\zeta_3)} &= \zeta \cdot L(\chi_3) \\ \zeta_{\mathbb{Q}(\sqrt{3})} &= \zeta \cdot L(\chi_{12}) = \zeta \cdot L(\left(\frac{3}{\cdot}\right)). \end{aligned}$$

Theorem 4.1 (Kronecker-Weber). We say that K/\mathbb{Q} is abelian if it is Galois with $Gal(K/\mathbb{Q})$ abelian. Then

$$K/\mathbb{Q}$$
 is abelian $\iff K \subset \mathbb{Q}(\zeta_m)$ for some m

In fact, from representation theory (justified more later),

$$\iff \zeta_K(s) = \prod_{i=1}^{[K:\mathbb{Q}]} Dirichlet L-fns.$$

Generalisation

Due to Hecke: can we do the same type of procedure over a number field F in place of \mathbb{Q} ? So we would fix a non-zero ideal $\mathfrak{m} \subset \mathcal{O}_F$ called a 'modulus'. Then we would define

$$L(\chi,s) = \sum_{\substack{I \subset \mathcal{O}_F \\ \text{ideal} \neq 0}} \chi(I) N I^{-s} = \prod_{\mathfrak{p}} \frac{1}{1 - \chi(\mathfrak{p})(N\mathfrak{p})^{-s}},$$

with $\chi: I_{\mathfrak{m}} = \{ \text{fractional ideals of } F \text{ prime to } \mathfrak{m} \} \to \mathbb{C}^{\times} \text{ of finite order,}$

 $\chi(I) = 1 \text{ on } P_{\mathfrak{m}} = \{ \text{principal ideals } (\alpha) \text{ such that } \alpha \equiv 1 \mod \mathfrak{m} \}.$

Then extend to all other ideals, by mapping them to 0.

	$x \mapsto \operatorname{sgn}(x)^u x ^{v+iw}$	$u \in \{0, 1\}$
$\mathbb{C}^{\times} \to \mathbb{C}^{\times}$	$x \mapsto \left(\frac{x}{ x }\right)^u x ^{v+iw}$	$u \in \mathbb{Z}.$

Table 1: Possibilities for φ .

Example 4.2. $L(1, s) = \zeta_F(s)$.

Hecke showed analytic continuation and a functional equation for these *L*-functions. Thus these are truly analogues to Dirichlet *L*-functions, but over *F*. There is a further slight generalisation, called Hecke characters and/or Grössencharakters. These allow $\chi|_{P_m} : \alpha \mapsto \mathbb{C}^{\times}$ instead of 1, to agree with

$$F^{\times} \hookrightarrow (\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2} \to \mathbb{C}^{\times}$$

via some continuous homomorphism φ , cally 'infinity type'.

At real places, possibilities for φ (see Table 1) are just shifts.

Example 4.3.

$$\zeta(s-1) = \prod_{p} \frac{1}{1 - p \cdot p^{1-s}} = L(\chi, s),$$

with $\chi(p) = p$ the cyclotomic character.

This is a Hecke character with infinite typy $\mathbb{R}^{\times} \to \mathbb{C}^{\times}$, $z \mapsto |z|$. That is, takes generator $\pm n$ of an ideal (n) and maps it to n. The modern formulation is:

Hecke characters on F = continuous group homomorphisms,

 $\mathbb{A}_F^{\times} \to \mathbb{C}^{\times}$ with F^{\times} in the kernel.

Tate's thesis gives an alternative proof of meromorphic continuation and functional equation for Hecke characters using Fourier analysis on adeles.

5 Decomposition, inertia, Frobenius

Let K be a number field, $\mathfrak{p} \subset \mathcal{O}_K$ a prime (e.g. $\mathbb{Q}, (p)$). Then assume F/K is a finite Galois extension, $G = \operatorname{Gal}(F/K), |G| = [F:K] = d$.

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be the primes above \mathfrak{p} in F. Recall that if e is the ramification degree, f the residue degree, then here efr = d.

Remark (Fact 1). *G permutes the* p_i *transitively.*

Definition. We define the **decomposition group** of the primes p_i as the stabiliser of p_i in G. We write it as D_{p_i} , so

$$D_{\mathfrak{p}_i} = \{ \sigma \in \operatorname{Gal}(F/K) : \sigma(\mathfrak{p}_i) = \mathfrak{p}_i \},\$$

and has index r in G.

Then $D_{\mathfrak{p}_i}$ acts on the residue fields $\mathcal{O}_F/\mathfrak{p}_i \cong \mathbb{F}_{a^f}$ so we get

$$D_{\mathfrak{p}_i} \xrightarrow{\mathrm{mod}\,\mathfrak{p}_i} \mathrm{Gal}(\mathbb{F}_{q^f}/\mathbb{F}_q) \cong C_f \quad \text{cyclic, gen. by } x \mapsto x^q$$

with the map being the reduction map on automorphisms.

Remark (Fact 2). This map is onto.

Definition. The kernel of $\sigma \mapsto \overline{\sigma}$ is the **inertia group** of \mathfrak{p}_i . Then

$$I_{\mathfrak{p}_i} = \{ \sigma \in D_{\mathfrak{p}_i} | \bar{\sigma} = id \}$$

that is they are the elements of G that map $\mathfrak{p}_i \to \mathfrak{p}_i$ that are invisible on $\mathcal{O}_F/\mathfrak{p}_i$. Then $I_{\mathfrak{p}_i} \stackrel{f}{\triangleleft} D_{\mathfrak{p}_i}$, and $|I_{\mathfrak{p}_i}| = e$.

Definition. A *Frobenius element* at p_i ,

$$\operatorname{Frob}_{\mathfrak{p}_i} = any \ element \ of \ D_{\mathfrak{p}_i} \ that \ acts \ as \ x \mapsto x^q \ on \ \mathcal{O}_F/\mathfrak{p}_i$$

So G has a subgroup of index r, D_{p_i} . Inside D_{p_i} there is a normal subgroup of index f, I_{p_i} . Inside I_{p_i} there is the trivial normal subgroup of index e:

$$G \stackrel{r}{>} D_{\mathfrak{p}_i} \stackrel{f}{\triangleright} I_{\mathfrak{p}_i} \stackrel{e}{\triangleright} \{1\}.$$

By Galois theory, this corresponds to

$$K \xrightarrow{\mathfrak{p} \text{ split}}{r} K_1 \frac{\tilde{\mathfrak{p}}_i \text{ totally inert}}{f} K_2 \frac{\tilde{\mathfrak{p}}_i \text{ totally ramified}}{e} F.$$

Remark. For $\tau \in G$,

$$D_{\tau(\mathfrak{p}_i)} = \{ \sigma \in G | \sigma(\tau(\mathfrak{p}_i)) = \tau(\mathfrak{p}_i) \}$$

= $\{ \tau \sigma \tau^{-1} | \sigma(\mathfrak{p}_i) = \mathfrak{p}_i \}$
= $\tau D_{\mathfrak{p}_i} \tau^{-1}.$

Thus $D_{\mathfrak{p}_1}, \ldots, D_{\mathfrak{p}_r}$ are conjugate in G. It is then convenient to descend to K:

Definition. Let F/K be Galois, \mathfrak{p} prime of K. Then

- D_p := decomposition group of some prime p_i|p. Therefore, this is defined up to conjugacy.
- $I_{\mathfrak{p}} :=$ intertia group of some $\mathfrak{p}_i | \mathfrak{p}$, also defined up to conjugacy.
- $\operatorname{Frob}_{\mathfrak{p}} \coloneqq \operatorname{Frob.}$ element of $D_{\mathfrak{p}_i}$. This is defined up to conjugacy and modulo inertia.

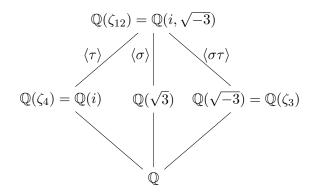


Figure 2: Extension map

Example 5.1. Take $F = \mathbb{Q}(\sqrt{3}, i)$, the biquadratic extension, structure given in Figure 2, and $K = \mathbb{Q}$. Then the Galois group is isomorphic to $C_2 \times C_2$ generated by

$$\sigma(i) = -i \qquad \sigma(\sqrt{3}) = \sqrt{3}$$

$$\tau(i) = i \qquad \tau(\sqrt{3}) = -\sqrt{3}.$$

We look at (2) in F/K. Then (2) is inert in $\mathbb{Q}(\sqrt{-3})$ so its inertia degree is 2 so 2|f. Similarly it ramifies in $\mathbb{Q}(i)$ so 2|e. (This is expanded in HW3). Thus e = f = 2 and r = 1(since F/K = 4 and (2) = \mathfrak{p}_2^2 whose norm is 4. Hence, we have that

$$K \stackrel{\mathfrak{p} \text{ split}}{r} K_1 \stackrel{\tilde{\mathfrak{p}}_i \text{ totally inert}}{f} K_2 \stackrel{\tilde{\mathfrak{p}}_i \text{ totally ramified }}{e} F$$
$$\mathbb{Q} \stackrel{\text{no splitting}}{=} \mathbb{Q} \stackrel{\text{2 inert}}{=} \mathbb{Q}(\sqrt{-3}) \stackrel{\text{2 ramifies}}{=} F.$$

Then

$$D_2 = D_{\mathfrak{p}_2} = G, \qquad I_2 = I_{\mathfrak{p}_2} = \langle \sigma \tau \rangle, \qquad \text{Frob}_2 = \tau \text{ or } \sigma.$$

In the last thing we have to choose anything that isn't in $I_2 = \langle \sigma \tau \rangle$. Explicitly, write $\zeta = \zeta_3 = \frac{-1+\sqrt{-3}}{2}; \zeta^2 = -1 - \zeta$. Then

$$\mathcal{O}_F = \{a + bi + c\zeta + di\zeta | a, b, c, d \in \mathbb{Z}\}$$

and

$$\mathfrak{p}_2 = (1+i) = \{a+bi+c\zeta+di\zeta | a, b, c, d \in \mathbb{Z}, a \equiv b, c \equiv d \mod 2\}$$

Note that $\mathfrak{p}_2^2 = (2)$. Further,

$$\mathcal{O}_F/\mathfrak{p}_2 = \{\overline{0}, \overline{1}, \overline{\zeta}, \overline{1+\zeta}\} \cong \mathbb{F}_4.$$

Consider $\sigma \tau$:

 $\sigma\tau(\mathfrak{p}_2) = (1-i) = \mathfrak{p}_2$, and $\sigma\tau$ fixes $0, 1, \zeta, 1 + \zeta$ so it's trivial on \mathbb{F}_4 . Hence $\sigma\tau \in I_{\mathfrak{p}_2}$ - also note here that $I_2 = \operatorname{Gal}(F : \mathbb{Q}(\sqrt{-3}))$.

Also, $\tau(\mathfrak{p}_2) = \mathfrak{p}_2$ as τ fixes 1 + i. Now τ fixes 0, 1 and sends $\zeta \mapsto \zeta_2 \equiv 1 + \zeta$ (map is mod (2) and the congruence is mod (\mathfrak{p}_2)).

That is $\bar{\tau} : \mathbb{F}_4 \to \mathbb{F}_4$, $x \mapsto x^2$ so it acts on the residue field by squaring everything, and this is precisely what it means to be the Frobenius element for this prime, so $\tau = \text{Frob}_2$. Thus $D_2 = \langle I_2, \text{Frob}_2 \rangle = G$.

6 Galois Representations

Definition. Take G a finite group. Then a d-dimensional (complex) representation of G is a group homomorphism,

$$\rho: G \to \mathrm{GL}(d, \mathbb{C}) = \mathrm{GL}_d(\mathbb{C}) = \mathrm{GL}(V),$$

for V some complex d-dimensional vector space.

Example 6.1. Suppose $G \cong C_4 = \langle g \rangle$. Then we could construct ρ via

$$g \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

a rotation by $\pi/2$. Thus we 'represent G as a group of matrices'.

Definition. When G = Gal(F/K), where F/K is some finite Galois extension, then we call the representation of this group a **Galois representation**,

$$\rho : \operatorname{Gal}(F/K) \to \operatorname{GL}_d(\mathbb{C}),$$

or

$$\rho : \operatorname{Gal}(\overline{K}/K) \to \operatorname{Gal}(F/K) \to \operatorname{GL}_d(\mathbb{C}).$$

When F, K are number fields, then these representations are called **Artin** representations (over K).

Definition. To each such Artin representation, we can associate an L-function. Take

$$\rho : \operatorname{Gal}(F/K) \to \operatorname{GL}(V),$$

an Artin representation. Then we define the (Artin) L-function,

$$L(\rho, s) = L(V, s) \coloneqq \prod_{\mathfrak{p} \text{ prime of } K} F_{\mathfrak{p}}(N\mathfrak{p}^{-s})$$

with

$$F_{\mathfrak{p}}(T) = \det\left(1 - \rho(\operatorname{Frob}_{\mathfrak{p}}^{-1})T|V^{I_{\mathfrak{p}}}\right).$$

Recall that $I_{\mathfrak{p}} = \{v \in V | \sigma(v) = v \ \forall \sigma \in I_{\mathfrak{p}}\}$. Also, note that mostly the inertia group is trivial - so it's not usually as scary as it looks. Thus for all but finitely many primes, $F_{\mathfrak{p}}(T)$ has degree d. It will have smaller degree for those which are ramified.

Exercise 6.1 (Do it!). This is well-defined.

Example 6.2. Let $F = \mathbb{Q}(i)$, $K = \mathbb{Q}$. Then $G = \operatorname{Gal}(F/K) \cong C_2 = \langle 1, \sigma \rangle$. Recall that primes here fall in to 3 categories,

$$p = \begin{cases} 2 & I_2 = G \\ 1 & \text{mod } 4 & I_p = \{1\}, D_p = \{1\}, \text{Frob}_{\mathfrak{p}} = 1 \\ 3 & \text{mod } 4 & I_p = \{1\}, D_p = G, \text{Frob}_{\mathfrak{p}} = \sigma. \end{cases}$$

As an example, take $G \to \mathbb{C}^{\times} = \operatorname{GL}(V_1)$, where dim $V_1 = 1$. Then

 $1, \sigma \mapsto \mathrm{Id}$.

So $V_1^{I_p} = V_1$ for all p and has dimension 1. Then we need to examine the characteristic polynomial of Frob_p:

$$\rho(\operatorname{Frob}_p) = \operatorname{Id} \quad \forall p, \qquad F_p(T) = \det(1 - \operatorname{Id} \cdot T) = 1 - T.$$

Thus the L-function $L(V_1, s) = \zeta(s)$ (unsurprisingly). Now take a different rep, $G \to \mathbb{C}^{\times} = \operatorname{GL}(V_{-1})$, where dim $V_{-1} = 1$ with

$$1 \mapsto \mathrm{Id}, \qquad \sigma \mapsto - \mathrm{Id}.$$

Then

$$V_{-1}^{I_p} = \begin{cases} 0 & p = 2\\ V_{-1} & p > 2 \end{cases}.$$

Turning to the characteristic polynomials,

$$F_p(T) = \begin{cases} 1 & p = 2 \\ \det(1 - \operatorname{Id} \cdot T) = 1 - T & p \equiv 1 \mod 4 \\ \det(1 + \operatorname{Id} \cdot T) = 1 + T & p \equiv 3 \mod 4. \end{cases}$$

Therefore $L(V_{-1},s) = L(\chi_4,s)$, where χ_4 is the Dirichlet character of conductor 4 (defined earlier on).

Final example of a rep: $G \to \operatorname{GL}(V)$ where V has dimension 2. Consider $V = \mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{C}$ - look at G acting on $\mathbb{Q}(i) = \mathbb{Q} \cdot 1 + \mathbb{Q} \cdot i$, \mathbb{Q} -linearly, and take the same matrices over \mathbb{C} . Thus

$$1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sigma \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Thus our space V decomposes as $V \cong V_1 \oplus V_{-1}$. We can see that $V^{I_p} = V_1^{I_p} \oplus V_{-1}^{I_p}$ and whatever determinant we are computing, it is going to be the product of determinants on the two subspaces. Thus,

$$L(V,s) = L(V_1, s)L(V_{-1}, s) = \zeta(s)L(\chi_4, s) = \zeta_{\mathbb{Q}(i)}(s).$$

In fact, any representation of $\operatorname{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \cong C_2$ is

$$V_1 \oplus \cdots V_1 \oplus V_{-1} \oplus \cdots \oplus V_{-1} = V_1^a \oplus V_{-1}^b,$$

so we will always get

$$\zeta(s)^a L(\chi_4, s)^b.$$

Question Why do we define Artin L-functions L(V, s) like this, with

$$F_{\mathfrak{p}}(T) = \det(1 - \rho(\operatorname{Frob}_{\mathfrak{p}}^{-1})T|V^{I_{\mathfrak{p}}})?$$

Write $G_K = \text{Gal}(\bar{K}/K)$ where K is a number field. Then these are a collection of 'semigood' reasons:

- (1) $L(\mathbb{1}_{G_{\mathbb{Q}}}, s) = \zeta(s)$ where $\mathbb{1}_{G_{\mathbb{Q}}}$ is the trivial representation on $\operatorname{Gal}(\overline{Q}/Q)$. More generally, $L(\mathbb{1}_{G_{\mathbb{K}}}, s) = \zeta_K(s)$.
- (2) Generally, 1-dimensional representations of $G_{\mathbb{Q}}$ correspond to Dirichlet *L*-functions. When *K* is a number field, we get Hecke *L*-functions of finite order.
- (3) Suppose $[K : \mathbb{Q}] = d$ (not necessarily Galois) then K determines a natural d-dimensional representation V_K of $G_{\mathbb{Q}}$, the absolute Galois group of \mathbb{Q} . For example, let $K = \mathbb{Q}[X]/f(x)$ with roots $\alpha_1, \ldots, \alpha_d$. Then

$$V_K = \mathbb{C}\alpha_1 \oplus \cdots \oplus \mathbb{C}\alpha_d,$$

and the Galois group acts by permuting the basis elements $\alpha_1, \ldots, \alpha_d$. Then

$$V_K \cong \operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} \mathbb{1}_{G_K}$$

and $\zeta_K(s) = L(V_K, s)$. The decomposition of V_K into irreducible representations leads to _____

$$\zeta_K(s) = \prod$$
 Artin *L*-functions of irreps

- (4) We have that (1) and (3) combine to give $L(\mathbb{1}_{G_K}, s) = L(\operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} \mathbb{1}_{G_K}, s)$ and the same is true for any V of G_K in place of $\mathbb{1}_{G_K}$.
- (5) The Brauer induction gives that (1)-(4) recovers all L(V, s) uniquely from Dirichlet/Hecke L-functions, which shows that our definition of $F_{\mathfrak{p}}(T)$ is the only possible one, and gives meromorphic continuation of all L(V, s) and the corresponding functional equation.
- (6) Everything works in exactly the same way for non-finite image representations (elliptic curves etc.).

7 Special Case: $L(\chi, s)$

Theorem 7.1. There is a bijection

$$\{ \text{Dirichlet characters } \chi \} \longleftrightarrow \{ 1 - \dim \text{Artin reps } \rho : \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{C}^{\times} \}$$
$$\chi \mapsto \rho_{\chi}$$

such that

- χ is of modulus $m \iff \rho_{\chi}$ factors through $\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ and not for smaller d|m (*).
- $L(\chi, s) = L(\rho_{\chi}, s).$

Proof. Take χ of modulus m. Then

$$\rho_{\chi} : \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \xrightarrow{\operatorname{can.}}_{\cong} (\mathbb{Z}/m\mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}$$

where

$$\sigma: \zeta_m \mapsto \zeta_m^a \underset{\text{Artin map}}{\mapsto} a^{-1} \mapsto \chi(a)^{-1}.$$

Note that $p^{-1} \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ corresponds to $\zeta_m \to \zeta_m^p$ which is Frob_p , (or in other words $p \leftrightarrow \operatorname{Frob}_p^{-1}$). Then χ of modulus m implies that it does not come from $(\mathbb{Z}/d\mathbb{Z})^{\times}$ for d|m, d < m so this implies (*).

Kronecker-Weber gives that every representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ that factors through an abelian group, in particular every 1-dim one, ρ , factors through some $\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$. Thus $\rho = \rho_{\chi}$ for some χ .

Finally we need to compare L-functions - we do this by separately considering 'good' and 'bad' primes. For $p \nmid m, L(\chi, s)$ has

$$F_p(T) = 1 - \chi(p)T$$
, for $\chi(p) \in \mathbb{C}^{\times}, p \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

Also, $L(\rho_{\chi}, s)$ has $F_p(T) = 1 - \rho_{\chi}(\operatorname{Frob}_p^{-1})T$ (inertia at p is trivial because p is unramified in $\mathbb{Q}(\zeta_m)/\mathbb{Q}$). So $\rho_{\chi}(\operatorname{Frob}_p^{-1}) = \chi(p)$. For $p|m, L(\chi, s)$ has $F_p(T) = 1$ (as p|m implies $\chi(p) = 0$ since this is how we extend characters).

$$\mathbb{Q}(\zeta_m) \\
| I_p \\
\mathbb{Q}(\zeta_{m_0}) \\
| \\
\mathbb{Q}$$

Figure 3: Extension Diagram for $\mathbb{Q}(\zeta_m)/\mathbb{Q}$.

Since χ has modulus m (it is primitive), ρ_{χ} does not factor through $\operatorname{Gal}(\mathbb{Q}(\zeta_{m_0})/\mathbb{Q})$. Thus I_p acts non-trivially on $V_{\chi} \cong \mathbb{C}$). Then we also note $V_{\chi}^{I_p} = 0 \implies F_p(T) = 1$. \Box

Remark. The same result holds for the one-to-one correspondence

Hecke chars of finite order over $K \xleftarrow{1:1}{l-\dim \operatorname{reps} G_K} \to \mathbb{C}^{\times}$.

The proof of this doesn't use Kronecker-Weber, but instead uses the full force of global CFT.

8 Permutation representations and Dedekind ζ

Let F/K be a finite Galois extension, with G = Gal(F/K). Then there are 1-1 correspondences (one from basic group theory and the Galois correspondence)

Transtive G-sets	$\stackrel{1:1}{\longleftrightarrow}$	Sbgrps of G		$\stackrel{1:1}{\longleftrightarrow}$	flds $K \subset M \subset F$
		up to conj			up to isom/ K
X	\leftarrow	Stabiliser (of an elmt)	H	\mapsto	F^H
		(of an elmt)			
G/H	\leftarrow	H	$\operatorname{Gal}(F/M)$	\leftarrow	M.

Here $G/H = \{ \text{left cosets } g_1 H \dots g_d H \text{ with left mult action} \}.$

If [M : K] = d then we find a transitive G-set X of size d. Or, it can be thought of as a $Gal(\overline{K}/K)$ -set which does not depend on F.

$$F$$

$$M \quad \rightsquigarrow \quad X = G/H$$

$$K$$

Explicitly, if $M = K(\alpha)$, α the root of some irreducible degree d-polynomial $f(x) \in K[x]$. Then set $H = \text{Stab}_G(\alpha)$ and

$$\begin{aligned} X &= X_{M/K} = \{ \text{roots of } f \} \Im G \\ &\stackrel{1:1}{=} \{ K - embeddings \ M \hookrightarrow \bar{K} \} \Im G_K \end{aligned}$$

Example 8.1. Let $G = S_3$, $K = \mathbb{Q}$, $F = \mathbb{Q}(\zeta_3, \sqrt[3]{m})$.

Take a G-set X of size d. Then we get out a d-dim **permutation representation** $\mathbb{C}[X]$ - for the basis take elements of X and let G permute them.

Fields M	SubGrps H	G-sets X	Acts C
Q	S_3	•	G acts trivially
$\mathbb{Q}(\zeta_3)$	C_3	••	G acts through $S_3/C_3 \cong C_2$.
$\mathbb{Q}(\sqrt[3]{m})$	C_2	•	G acts as $S_3 \subset \{1,2,3\}$
F	{1}		Regular action (left mult).

Table 2: Galois correspondence for Exercise 8.1

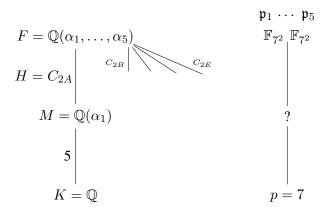
Note that any G-set X can be written as a union of transitive G-sets,

 $X = X_1 \perp\!\!\!\perp X_2 \perp\!\!\!\perp \dots$

so $\mathbb{C}[X] \cong \mathbb{C}[X_1] \oplus \mathbb{C}[X_2] \oplus \cdots$, so it's enough just to consider transitive ones.

[Aside: Prime decomposition in arbitrary extensions.]

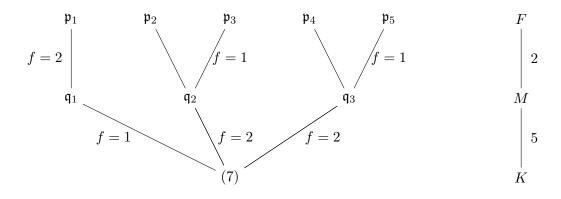
Example 8.2. Let $K = \mathbb{Q}$, $F = \mathbb{Q}$ (roots, α_i of $x^5 - 5x^2 - 3$), so $G = \text{Gal}(F/K) \cong D_5$. Then



Let's consider $D_{\mathfrak{p}_1} \in F/K$ so $D_{\mathfrak{p}_1} = C_{2A}$ say, and $I_{\mathfrak{p}_1} \in F/K$ with $I_{\mathfrak{p}_1} = \{1\}$. In the top 'layer' F/M:

$$D_{\mathfrak{p}_{i}}^{F/M} = D_{\mathfrak{p}_{i}}^{F/K} \cap H = \begin{cases} C_{2A} & i = 1 \leftarrow f_{\mathfrak{p}_{1}}^{F/M} = 2\\ 1 & i = 2, 3, 4, 5 \leftarrow f_{\mathfrak{p}_{i}}^{F/M} = 1 \end{cases}$$

Recall that $H = C_{2A}$ and $D_{p_1} \in \{C_{2A}, \ldots, C_{2E}\}$. Since the f's are multiplicative in towers (see HW3), we have that

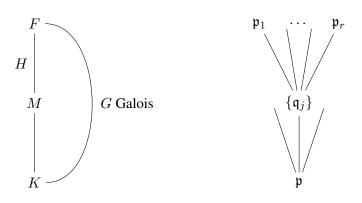


In practice of course we go the other way:

 $x^{5} - 5x^{2} - 3 = (x - 1)(x^{2} + 3x - 2)(x^{2} - 2x + 2) \mod 7$

therefore $(7) = q_1 q_2 q_3$ with f = 1, f = 2, f = 2 respectively in M/K. This implies that the decomposition group of 7 in F/K, $D_7^{F/K} = C_2$ (and not C_1, C_5, D_5).

Proposition 8.1. Let K be a number field,



So $D_i = D_{\mathfrak{p}_i}^{F/K} < G$, $I_i = I_{\mathfrak{p}_i}^{F/K} \triangleleft D_i$. So now write $I = I_1, D = D_1, Frob_{\mathfrak{p}} \in D$.

(i)
$$D_{\mathfrak{p}_i}^{F/M} = D_i \cap H, I_{\mathfrak{p}_i}^{F/M} = I_i \cap H$$

(ii) In M/K, primes $\mathfrak{q}_j|\mathfrak{p}$ are in a 1-1 correspondence with 'double cosets' $Dg_iH \in D\backslash G/H$. They are also in a 1-1 correspondence with orbits of D on G/H. Each orbit has length e_jf_j (e_j the ramification and f_j the residue degree of \mathfrak{q}_j in M/K) and is a union of f_j I-orbits of length e_j cyclically permuted by $\operatorname{Frob}_{\mathfrak{p}}$.

Proof. (i) is clear. (ii) By considering how H acts on $\{\mathfrak{p}_i\}$, we see that the orbits are in a 1-1 correspondence with \mathfrak{q}_j and the stabilisers are $D_{\mathfrak{p}_i}^{F/M}$. Now, how does H act on G/D? Orbits are now in 1-1 correspondence with the double cosets, and stabilisers are $D_i \cap H$. By (i) the stabilisers are equal, so the orbits are the same. The rest of the proposition is bookwork.

Definition. *The relative* ζ *-function is*

$$\zeta_{M/K}(s) = \prod_{\mathfrak{q} \subset \mathcal{O}_M} \frac{1}{1 - N_{M/K}(\mathfrak{q}^{-s})}.$$

Note that this is equal to ζ_M when $K = \mathbb{Q}$.

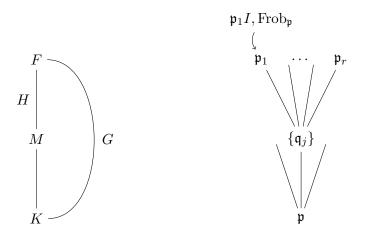
Theorem 8.2. Let M/K be a finite extension. Then

$$\zeta_{M/K}(s) = L(\mathbb{C}[X_{M/K}], s).$$

The RHS is the Artin L-function for the representation $\mathbb{C}[X_{M/K}] \supset \operatorname{Gal}(\overline{K}/K)$.

On the level of local polynomials, for every prime p of K,

$$\prod_{\mathfrak{q}|\mathfrak{p}} (1 - T^{f_q}) \stackrel{\text{Thm}}{=} \det \left(1 - \operatorname{Frob}_{\mathfrak{p}}^{-1} T | \mathbb{C}[X_{M/K}]^{I_p} \right).$$



Proof. Recall that if X is a G-set then we have the representation $\mathbb{C}[X]^G \cong \mathbb{C}^{\# \text{orbits}}$. For example if

$$x_1 \overset{\frown}{\underset{\smile}} x_2 \qquad x_3 \overset{\frown}{\underset{\sim}} x_4 \overset{\frown}{\underset{\smile}} x_5$$

then $\mathbb{C}^G = \langle x_1 + x_2, x_3 + x_4 + x_5 \rangle$. As a *D*-set,

$$X_{M/K} = G/H = \coprod_{Dg_iH} D/D \cap g_j H g_j^{-1}.$$

Recall that I acts with f_i orbits of size $I \cap g_i H g_i^{-1}$ and they are cyclically permuted by Frob_p . Therefore $\mathbb{C}[G/H]^I \cong \bigoplus_j \mathbb{C}^{f_j} \supset \operatorname{Frob}_p$ cyclically (and therefore the inverse of Frob as well). Therefore,

$$\det\left(1 - \operatorname{Frob}_{\mathfrak{p}}^{-1} T | \mathbb{C}[G/H]^{I_{\mathfrak{p}}}\right) = \prod_{j} (1 - T^{f_{j}}) = \text{local factor of } \zeta_{M/K}(s) \text{ at } \mathfrak{p}.$$

9 Characters and Induction

There is the topic of character theory that says for G finite, $\rho : G \to GL(V)$, there exists an object called a 'character' that encodes information about ρ .

Definition. The character of V (or of ρ) is

$$\chi_{\rho} = \chi_V : G \to \mathbb{C},$$

where $g \mapsto \operatorname{tr}(\rho(g))$.

Then note that $\chi_V(e) = \dim V$ and for ρ a one dimensional representation then ' $\chi_\rho = \rho$ '. Two conjugate elements have the same trace so characters are class functions.

Definition. We have the following inner product,

$$\langle \chi_V, \chi_W \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \overline{\chi_W(g)}.$$

Example 9.1. Let $V = \mathbb{C}[X]$ be a permutation rep. Then

$$\chi_{\rho} = \chi_{V} = \#\{\text{fixed points under } V\} = \#\{x \in X : g \cdot x = x\}.$$

Example 9.2. If $G = S_3$ which acts naturally on $X = \{1, 2, 3\}$. Then if $V = \mathbb{C}[X]$, we have that the conjugacy classes, $C = \{[e], [(1, 2)], [(1, 2, 3)]\}$. Thus

$$\chi_V = (3, 1, 0) : \mathcal{C} \to \mathbb{C}.$$

To examine the inner product:

$$\langle \chi_V, \chi_V \rangle = \frac{1}{6} \left[3 \cdot 3 \cdot 1 + 1 \cdot 1 \cdot 3 + 0 \right] = 2.$$

Theorem 9.1. Suppose G is a finite group, $C = \{conj classes\}$, and $I = \{irreps V_1, V_2, ...\}$ up to isomorphism. Then

- $|\mathcal{I}| = |\mathcal{C}|$, dim V_i divides |G|, $\sum_{i=1}^k \dim V_i^2 = |G|$.
- Complete reducibility: every representation can be written

$$V \cong V_1^{\oplus n_1} \oplus \dots \oplus V_k^{\oplus n_k}$$

some $n_i \ge 0$ unique, V_i irreducible.

• If $W = V_1^{\oplus m_1} \oplus \cdots \oplus V_k^{\oplus m_k}$, $m_i \ge 0$, then

$$\langle \chi_W, \chi_V \rangle = \langle \chi_V, \chi_W \rangle = \sum_{i=1}^k n_i m_i = \dim_{\mathbb{C}} \operatorname{Hom}_G(V, W).$$

So in particular,

- $\langle \chi_V, \chi_V \rangle = \sum_{i=1}^k n_i^2$ - V is irreducible $\iff \langle \chi_V, \chi_V \rangle = 1.$ - $\langle \chi_{V_i}, \chi_{V_j} \rangle = \delta_{ij}.$
- $\chi_V + \chi_W = \chi_{V \oplus W}$
- $\chi_V \chi_W = \chi_{V \otimes W}$
- $\overline{\chi_V} = \chi_{V^*}$ the character of the dual rep $g \mapsto (\rho(g)^t)^{-1}$.

Example 9.3. *G* is abelian if and only if $|\mathcal{C}| = |G|$ and $|\mathcal{I}| = |G|$. Further

$$\sum \dim^2 = |G| \implies all \ V_i \in \mathcal{I} \ are \ 1\text{-dimensional}$$

We also have that

$$\{irreps \ of \ G\} = \hat{G} = \operatorname{Hom}(G, \mathbb{C}^{\times}).$$

For any group G,

$$\{1\text{-dim reps of } G\} = \hat{G} = \widehat{\frac{G}{[G,G]}},$$

where $\frac{G}{[G,G]}$ is the maximal abelian quotient of G, so

$$\#\{1\text{-}dim \ reps\} = (G : [G,G])$$

Example 9.4. Let $G = S_4$, so $C = \{e, [(1,2)], [(1,2,3)], [(1,2,3,4)], [(1,2)(3,4)]\}$ and $|\mathcal{I}| = 5$. So every rep of S_4 has the form

$$V_1^{\oplus n_1} \oplus \cdots \oplus V_5^{\oplus n_5}$$

We have 5 irreps ρ_i of dimension 1,1 (from $G/[G,G] = S_4/A_4 = C_2$) and three others of currently unknown dimensions. However

$$\sum_{i=1}^{5} \dim \rho_i^2 = |G| = 24 \implies 1 + 1 + 2 + 3 + 3.$$

Then we have characters from the following representations representations,

- χ_{ρ_1} : $\rho_1 = \mathbb{1} : S_4 \to \operatorname{GL}_1(\mathbb{C})$ the trivial rep so $\chi_{\rho_1} = (1, 1, 1, 1, 1)$.
- χ_{ρ_2} : ρ_2 is the sign representation, so $\chi_{\rho_2} = (1, -1, 1, -1, 1)$.
- χ_{ρ_4} : ρ_4 comes from S_4 acting on $\{1, 2, 3, 4\}$. Call this representation π then $\chi_{\pi} = (4, 2, 1, 0, 0)$ shows number of fixed points. This is reducible and we get that the inner product: $\langle \chi_{\pi}, \chi_{\pi} \rangle = 2$. Further

$$\langle \chi_{\pi}, \chi_{\rho_1} \rangle = 1 \implies \pi \cong \mathbb{1} \oplus \rho_4.$$

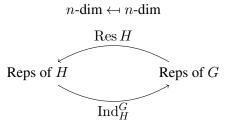
Then $\chi_{\rho_4} = \chi_{\pi} - \chi_1 = (3, 1, 0, -1, -1).$

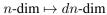
- χ_{ρ_5} : we get this by taking the product of $\chi_{\rho_2}\chi_{\rho_4} = (3, -1, 0, 1, -1)$.
- Finally $\chi_{\rho_3} = (2, 0, -1, 0, 2)$. We can get this in a number of ways: orthogonality, lifting from $S_4/V_4 \cong S_3$, from $\chi_{\mathbb{C}[G]} = \sum_{i=1}^5 \dim \rho_i \chi_{\rho_i}$, or from $\chi_5 \chi_5$ and reducing it.

In total, this gives the character table

	e	[(1,2)]	[(1, 2, 3)]	[(1, 2, 3, 4)]	[(1,2)(3,4)]
χ_1	1	1	1		1
χ_2	1	-1	1	-1	1
χ_3	2	0	-1	0	2
χ_4	3	1	0	-1	-1
χ_5	3	-1	0	1	-1

Alternatively, we could have recovered all the characters using induction: **Theorem 9.2.** Let H < G be a subgroup of index d. There are maps





such that for all reps $\rho: G \to \operatorname{GL}(V), \sigma: H \to \operatorname{GL}(W)$.

- Frobenius Reciprocity holds: $\langle V, \operatorname{Ind} W \rangle_G = \langle \operatorname{Res} V, W \rangle_H$.
- $\operatorname{Res}_H V = same V$ with H action, i.e.

$$\chi_{\operatorname{Res}_H V}(h) = \chi_V(h).$$

• $\operatorname{Ind}_{H}^{G} W = \{f : G \to W : f(hg) = \sigma(h)f(g) \ \forall h \in H, g \in G\}$, and $g \in G$ acts by $f(x) \mapsto f(xg)$.

These are 'complicated' requirements, so instead often we use the following formula for the character of the induction representation:

$$\chi_{\mathrm{Ind}_{H}^{G}W}(g) = \frac{1}{|G|} \sum_{x \in G} \chi_{W}^{0}(xgx^{-1}),$$

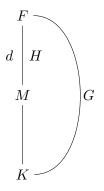
where

$$\chi^0_W = \begin{cases} \chi_W & on \ H \\ 0 & else. \end{cases}$$

•
$$\operatorname{Ind}_{H}^{G} \mathbb{1} \cong \mathbb{C}[G/H].$$

10 Artin Formalism

Theorem 10.1 (L-functions are invariant under induction). If we have the following extension,



and if $\rho: H \to \operatorname{GL}_d(\mathbb{C})$ is an Artin representation then

$$L(\rho, s) = L(\operatorname{Ind}_{H}^{G} \rho, s),$$

where $L(\rho, s)$ is a rep of G_M of dimension n, and $L(\operatorname{Ind}_H^G \rho, s)$ is a rep of G_K of dimension nd where d = (G : H).

Proof. Same argument as for $\rho = 1$,

$$\operatorname{Ind}_{H}^{G} \rho = \mathbb{C}[G/H],$$

but instead of as a D-set

$$G/H = \coprod_{g_i \in D \setminus G/H} D/D \cap g_i H g_i^{-1},$$

we use Mackey's formula,

$$\operatorname{Res}_{D}\operatorname{Ind}_{H}^{G}\rho = \bigoplus_{g_{i} \in D \setminus G/H} \operatorname{Ind}_{D \cap g_{i}Hg_{i}^{-1}}^{D} \rho^{g_{i}}.$$

Theorem 10.2 (Brauer Induction). Suppose we have a representation $\rho : G \to GL_n(\mathbb{C})$. Then

$$\chi_{\rho} = \sum_{i} n_{i} \operatorname{Ind}_{H_{i}}^{G} \chi_{\sigma(i)},$$

for some $n_i \in \mathbb{Z}$ (in particular can be negative), $H_i < G$ may be taken to be of the form $cyclic \times p$ -group, $\sigma_i : H_i \to \mathbb{C}^{\times}$ are 1-dim representation with characters χ_i .

Remark. This is used to construct character tables of groups.

Corollary 10.2.1. Every Artin L-function can be written in terms of L-functions of 1-dimensional representations,

$$L(\rho, s) = \prod_{i} L(\sigma_i, s)^{n_i} \leftarrow \text{Hecke L-fns.}$$

Recall that $\rho : G_K \to \operatorname{GL}_n(\mathbb{C})$ then $\sigma_i : G_{M_i} \to \mathbb{C}^{\times}$ where M_i/K are finite extensions. In particular, $L(\rho, s)$ is meromorphic on \mathbb{C} and satisfies functional equation under $s \leftrightarrow 1 - s$.

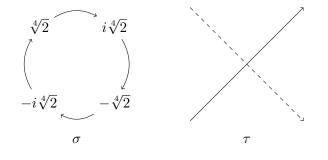
Conjecture (Artin). If $\rho : G_{\mathbb{Q}} \to \operatorname{GL}_n(\mathbb{C})$ is an irreducible Artin rep, $\rho \neq 1$, then $L(\rho, s)$ has analytic continuation to \mathbb{C} .

Remark. The two properties:

$$L(V_1 \oplus V_2, s) = L(V_1, s)L(V_2, s), \quad L(\text{Ind } V, s) = L(V, s),$$

that define L-functions uniquely from those of 1-dimensional representations are called **Artin** *formalism*.

Example 10.1. Let $K = \mathbb{Q}$, $M = \mathbb{Q}(\sqrt[4]{2})$, where $\sqrt[4]{2}$ is a root of $x^4 - 2$, and $F = \mathbb{Q}(\sqrt[4]{2}, i)$ which contains all four roots of $x^4 - 2$. Then the Galois groups contains maps, σ which permute the four roots cyclically, and a map τ acting as a reflection through complex conjugation:



Then $G = \langle \sigma, \tau \rangle = \operatorname{Gal}(F/K) \cong D_4$.

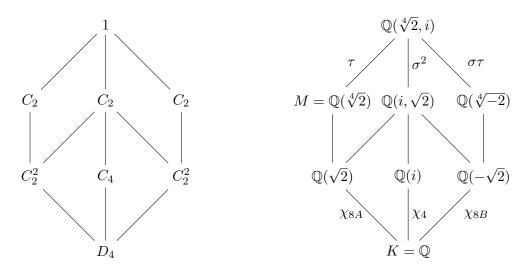


Figure 4: Galois correspondence between F/K and D_4 .

Note³ that $\sqrt[4]{-2} = \zeta_8 \cdot \sqrt[4]{2}$. We also have a character table:

				σ	
1	1	1	1	1	1
χ_4	1	1	-1	1	-1
χ_{8A}	1	1	1	-1	-1
χ_{8B}	1	1	-1	-1	1
$\chi 4$ $\chi 8A$ $\chi 8B$ ψ	2	-2	0	0	0

Table 3: Characters of irreps of D_4 .

The final character ψ is the standard representation of $D_4 \to \operatorname{GL}_2(\mathbb{C})$. The commutator $G' = Z(G) = \{e, \sigma^2\}$ cuts out the maximal abelian extension of \mathbb{Q} in F. Then

$$F^{G'} = \mathbb{Q}(i,\sqrt{2}) = \mathbb{Q}(\zeta_8)$$

and

$$\operatorname{Gal}(\mathbb{Q}(\zeta_8)/\mathbb{Q}) \cong (\mathbb{Z}/8\mathbb{Z})^{\times} \cong C_2 \times C_2,$$

has 1-dim reps $1, \chi_4, \chi_{8A}, \chi_{8B}$ where

$$\chi_4 \leftrightarrow \begin{pmatrix} -1 \\ \cdot \end{pmatrix}, \chi_{8A} \leftrightarrow \begin{pmatrix} 2 \\ \cdot \end{pmatrix}, \chi_{8B} \leftrightarrow \begin{pmatrix} 2 \\ \cdot \end{pmatrix} \rightsquigarrow \text{Dirichlet L-function.}$$

The only exceptional Dirichlet L-function is the one coming from the 2-dim rep with character ψ . This yields $L(\psi, s)$ of degree 2,

$$L(\psi, s) = 1 \cdot \frac{1}{1 - (3^{-s})^2} \cdot \frac{1}{1 + (5^{-s})^2} \cdot \frac{1}{1 - (7^{-s})^2} \cdots$$

³Also see D_4 on groupnames.org

The unit factor at the start comes from the case where we consider the prime 2, then $I_2 = D_4$ and there are no invariants on \mathbb{C}^2 . Then by examining the third factor more, Frob_5 is a rotation by $\pi/2$ so it has characteristic polynomial $(1 + T^2)$, and the fourth gives Frob_7 is a reflection and has characteristic polynomial $(1 - T^2)$. This can be expanded in to a Dirichlet series,

$$L(\psi, s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s},$$

with $a_p = \psi(\operatorname{Frob}_p)$ at least on those $p \nmid \Delta_F$.

Thus, all ζ -functions of subfields of F are products of these, for example

$$\zeta_{\mathbb{Q}(\sqrt[4]{2})}(s) = L(\mathbb{C}[G/\langle \tau \rangle], s),$$

where $\mathbb{C}[G/\langle \tau \rangle]$ is the G set $\{1, 2, 3, 4\}$ with natural D_4 action. So,

$$\chi_{\mathbb{C}[G/\langle \tau \rangle]} = (4, 0, 2, 0, 0)$$

= (1, 1, 1, 1) + (1, 1, 1, -1, -1) + (2, -2, 0, 0, 0)
= 1 + \chi_{8A} + \psi,

so

$$\begin{aligned} \zeta_{\mathbb{Q}(\sqrt[4]{2})}(s) &= L(\mathbb{1}, s) L(\chi_{8A}, s) L(\psi, s) \\ &= \zeta_{\mathbb{Q}(\sqrt{2})}(s) \cdot L(\psi, s). \end{aligned}$$

Similarly,

$$\begin{aligned} \zeta_{\mathbb{Q}(\sqrt[4]{-2})}(s) &= L(\mathbb{1}, s)L(\chi_{8B}, s)L(\psi, s) \\ &= \zeta_{\mathbb{Q}(\sqrt{-2})}(s) \cdot L(\psi, s), \end{aligned}$$

and

$$\begin{aligned} \zeta_{\mathbb{Q}(i,\sqrt{2})}(s) &= L(\mathbb{1},s)L(\chi_4,s)L(\chi_{8A},s)L(\chi_{8B},s) \\ &= \frac{\zeta_{\mathbb{Q}(i)}(s) \cdot \zeta_{\mathbb{Q}(\sqrt{2})}(s) \cdot \zeta_{\mathbb{Q}(\sqrt{-2})}(s)}{\zeta(s)^2}. \end{aligned}$$

Remark. This is in practice how $\zeta_K(s)$ are computed - e.g. in Magma.

Theorem 10.3. Suppose $\rho, \sigma : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_{\star}(\mathbb{C})$ be two Artin representations. Then

$$\rho \cong \sigma \iff L(\rho, s) = L(\sigma, s)$$

as analytic functions on $\operatorname{Re}(s) \gg 0$. So the L-function determines the representation uniquely.

Proof. The forward direction (\implies) is clear. To show the reverse, (\Leftarrow),

Step 1: For any Dirichlet series, $f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ for $\operatorname{Re}(s) \gg 0$, then we can recover the coefficients:

$$a_1 = \lim_{x \to \infty} f(x)$$
$$a_2 = \lim_{x \to \infty} \frac{f(x) - a_1}{2^x}$$
$$\vdots$$

so the a_i are uniquely determined by f(s) as a function. Hence ρ, σ have the same local factors at all primes. Then dim $\rho = \dim \sigma = \deg F_p(T)$ for p large.

Step 2: ρ : Gal $(F_1/\mathbb{Q}) \to \operatorname{GL}_d(\mathbb{C}), \sigma$: Gal $(F_2/\mathbb{Q}) \to \operatorname{GL}_d(\mathbb{C})$. Thus if we take the compositum $F = F_1F_2$ then

$$\rho, \sigma: G \to \mathrm{GL}_d(\mathbb{C}),$$

where $G = \operatorname{Gal}(F/\mathbb{Q})$ is the same group.

Step 3: The Chebotarev density theorem implies that for every conjugacy class $C \subset G$, there exists infinitely many primes p such that $\operatorname{Frob}_p^{F/\mathbb{Q}} \in \mathbb{C}$. Then we have that

$$\chi_{\rho}(\mathcal{C}) = a_p = \chi_{\sigma}(C),$$

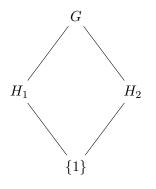
where a_p is the p^{th} term of the Dirichlet series. Thus $\chi_{\sigma} = \chi_{\rho}$.

Step 4: From representation theorem, equality of characters implies an isomorphism of representations, so $\chi_{\rho} = \chi_{\sigma} \implies \rho \cong \sigma$.

Remark. It is not true that $\zeta_{M_1}(s) = \zeta_{M_2}(s)$ implies that $M_1 \cong M_2$. There exist Gassmann triples (G, H_1, H_2) such that

 $G/H_1 \ncong G/H_2$ as G-sets, but $\mathbb{C}[G/H_1] \cong \mathbb{C}[G/H_2]$ as representations.

An example of this is the following: $G = GL_3(\mathbb{F}_2)$, order 168, simple.



Above we have that H_1, H_2 are two non-conjugate subgroups of index 7 such that $\mathbb{C}[G/H_1] \cong \mathbb{C}[G/H_2]$. This leads to degree 7 fields M_1, M_2 over \mathbb{Q} (for every realisation of G as $\operatorname{Gal}(F/\mathbb{Q})$) with $M_1 \not\cong M_2$ but $\zeta_{M_1}(s) = \zeta_{M_2}(s)$.

This is the smallest possible example, it is easy to check that in degree less than 7, $\zeta_M(s)$ determines M. Such M_1, M_2 are called **arithmetically equivalent** fields. Many invariants of M_1, M_2 are the same, for example

$$\begin{aligned} r_1, r_2 &\leftarrow \text{ functions of complex conj acting on } \mathbb{C}[G/H].\\ |\Delta_M| &\leftarrow \text{ conductor of } \mathbb{C}[G/H]\\ \frac{R \cdot h}{\#\text{roots of } 1} \leftarrow \zeta_M(0), \end{aligned}$$

but for example h, R need not be the same (not functions of $\mathbb{C}[G/H]$).

Remark. The above phenomenon has been explored for class groups, non-isomorphic curves with isomorphic Jacobians, BSD conjecture, and notably Sunada 1985:

"Can you hear the shape of a drum?" : NO.

That is, there exists non-isomorphic manifolds with the same spectrum of the Laplacian (same construction).

11 Γ -factors, ε -factors, and conductors

Suppose that we have an Artin representation $\rho : G_{\mathbb{Q}} \to \operatorname{GL}_d(\mathbb{C})$ with a degree d L-function $L(\rho, s)$, meromorphic. Then let us define the completed L-function:

$$\hat{L}(\rho,s) = \left(\frac{N}{\pi^d}\right)^{s/2} \gamma(s) L(\rho,s),$$

and this satisfies the function equation

$$\hat{L}(\rho, s) = w \cdot \hat{L}(\rho^*, s).$$

Above we have written

$$N = N(\rho)$$
, conductor $\in \mathbb{N}$
 $\gamma(s) = \gamma_{\rho}(s)$, Γ -factor
 $w = w_{\rho}$, root number, sign in functional eq., $|w| = 1$.

Recall that 1-dimensional ρ correspond exactly to Dirichlet characters χ (and for $\rho : G_K \to \mathbb{C}^{\times} \leftrightarrow$ Hecke similarly). Then

$$\begin{split} N &= \text{modulus}^4 \text{of } \chi = \text{m} \\ \gamma(s) &= \begin{cases} \Gamma\left(\frac{s}{2}\right) & \text{if } \chi(-1) = 1 \iff \rho(\text{complex conj}) = +1, \\ \Gamma\left(\frac{s+1}{2}\right) & \text{if } \chi(-1) = -1 \iff \rho(\text{complex conj}) = -1. \\ w &= \frac{\varepsilon}{|\varepsilon|}, \ \varepsilon = \sum_{a=1}^{m-1} \chi(a) \zeta_m^a, \text{ Gauss sum.} \end{split}$$

For general ρ , we can define $N, \varepsilon, w = \frac{\varepsilon}{|\varepsilon|}, \gamma(s)$ from 1-dimensionals and Brauer induction. In fact, for ε -factors cannot do much better,

$$\varepsilon(\rho) = \prod_{\substack{\mathbf{V} \\ \text{places of } \mathbb{Q}}} \varepsilon_V(\rho) \leftarrow \text{local } \varepsilon\text{-facors} \begin{cases} \dim \rho = 1 & \text{Tate's thesis} \\ \dim \rho > 1 & \text{Langlands-Deligne.} \end{cases}$$

 γ -factors: To work out the γ -factors for $\rho : G_{\mathbb{Q}} \to \mathrm{GL}_d(\mathbb{C})$, we look at how complex conjugation works,

complex conj \mapsto matrix of order 2 with d_+ eigenvalues and d_- eigenvalues -1 with $d_+ + d_- = d$.

Then

$$\gamma(s) = \Gamma\left(\frac{s}{2}\right)^{d_+} \Gamma\left(\frac{s+1}{2}\right)^{d_-}$$

To prove this just check that it is correct for 1-dimensionals and respects Artin formalism.

Example 11.1. Let M/\mathbb{Q} be finite. Then $\zeta_M(s) = L(\mathbb{C}[X], s)$ where $X = \{\text{embeddings } M \hookrightarrow \mathbb{C}\}$ on which $\operatorname{Gal}(\mathbb{C}/\mathbb{Q})$ acts. Then complex conjugation fixes r_1 real embeddings and swaps complex ones in pairs. So the matrix

so there are $r_1 + r_2$ number of +1 eigenvalues and r_2 number of -1 eigenvalues. Therefore

$$\gamma(s) = \Gamma\left(\frac{s}{2}\right)^{r_1+r_2} \Gamma\left(\frac{s+1}{2}\right)^{r_2},$$

as expected for $\zeta_M(s)$.

Conductors:

Definition (Artin conductor). Let ρ : Gal $(F/K) \to$ GL(V), where K is a finite extension of \mathbb{Q} , F/K is Galois with group G, and dim V = d. Then we define $N(\rho)$, the global Artin conductor, to be an ideal in \mathcal{O}_K ,

$$N(\rho) = \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}}$$

where $n_{\mathfrak{p}}$ is the local conductor exponent at \mathfrak{p} (sometimes $n_{\mathfrak{p}}$ is written $f_{\mathfrak{p}}$).

⁴If $\chi : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ primitive then the modulus of χ is m

Theorem 11.1 (Local conductor exponent). Let $D = D_{\mathfrak{p}}$, $I = I_{\mathfrak{p}} \subset G = \operatorname{Gal}(F/K)$ be the decomposition and inertia group of some

 $\mathfrak{q}|\mathfrak{p}|p$

where q is in F, p is in K, and $p \in \mathbb{Q}$. Then

$$n_{\mathfrak{p}} = n_{\mathfrak{p},tame} + n_{\mathfrak{p},wild}$$

(sometimes 'wild' is also called 'Swan'), and

$$n_{\mathfrak{p},tame} = d - \dim V^{I} \leftarrow `Missing \ degree \ for \ F_{\mathfrak{p}}(T)`$$
$$n_{\mathfrak{p},wild} = 0 \ if \ p \nmid |I|.$$

In general,

$$G > D \triangleright I_0 = I \triangleright I_1 = p\text{-}Sylow(I) \triangleright I_2 \triangleright \cdots$$
inertia wild inertia

where

$$I_n = \{ \sigma \in D | \sigma = id \text{ on } \mathcal{O}_f / \mathfrak{q}^{n+1} \},\$$

are higher ramification groups,

$$= \{1\}$$
 for n large.

Then

$$n_{\mathfrak{p},wild} = \sum_{n \ge 1} \frac{|I_n|}{|I|} (d - \dim V^{I_n}) \in \mathbb{Z},$$

which measures how 'badly ramified' V is.

Example 11.2. ρ is unramified at \mathfrak{p} - that is $(V^I = 0) \iff$

$$n_{\mathfrak{p},tame} = 0 \iff n_{\mathfrak{p}} = 0.$$

In particular $n_{\mathfrak{p}} = 0$ for all primes unramified in F/K.

Example 11.3. Let $\rho : G_{\mathbb{Q}} \to \mathbb{C}^{\times}$ (thus they correspond to Dirichlet characters) then

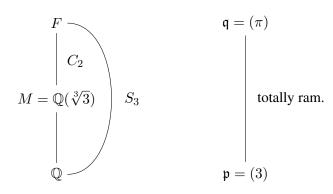
$$N(\rho) = modulus \ of \ \chi.$$

Theorem 11.2 (Conductor-discriminant formula, or Führerdiskriminantformel). Let M/K be a finite extension and

$$\zeta_{M/K}(s) = L(\mathbb{C}[X_{M/K}], s),$$

where $\mathbb{C}[X_{M/K}]$ is K-embeddings $M \hookrightarrow \overline{K}$. Then $N_{\mathbb{C}[X_{M/K}]} = |\Delta_{M/K}|$ as ideals in \mathcal{O}_K .

Remark. This gives a way to compute discriminants of number fields using Artin representations. **Example 11.4.** Let $F = \mathbb{Q}(\zeta, \sqrt[3]{3})$, and



Then $\pi = \frac{1-\zeta}{\sqrt[3]{3}}$ which has valuation 1/2 - 1/3. We have that

$$\begin{array}{l} C_3 = I_1 \triangleleft I = D = G = S_3.\\ \begin{array}{c} \text{3-Sylow} \end{array} \end{array}$$

Then the generator σ^{-1} of I_1 :

$$\sqrt[3]{3} \to \zeta \sqrt[3]{3}$$
$$1 - \zeta \to 1 - \zeta,$$

so $\sigma(\pi) = \zeta \pi$. How wild is the valuation σ ? We compute

$$v_{\mathfrak{q}}(\pi - \sigma(\pi)) = v_{\mathfrak{q}}(\pi - \zeta\pi)$$
$$= v_{\mathfrak{q}}(\pi)v_{\mathfrak{q}}(1 - \zeta)$$
$$= 1 + v_{\mathfrak{q}}(1 - \zeta)$$
$$= 4.$$

Thus, σ is trivial mod π^4 . However $\sigma \not\equiv 1 \mod \pi^5$ since $\sigma(\pi) \not\equiv \pi \mod \pi^5$. This tells us how deep σ lies in our inertia group:

$$\underbrace{\cdots \triangleleft \{1\} I_4}_{\{1\}} \triangleleft \underbrace{I_3 = I_2 = I_1}_{C_3} \triangleleft I = S_3$$

Take $V = \mathbb{C}[X_{M/K}] = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$, and S_3 acts naturally on this (permuting the basis elements). Then S_3, C_3 have 1-dim invariants (#{orbits}), and {1} has 3-dim invariant.

Now

$$n_{V,3} = d - \dim V^{I} + n_{\mathfrak{p}, wild} = \overbrace{3-1}^{tame} + \overbrace{\frac{3}{6}(3-1)}^{I_{1}} + \overbrace{\frac{3}{6}(3-1)}^{I_{2}} + \overbrace{\frac{3}{6}(3-1)}^{I_{3}} + 0 = 5$$

At all other primes, $n_{V,p} = 0$, since p unramified in F/\mathbb{Q} . So easily $|\Delta_M| = N_V = 3^5$ (and $|\Delta_F| = 3^{11}$).

Finally, conductors (and ε -factors as well) are **inductive in degree** 0:

Theorem 11.3. Suppose $[K : \mathbb{Q}] = n$. Then take two Artin representations ρ_1, ρ_2 of same dimension,

$$\rho_1, \rho_2: G_K \to \mathrm{GL}_d(\mathbb{C}).$$

We consider the inductions

Ind
$$\rho_1$$
, Ind $\rho_2 : G_{\mathbb{Q}} \to \operatorname{GL}_{nd}(\mathbb{C})$,

then

$$\operatorname{Norm}_{K/\mathbb{Q}} \frac{N(\rho_1)}{N(\rho_2)} = \frac{N(\operatorname{Ind} \rho_1)}{N(\operatorname{Ind} \rho_2)},$$

that is $N(\rho_1 \ominus \rho_2)$ behaves well under induction.

Corollary 11.3.1. Take
$$\rho = \rho_1, \rho_2 = \underbrace{\mathbb{1} \oplus \cdots \oplus \mathbb{1}}^d$$
. Then
 $N(\operatorname{Ind} \rho_1) = \operatorname{Norm}_{K/\mathbb{Q}} N(\rho) \cdot |\Delta_K|^d$.

12 Local Fields

Let $K = \mathbb{Q}$, and p a prime then this gives rise to the p-adic absolute value, usually denoted

 $|\cdot|_p$

on \mathbb{Q} . 'Absolute values' are multiplicative functions that satisfy the triangle inequality. In fact, the only absolute values on \mathbb{Q} (up to a natural equivalence) are the classical absolute value and the *p*-adic ones, defined as

$$\left|p^n \frac{a}{b}\right|_p = \frac{1}{p^n}, \quad |0| = 0.$$

The *p*-adic absolute value gives rise to a metric

$$d_p(x,y) = |x-y|_p.$$

Definition (*p*-adic integers). *Define the p-adic integers* \mathbb{Z}_p *by*

$$\mathbb{Z}_p = \text{the topological completion of } \mathbb{Z} \text{ with respect to } |\cdot|_p$$

$$= \frac{\{Cauchy \text{ sequences } (x_n)_n \text{ in } \mathbb{Z}\}}{\{sequences \ x_n \to 0\}}$$

$$= \lim_{\leftarrow n} \mathbb{Z}/p^n \mathbb{Z}$$

$$= \lim_{\leftarrow n} \{seq. \ x_n \in \mathbb{Z}/p^n \mathbb{Z} \text{ s.t. } x_n \equiv x_{n+1} \mod p^n\}$$

$$= \left\{ \sum_{n=0}^{\infty} a_n p^n | a_n \in \{0, \dots, p-1\} \right\}.$$

Then \mathbb{Z}_p is a DVR, local ring, which has only one maximal ideal (p), and residue field \mathbb{F}_p . Further $\mathbb{Z}_p \supseteq \mathbb{Z}$. **Definition** (*p*-adic numbers). *The p*-adic numbers \mathbb{Q}_p *satisfy:*

$$\begin{aligned} \mathbb{Q}_p &= \text{topological completion of } \mathbb{Q} \text{ wrt } d_p \\ &= \text{Field of fractions of } \mathbb{Z}_p \\ &= \left\{ \sum_{n=n_0}^{\infty} a_n p^n | a_n \in \{0, \dots, p-1\} \right\}. \end{aligned}$$

This is a field that contains \mathbb{Q} , and so has characteristic 0.

Example 12.1. In \mathbb{Q}_2 ,

$$\begin{aligned} 21 &= 1 + 2^2 + 2^4 \in \mathbb{Z}_2. \\ \frac{3}{2} &= 2^{-1} + 1 \notin \mathbb{Z}_2 \\ -1 &= 1 + 2 + 2^2 + 2^3 + \dots \in \mathbb{Z}_2 (= \frac{1}{1 - x} \text{ geo series with } x = 2, |x|_2 < 1.). \end{aligned}$$

Example 12.2. Similarly, for K/\mathbb{Q} finite, $\mathcal{O}, \mathfrak{p}$, with $\mathcal{O}/\mathfrak{p} = k$ finite. Then this gives \mathfrak{p} -adic absolute value:

$$|x|_{\mathfrak{p}} = \left(\frac{1}{|k|}\right)^{v_{\mathfrak{p}}(x)}$$

Then we say that $K_{\mathfrak{p}}$ is the topological completion of K with respect to $|\cdot|_{\mathfrak{p}}$ and is called the **local** or \mathfrak{p} -adic field. We have that $K_{\mathfrak{p}}$ is a finite extension of \mathbb{Q}_p , wrt $\mathfrak{p}|_p$, and every finite extension of \mathbb{Q}_p arises this way. So

$$K_{\mathfrak{p}} = \left\{ \sum_{n=n_0}^{\infty} a_n \pi^n | a_n \in A \right\}$$

where π is any uniformiser, $v_{\mathfrak{p}}(\pi) = 1$ (e.g. $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$), and A is any set of representatives of \mathcal{O}/\mathfrak{p} .

Proposition 12.1. Take

Then $F_{\mathfrak{q}}/K_{\mathfrak{p}}$ is Galois with $\operatorname{Gal}(F_{\mathfrak{q}}/K_{\mathfrak{p}}) = D_{\mathfrak{q}}$ - this is the same for all $\mathfrak{q}|\mathfrak{p}$. Passing to the algebraic closure,

$$\begin{array}{c|c} \overline{\mathbb{Q}} & \text{ prime } \mathfrak{q} \text{ above } p \text{ in } \overline{\mathbb{Q}} & \overline{\mathbb{Q}}_{\mathfrak{p}} \\ & & & & \\ & & & & \\ & & & & \\ \mathbb{Q} & & \mathfrak{p} & & \\ & & & \\ \end{array} \quad G_{\mathbb{Q}_p} = D_{\mathfrak{q}} < G_{\mathbb{Q}} \end{array}$$

We can think of these as the 'same' as number fields, but only one prime and much simpler (look at \mathbb{R}, \mathbb{C} versus \mathbb{Q}). Further, inertia, Frobenius, and tame inertia etc. take the same definition. The structure of $G_{\mathbb{Q}_p} = \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ is as follows,

$$I \text{ itertia} \begin{pmatrix} \overline{\mathbb{Q}}_{p} \\ I \text{ wild } \leftarrow (\text{pro-}) \text{ p-group} \\ \mathbb{Q}_{p}^{t} = \bigcup_{p \nmid n} \mathbb{Q}_{p}(\zeta_{n}, \sqrt[n]{p}) \\ | I \text{ tame } \leftarrow (\text{pro-}) \text{ cyclic} \\ \mathbb{Q}_{p}^{nr} = \bigcup_{p \nmid n} \mathbb{Q}_{p}(\zeta_{n}) \qquad (p) \quad \overline{\mathbb{F}_{p}} \\ | G_{\mathbb{F}_{p}} \qquad \leftarrow (\text{pro-}) \text{ cyclic gen. by } x \mapsto x^{p}, \\ \text{ lift it to } \text{Frob}_{p} \in G_{\mathbb{Q}_{p}} \\ \mathbb{Q}_{p} \qquad (p) \quad \mathbb{F}_{p} \end{cases}$$

Local fields have only finitely many extensions of a given degree. For example,

$$\mathbb{Q}_5(\sqrt{-3}) = \mathbb{Q}_5(\sqrt{2}) = \mathbb{Q}_5(\zeta_3) = \mathbb{Q}_5(\zeta_8) = \mathbb{Q}_5(\zeta_{24}),$$

all of which are the unique quadratic unramified extension of \mathbb{Q}_5 .

13 *l*-adic representations

Example 13.1. Take

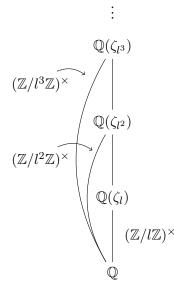
$$G_{\mathbb{Q}} \subset \{\text{roots of unity in } \overline{\mathbb{Q}}\} = \{\text{torsion points in } \mathbb{G}_m(\overline{\mathbb{Q}}) = \overline{\mathbb{Q}}^{\times}\}$$

This action of does not factor through a finite Galois group. We want to associate to it a 1dimensional Galois representation as follows.

Take l prime.

$$\begin{array}{cccc} & & & & & \\ \downarrow & & & \downarrow & \\ \{l^3 \text{ roots of unity}\} \cong \mathbb{Z}/l^3\mathbb{Z} & & \Im G_{\mathbb{Q}} \\ & & \downarrow x \mapsto x^l & \downarrow [l] \\ \{l^2 \text{ roots of unity}\} \cong \mathbb{Z}/l^2\mathbb{Z} & & \Im G_{\mathbb{Q}} \\ & & \downarrow x \mapsto x^l & \downarrow [l] \\ \{l^{th} \text{ roots of unity}\} \cong \mathbb{Z}/l\mathbb{Z} & & \Im G_{\mathbb{Q}}. \end{array}$$

We have that in the final line, $G_{\mathbb{Q}}$ acts from $(\mathbb{Z}/l\mathbb{Z})^{\times} = \operatorname{Gal}(\mathbb{Q}(\zeta_l)/\mathbb{Q})$. Pictorially:



Taking the inverse limit, we find that

$$G_{\mathbb{Q}} \subset \lim_{\leftarrow n} \mathbb{Z}/l^n \mathbb{Z} \cong \mathbb{Z}_l.$$

In other words, we get a representation

$$\chi_l: G_{\mathbb{Q}} \to \mathbb{Z}_l^{\times} = \operatorname{GL}_1(\mathbb{Z}_l) = \lim_{\leftarrow n} \left(\mathbb{Z}/l^n \mathbb{Z} \right)^{\times} = \operatorname{Gal}(\mathbb{Q}(\zeta_{l^{\infty}})/\mathbb{Q}).$$

Then if we embed $\mathbb{Z}_l \hookrightarrow \mathbb{Q}_l \hookrightarrow \mathbb{C}$, we can view χ_l as mapping

$$\chi_l: G_{\mathbb{Q}} \to \mathrm{GL}_1(\mathbb{C}),$$

which is a 1-dimensional Galois representation (one for every l). This is called the *l*-adic cyclo-tomic character.

Definition. Let K be a number field, $G_K = \text{Gal}(\overline{K}/K)$. An *l*-adic representation over K of dimension (or degree) d is a continuous homomorphism

$$\rho_l: G_K \to \mathrm{GL}_d(\mathbb{Q}_l).$$

A compatible system of *l*-adic representations (or 'a motive') is collection $\rho = (\rho_l)_{l \text{ prime}}$ such that

(1) There is a finite set S of 'bad' primes of K such that each ρ_l is unramified outside $S_l = S \cup \{ primes | l \}, i.e.$

$$\mathfrak{p} \notin S_l \implies \rho_l(I_\mathfrak{p}) = 1.$$

(2) For every prime \mathfrak{p} of K, then the local polynomial

$$F_{\mathfrak{p}}(T) = \det\left(1 - \operatorname{Frob}_{\mathfrak{p}}^{-1} T | \rho_l^{I_{\mathfrak{p}}}\right) \in \mathbb{Q}_l[T],$$

is a polynomial in $\mathbb{Q}[T]$ and is independent of l, for $\mathfrak{p} \nmid l$.

We then define the *L*-function of ρ to be

$$L(\rho,s) = \prod_{\mathfrak{p}} F_{\mathfrak{p}}(N\mathfrak{p}^{-s}).$$

The collection $(\rho_l)_l$ is really a 'poor man's version' of one global representation $\rho : G_{\mathbb{Q}} \to \operatorname{GL}_d(\mathbb{Q})$.

We have the standard constructions \oplus , \otimes , Ind, Res, etc for compatible systems. Further, *L*-functions satisfy Artin formalism.

Example 13.2. Take $\rho : G_K \to \operatorname{GL}_n(\mathbb{Q})$, Artin representation (so this has finite image and factors through some finite Galois group $\operatorname{Gal}(F/K)$). So

$$\rho_l: G_K \to \mathrm{GL}_n(\mathbb{Q}) \hookrightarrow \mathrm{GL}_n(\mathbb{Q}_l),$$

is obviously a compatible system taking

$$S = \{ primes \ ramified \ in \ F/K \}.$$

Remark. In principle, we can replace $(\mathbb{Q}_l)_{l \text{ prime of } \mathbb{Q}}$ with $(M_\lambda)_{\lambda \text{ primes of } M}$, where M is a number field, to include all Artin representations $G_K \to \operatorname{GL}_n(\mathbb{C})$, for example Dirichlet characters.

Example 13.3. Take $\chi = (\chi_l)_l$ a cyclotomic character. Recall that

$$\chi_l: G_{\mathbb{Q}} \to \operatorname{Gal}(\mathbb{Q}(\zeta_{l^{\infty}})/\mathbb{Q}) = \mathbb{Z}_l^{\times} \hookrightarrow \operatorname{GL}_1(\mathbb{Q}_l).$$

Then we have that

$$I_{p} \mapsto 1, \quad \text{for all } p \neq l,$$

Frob_p $\mapsto p^{-1} \quad \text{can take } S = \emptyset, \text{ so } S_{l} = \{l\},$
 $\zeta_{l^{n}} \mapsto \zeta_{l^{n}}^{p}$

Then

$$F_p(T) = \det\left(1 - \operatorname{Frob}_p^{-1} T | \mathbb{Z}_l^{I_p}\right) = 1 - pT \in \mathbb{Q}[T],$$

and recall that $G_{\mathbb{Q}} \subset \mathbb{Z}_{l}^{I_{p}}$. So $F_{p}(T)$ is independent of l. Thus the χ_{l} form a compatible system with

$$L(\chi, s) = \prod_{p} \frac{1}{1 - p \cdot p^{-s}} = \zeta(s - 1).$$

In modern language, χ_l are *l*-adic realisations of the 'Tate motive $\mathbb{Q}(1)$ ' (and the χ_l denoted $\mathbb{Q}_l(1)$) which has associated L-function $\zeta(s-1)$.

13.1 Étale Cohomology (Grothendieck, Deligne, Verdier)

Take V/\mathbb{Q} (or over some number field K) a non-signular projective variety of dimension d. Take $0 \le i \le 2d$ then this leads to

$$H^{i}(V) = H^{i}_{\text{\acute{e}t}}(V_{\overline{\mathbb{O}}}, \mathbb{Q}_{l}),$$

called the i^{th} étale cohomology group. It is a \mathbb{Q}_l -vector space of dimension $b_i(V(\mathbb{C}))$ (b_i the i^{th} Betti number) with a continuous action of $G_{\mathbb{Q}}$. This yields an l-adic representation of $G_{\mathbb{Q}}$ for every l - we check the conditions:

- (1) We do have that it is unramified outside $S = \{ \text{primes of bad reduction for } V \} \cup \{l\}.$
- (2) This is known to be compatible at $p \notin S$, and often $(H^0, H^1, \text{ curves, abelian varieties})$ for $p \in S$ as well.

Example 13.4. Take $H^0(V) = \mathbb{Q}_l$ [connected components of $V/\overline{\mathbb{Q}}$] and $G_{\mathbb{Q}} \subset H^0(V)$. We can take a permutation representation on connected components (factors through some finite $\operatorname{Gal}(F/\mathbb{Q})$).

Example 13.5. Take a variety V with dim V = 0 so we only have H^0 . Then

$$V: f(x) = 0 \subset \mathbb{A}^1_x$$

for $f \in \mathbb{Q}[x]$. So the absolute Galois group permutes the roots of f.

$$H^0(V) = \mathbb{Q}_l[\text{roots of } f].$$

If $f(x) = f_1(x) \cdots f_n(x)$, $f_i(x) \in \mathbb{Q}[x]$ irreducible, then take

$$K_i = \mathbb{Q}[x]/(f_i)$$

Hence

$$L(H^0(V), s) = \zeta_{K_1}(s) \cdots \zeta_{K_n}(s).$$

14 Torsion Points on Elliptic Curves & $H^1(E)$

Suppose we have an elliptic curve E and a number field K, where

$$y^2 = x^3 + ax + b; \quad a, b \in K,$$

defines an elliptic curve. Then $E(\overline{K})$ form an abelian group.

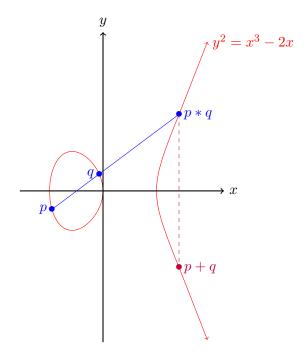


Figure 5: Plot of the elliptic curve $y^2 = x^3 - 2x$

Definition. Take $m \ge 1$ integer. Then

$$E[m] = \{ p \in E(\overline{K}) | mP = 0 \}$$

is the set of m-torsion points, called m-torsion. As an abelian group,

$$E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2 \ \Im G_k$$
 acts linearly,

so $(P+Q)^{\sigma} = P^{\sigma} + Q^{\sigma}$.

This gives a representation ['mod m' representation],

$$\rho_{E,m}: G_K \to \mathrm{GL}_2(\mathbb{Z}/m\mathbb{Z}).$$

Example 14.1. Take m = 2, so we are considering the 2-torsion points. Then

$$E[2] = \{0, (\alpha, 0), (\beta, 0), (\gamma, 0)\}\$$

where α, β, γ are the roots of f. Again

$$E[2] \cong (\mathbb{Z}/2\mathbb{Z})^2$$

and the Galois groups acts by permutation on the roots. Then we get

$$\rho_{E,2}: G_K \to \operatorname{GL}_2(\mathbb{F}_2) \cong S_3.$$

Now take $m = l^n$ where l is prime. Then we get a compatible system:

$$\rightarrow E[l^n] \xrightarrow{[l]} E[L^{n-1}] \xrightarrow{[l]} \cdots \xrightarrow{[l]} E[l]$$
$$\rightarrow (\mathbb{Z}/l^n \mathbb{Z})^2 \rightarrow (\mathbb{Z}/l^{n-1} \mathbb{Z})^2 \rightarrow \cdots \rightarrow (\mathbb{Z}/l \mathbb{Z})^2$$

Definition (The *l*-adic Tate module). We have

$$T_l E = \lim_{\leftarrow n} E[l^n] \cong \mathbb{Z}_l^2 \, \Im \, G_k$$

and

$$V_l E = T_l E \otimes_{\mathbb{Z}_l} \mathbb{Q}_l \cong \mathbb{Q}_l^2 \mathfrak{I} G_k.$$

Then by embedding $\mathbb{Q}_l \hookrightarrow \mathbb{C}$, we get a 2-dimensional *l*-adic representation for E/K,

$$H^1_{\acute{e}t}(E_{\overline{K}}, \mathbb{Q}_l) = V_l E^*$$

as a G_K representation.

We will see that these form a compatible system so

Definition (The *L*-function of E/K).

$$L(E/K,s) = \prod_{\mathfrak{p}} F_{\mathfrak{p}}(N\mathfrak{p}^{-s})$$

where

$$F_{\mathfrak{p}}(T) = \det\left(1 - \operatorname{Frob}_{\mathfrak{p}}^{-1} T | \rho_l^{I_p}\right)$$

for any l such that $p \nmid l$. This is a degree 2 L-function.

Recall that we let E/\mathbb{Q} be an elliptic curve with:

We want to understand D_p on $E_{\overline{\mathbb{Q}}}[l^n] = \text{action of } G_{\mathbb{Q}_p}$ on $E_{\overline{\mathbb{Q}}_p}[l^n]$. From now onwards let K be a p-adic field (i.e. local),

$$\mathcal{O}_K/(\pi) \cong k \cong \mathbb{F}_q$$

where (π) is a maximal ideal. Then $I \triangleleft G_k$ and $\text{Frob} \in G_K$. We write χ_l for the cyclotomic character $(I \mapsto 1, \text{Frob} \mapsto q)$.

15 Good and bad reduction

Let E/K be an elliptic curve. Then this gives rise to a "minimal Weierstrass model", with coefficients in \mathcal{O}_K and $v(\Delta)$ minimal. Upon reduction, \tilde{E}/K is possibly singular. The possible reduction types are:

\tilde{E}	Reduction	Example over \mathbb{Q}_5
	Good	$E_1: y^2 = x^3 - 1$ (Distinct roots mod 5)
$\bigcirc \fbox{Slopes}_{\text{in } \mathbb{F}_q}$	Split Multiplicative	$E_2: y^2 = (x-1)(x^2-5)$ (Double root mod 5)
Swapped by Frob	Non-split Multiplicative	$E_{2'}: y^2 = (x-2)(x^2-5)$ (Double root mod 5)
	Additive	$E_3: y^2 = x^3 - 5$ (Triple root)

Note that (0,0) is the singular point. Then we have the following reductions, and how they behave near (0,0):

$$\tilde{E}_2: y^2 = 4x^2 + \text{h.o.t.}/\mathbb{F}_5 \xrightarrow{\text{near } (0,0)} \qquad \qquad y = 2x$$
$$y = -2x$$
$$\tilde{E}_{2'}: y^2 = 3x^2 + \text{h.o.t.}/\mathbb{F}_5 \xrightarrow{\text{near } (0,0)} \qquad \qquad y = \sqrt{3}x$$
$$y = -\sqrt{3}x$$

for $\sqrt{3} \in \mathbb{F}_{5^2}$.

Theorem 15.1. We have that

- (a) The set of non-singular points, $E_{ns}(\overline{k})$ form a group, under the same group law (3 points on a line \iff they add up to 0),
- (b) $V_l E^I \cong V_l \tilde{E}_{ns}$ as G_k -modules,
- (c) det $V_l E = \chi_l$, that is for $\rho_l : G_{\pi} \to \operatorname{Aut} V_l E = \operatorname{GL}_2(\mathbb{Q}_2)$, and

$$\det \rho_l(\sigma) = \begin{cases} 1 & \text{for } \sigma \in I \\ q & \text{for } \sigma = \text{Frob} \,. \end{cases}$$

Remark. This is very important since it relats geometry of the reduction to arithmetic of *l*-torsion. No analogue for general varieties (only for curves and abelian varieties).

Remark. For the Néron model, (b) holds for $E[l^n]$ and T_lE as well.

Example 15.1. 2-torsion on E_1, E_2, E_3 .

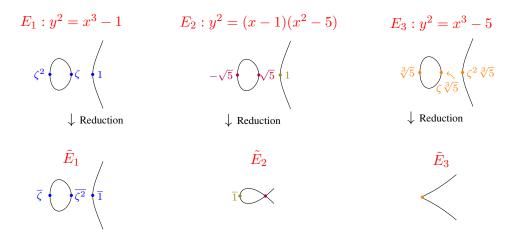


Figure 6: Plots showing how roots behave under different types of reduction. Note that the inertia group I swaps $-\sqrt{5} \leftrightarrow \sqrt{5}$ for E_2 and I permutes the roots for E_3 .

Recall that our theorem says that inertia invariant points are non-singular when reduced.

 $rac{V_l \tilde{E}_{ns}}{\mathbb{Q}_l^2 \, \Im \, G_K}$ $F(T) = 1 - aT + qT^2$ $\tilde{E}_{ns}(\overline{k})$ Reduction Good Ell. curve $(a = q + 1 - \#\tilde{E}(\mathbb{F}_q))$ \overline{k}^{\times} 1 - TSplit mult. χ_l $(\mathbb{Q}_l \text{ with Frob acting as } q)$ \overline{k}^{\times} Quad. twist of \mathbb{Q}_l 1 + TNonsplit mult. $(\mathbb{Q}_l \text{ with Frob acting as } -q)$ 1 Additive $(\overline{k}, +)$ 0

Theorem 15.2. *The local factor* F(T) *for the L-function of E is*

In particular, $F(T) \in \mathbb{Z}[T]$ and is independent of l (i.e. $(V_l E)_l$ form a compatible system).

Proof. Good reduction

Let \tilde{E}/k be an elliptic curve. Then

$$\begin{array}{c|c|c} i^{th} \mbox{ Étale coho. group } & \mbox{Frob}^{-1} \mbox{ eigenvalues } \\ \hline H^0_{\mbox{\acute{e}t}}(\tilde{E}) = \mathbb{Q}_l & 1 \\ H^1_{\mbox{\acute{e}t}}(E) = H^1_{\mbox{\acute{e}t}}(\tilde{E}) & \mbox{Some } \alpha, \beta \\ H^2_{\mbox{\acute{e}t}}(\tilde{E}) = \chi_l^{-1} & q \\ (\mbox{ Poincaré duality}) & \end{array}$$

Note that for the Frob^{-1} -eigenvalues, abs. value $|q|^{i/2}$ on H^i . The Lefschetz trace formula gives

$$Z_{\tilde{E}(\mathbb{F}_q)}(T) \coloneqq \exp \sum_{n=1}^{\infty} \frac{\#\tilde{E}(\mathbb{F}_{q^n})}{n} T^n$$
$$\stackrel{Lefschetz}{=} \frac{(1-\alpha T)(1-\beta T)}{(1-T)(1-qT)}.$$

This implies that

$$1 + \#\tilde{E}(\mathbb{F}_q)T + O(T^2) = 1 + (q + 1 - \alpha - \beta)T + O(T^2).$$

Hence

$$#\tilde{E}(\mathbb{F}_q) = q + 1 - \operatorname{tr}\left(\operatorname{Frob}^{-1}|H^1_{\operatorname{\acute{e}t}}(E)\right)$$

and det $(\operatorname{Frob}^{-1} | H^1_{\acute{e}t}(E)) = q$, det $V_l = \chi_l$. Thus we see that

$$\det(1 - \operatorname{Frob}^{-1} T | V_l E^I) = \det(1 - \operatorname{Frob}^{-1} T | V_L E)$$
$$= 1 - aT + qT^2$$

where $a = q + 1 - \# \tilde{E}(\mathbb{F}_q)$.

Bad reduction

We have that

$$\tilde{E}_{ns} \stackrel{\text{normalisation}}{\cong} \begin{cases} \mathbb{P}' \setminus \{2 \text{ pts}/k\} &= \mathbb{A}' \setminus \{0\} = \mathbb{G}_m \\ \mathbb{P}' \setminus \{2 \text{ pts swapped by Frob}\} &= \text{quad. twist of } \mathbb{G}_m \\ \mathbb{P}' \setminus \{1 \text{ pt}\} &= \mathbb{A}' = \mathbb{G}_a. \end{cases}$$

The only algebraic groups of dimension 1 are elliptic curves, \mathbb{G}_a and \mathbb{G}_m . Additive

Then $\tilde{E}_{ns}(\overline{k}) = \mathbb{G}_a(\overline{k}) = (\overline{k}, +)$ and \overline{k} is ∞ -dim \mathbb{F}_p vector space, $p = \operatorname{char} k$. Thus there is no l torsion for $l \neq \operatorname{char} k$ and

$$T_l E_{ns} = 0 \stackrel{\text{Thm}}{\Longrightarrow} V_l E^I = 0.$$

Hence F(T) = 1. Split mult. Now $\mathbb{G}_m(\overline{k}) = \overline{k}^{\times}$, $V_l \mathbb{G}_m = \chi_l$. So G_K acts on $V_l E$ as

$$\begin{pmatrix} \chi_l & \cdot \\ 0 & 1 \end{pmatrix}$$

where \cdot is non-zero on inertia, and bottom row elements are 0 by *I*-invariants on $V_l E = V_l \mathbb{G}_m$ and 1 since det $V_l = \chi_l$. Further, G_K acts on $H^1_{\acute{e}t}(E) = V_l E^*$ as

$$\begin{pmatrix} \chi_l^{-1} & 0 \\ \cdot & 1 \end{pmatrix}$$

Noting that $H^1_{\text{ét}}(E)^I$, trivial Frob action gives the second column as $\begin{pmatrix} 0\\1 \end{pmatrix}$. Thus

$$F(T) = \det(1 - \operatorname{Frob}^{-1} T | H'(E)^{I}) = 1 - T$$

Multiplicative

Similarly, unr. quad. \otimes split: *I* acts as

$$\begin{pmatrix} 1 & \cdot \\ 0 & 1 \end{pmatrix},$$

and Frob as

$$\begin{pmatrix} 1 & 0 \\ \cdot & q \end{pmatrix} \begin{pmatrix} -q^{-1} & 0 \\ \cdot & -1 \end{pmatrix}.$$

So F(T) = 1 + T.

In the multiplicative case, $E[l^n]$ is also completely described using the Tate curve: For E/\mathbb{C} ,

$$E(\mathbb{C}) \cong \mathbb{C}/\mathbb{Z} + \tau \mathbb{Z} \stackrel{\exp(2\pi i \cdot)}{\cong} \mathbb{C}^{\times}/q^{\mathbb{Z}} \text{ for } q = e^{2\pi i \tau}.$$

This isomorphism from $E(\mathbb{C})$ to $\mathbb{C}^{\times}/q^{\mathbb{Z}}$ is analytic.

Theorem 15.3 (Tate). Let K be a local field, E/K an elliptic curve with split mult. red. Then $\exists ! q \in K, v(q) > 0$ such that

$$E(\overline{K}) \xrightarrow{\sim} \overline{K}^{\times}/q^{\mathbb{Z}},$$

as G_K -modules. This is the same analytic isomorphism as described above, e.g.

$$j(E) = q^{-1} + 744 + 196884q + \dots; \quad v(j) = -v(q) < 0.$$

Corollary 15.3.1. As a G_K -module,

$$E[l^n] \cong \{l^n - \text{torsion pts in } \overline{K}^{\times}/q^{\mathbb{Z}}\} \\ = \langle \zeta_{l^n}, \, {}^{l_n}\sqrt{q} \rangle \\ \cong (\mathbb{Z}/l^n\mathbb{Z})^2.$$

So G_K acts on $T_l E$ as

$$\begin{pmatrix} \chi_l & \cdot \\ 0 & 1 \end{pmatrix}.$$

I acts as

$$\begin{pmatrix} 1 & c \cdot \tau_l \\ 0 & 1 \end{pmatrix},$$

where c = v(q) = -v(j), and

$$\tau_{l}: I \to \mathbb{Z}_{l} \quad l\text{-adic tame char}$$

$$\sigma \mapsto \left(\frac{\sigma(\sqrt[l^{n}]{\pi})}{\sqrt[l^{n}]{\pi}}\right)_{n} \in \lim_{\leftarrow} (l^{n} \text{th roots of } 1) = \mathbb{Z}_{l}.$$

$$[I_{wild} \triangleleft I, \ I_{tame} = I/I_{wild} = \prod_{l \neq \text{char } k} \mathbb{Z}_{l}, \quad \tau_{l}: I_{tame} \twoheadrightarrow \mathbb{Z}_{l}.]$$

Remark. In the additive reduction case, E/K acquires good $(v(j) \ge 0)$ or multiplicative (v(j) < 0) reduction over some finite F/K. Thus, in the additive case, I has a finite index subgroup I_F (normally I_p) that acts on T_lE as

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, or as $\begin{pmatrix} 1 & c \cdot \tau_l \\ 0 & 1 \end{pmatrix}$.

Remark. Good and multiplicative reduction are also called <u>stable</u> (stay the same in all finite extensions) and additive reduction is called <u>unstable</u>.

Theorem 15.4 (Grothendieck Monodromy Theorem). Let K be a local field, V/K a nonsingular projective variety. Then there exists a finite extension F/K such that I_F acts on $H^i_{\acute{e}t}(V_{\overline{K}}, \mathbb{Q}_l)$ as $\mathrm{Id} + \tau_l N$ for some nilpotent matrix N. Such a representation of G_K is called a Weil representation if N = 0, and a Weil-Deligne representation in general. **Example 15.2.** Let E/K be an elliptic curve. Then we have

potentially good reduction
$$v(j) \ge 0, N = 0, H^1_{\acute{e}t}(E)$$
 is a Weil rep
potentially mult. $v(j) < 0, N = \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix}, H^1(E)$ is a W-D rep.

Example 15.3. For varieties other than curves and abelian varieties, we do not have a geometric counterpart of this statement - it is conjectured, but not known, that any V/K acquires semistable reduction (only ordinary double points as singularities) after some finite extension F/K - if true this proves independence of l by roughly the same argument.