Galois Representations assignments.

Problem 1 (for 27/10). Let $K=\mathbb{Q}(i)$ and $\mathcal{O}=\mathbb{Z}[i]$, the ring of Gaussian integers. Recall that every ideal of \mathcal{O} is principal: $I=(a+b i), N I=a^{2}+b^{2}$.
(1) Prove that $2=\mathfrak{p}^{2}$ with $\mathfrak{p}=(1+i)$. In other words, 2 ramifies in K / \mathbb{Q}.
(2) Use Kummer-Dedekind to show that every prime $p \equiv 1 \bmod 4$ of \mathbb{Q} splits $(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in K, and every $p \equiv 3 \bmod 4$ is inert, that is (p) is a prime ideal of K with residue field $\mathbb{F}_{p^{2}}$.
(3) Deduce that the Dedekind ζ-function of K factors as

$$
\zeta_{K}(s)=\zeta(s) L(s)
$$

with $\zeta(s)$ the Riemann zeta function and

$$
L(s)=\sum_{n \geq 1 \text { odd }} \frac{\chi(n)}{n^{s}}, \quad \chi(n)=\left\{\begin{aligned}
1 & \text { if } n \equiv 1 \quad \bmod 4 \\
-1 & \text { if } n \equiv 3 \bmod 4
\end{aligned}\right.
$$

(the L-function of the non-trivial character $\left.(\mathbb{Z} / 4 \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}\right)$.

Problem 2 (for 3/11). Let $K=\mathbb{Q}(i, \sqrt{17})$.
(1) Show that for every prime number $p \neq 2,17$, either -1 or 17 or -17 is a square modulo p (possibly all 3).
(2) Show that $p=17$ splits in $\mathbb{Q}(i)$ and that $p=2$ splits in $\mathbb{Q}(\sqrt{17})$.
(3) Deduce that every prime p of \mathbb{Q} splits into 2 or 4 primes of K, and consequently $\zeta_{K}(s)$ has every local polynomial $F_{p}(T)$ of the form $G_{p}(T)^{2}$ for some (usually quadratic) $G_{p}(T) \in \mathbb{Z}[T]$.
NB. In other words, just looking at the local factors, $\zeta_{K}(s)$ looks like a square of some reasonable function. But it certainly isn't! It has a simple pole at $s=1$, so whatever $\prod_{p} G_{p}\left(p^{-s}\right)^{-1}$ is, it does not have a meromorphic continuation to \mathbb{C}. (This gives some indication that meromorphic continuation is a subtle business, and we cannot expect it for any function with reasonable arithmetic coefficients.

Problem 3 (for 10/11). Let $K=\mathbb{Q}(\sqrt[3]{m})$ for some $m \in \mathbb{N}$, not a cube. Write $F=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{m}\right)$ for its Galois closure, and $G=\operatorname{Gal}(F / \mathbb{Q}) \cong S_{3}$, the permutation group on the three roots of $x^{3}-m$. Let $p \neq 3$ be a prime and $\mathfrak{p} \mid p$ a prime of F, with decomposition group $D<G$ and inertia group $I \triangleleft D$.
(a) Show that p, D and I must be in one of the following cases:
(1) p is unramified in F / \mathbb{Q}, and $D \in\left\{C_{3}, C_{2}, C_{1}\right\}$,
(2) p is ramified in F / \mathbb{Q}, and $D=S_{3}, I=C_{3}$,
(3) p is ramified in F / \mathbb{Q}, and $D=I=C_{3}$.
(b) All of these may indeed occur: for $m=2$ show that $p=7,5,31,2$ cover the three cases of (1) and (2), and $m=p=7$ covers (3).

You may find it useful to employ the standard fact that the ramification and residue degrees are multiplicative in towers: if $\mathbb{Q} \subset M \subset F$ and $(p)=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{k}^{e_{k}}$ in \mathcal{O}_{M} and $\mathfrak{p}_{1}=\mathfrak{q}_{1}^{E_{1}} \cdots \mathfrak{q}_{r}^{E_{r}}$ in \mathcal{O}_{F}, then clearly $(p)=\mathfrak{q}_{1}^{e_{1} E_{1}} \cdots$ in \mathcal{O}_{F}. In other words $e_{\mathfrak{q}_{1}}^{F / \mathbb{Q}}=e_{\mathfrak{q}_{1}}^{F / M} e_{\mathfrak{p}_{1}}^{M / \mathbb{Q}}$, and similarly, $f_{\mathfrak{q}_{1}}^{F / \mathbb{Q}}=f_{\mathfrak{q}_{1}}^{F / M} f_{\mathfrak{p}_{1}}^{M / \mathbb{Q}}$. Both $M=\mathbb{Q}\left(\zeta_{3}\right)$ and $M=K$ give useful information about the splitting of (p) in F.

Problem 4 (for 17/11). Suppose F / \mathbb{Q} is Galois with Galois group S_{3}, and $C_{2} \cong H<G$, so that $M=F^{H}$ is a cubic extension of \mathbb{Q}. Let $p \in \mathbb{Z}$ be a prime which ramifies in F / \mathbb{Q}.
(1) Show that, up to conjugation, there are [at most] four possibilities for the pair $\left(D_{p}, I_{p}\right)$ in F / \mathbb{Q}. (Optional: construct examples F, p to show that all four do occur.)
(2) For each of the four, write down the double cosets $H \backslash G / D_{p}$, and the number, ramification and residue degrees of primes above p in M / \mathbb{Q}.
(3) Deduce the possible local factors $F_{p}(T)$ of Dedekind ζ-functions $\zeta_{M}(s)$ of cubic extensions M of \mathbb{Q} at ramified primes p.

Problem 5 (for 24/11). Suppose F / \mathbb{Q} is Galois with Galois group S_{3}. Let $K, M \subset F$ be subfields with $[K: \mathbb{Q}]=2,[M: \mathbb{Q}]=3$. Decompose $\zeta_{K}(s), \zeta_{M}(s)$ and $\zeta_{F}(s)$ into L-functions of irreducible Artin representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Express $\zeta_{F}(s)$ in terms of $\zeta_{K}(s), \zeta_{M}(s)$ and Riemann $\zeta(s)$.

Problem 6 (for 24/11 as well). Let p^{n} be a prime power and $F=\mathbb{Q}(\zeta)$, $\zeta=\zeta_{p^{n}}$, the p^{n} th cyclotomic field. It is a standard fact that the ring of integers of K is $\mathbb{Z}[\zeta]$, and that $\pi=1-\zeta$ generates the unique ideal above p,

$$
(\pi)^{\phi\left(p^{n}\right)}=(p)
$$

(1) Determine the decomposition group $D=D_{p}=D_{\pi}$, the inertia group $I=I_{p}=I_{\pi}$ in $\operatorname{Gal}(F / \mathbb{Q})=\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$, and its filtration by the higher ramification groups

$$
\{1\}=I_{k} \triangleleft \cdots I_{2} \triangleleft I_{1} \triangleleft I_{0}=I .
$$

(2) Let χ be a primitive character of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$, that is of modulus p^{n}. Prove, by definition of the conductor, that the associated 1-dimensional Galois representation ρ_{χ} of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ has conductor $N(\rho)=p^{n}$. Hint: $\sigma \equiv \mathrm{id} \bmod \pi^{k} \Longleftrightarrow v_{\pi}(\zeta-\sigma(\zeta)) \geq k$.
Remark: the same argument (with a bit more notation) shows that any Dirichlet character of modulus m (not necessarily a prime power) is the conductor of the associated Galois representation.

Problem 7 (for $\mathbf{1 / 1 2) . ~ S h o w ~ t h a t ~} \mathbb{Q}_{p}$ contains the $(p-1)$ th roots of unity, in four (somewhat) different ways:
(1) If $a \equiv b \bmod p^{n}$ with $a, b \in \mathbb{Z}$, show that $a^{p} \equiv b^{p} \bmod p^{n+1}$. Deduce that for $a \in \mathbb{Z}$ the sequence $\left(a^{p^{n}}\right)_{n \geq 1}$ is Cauchy with respect to the p-adic absolute value, and therefore converges in \mathbb{Z}_{p} to some element that satisfies $x^{p}=x$ and $x \equiv a \bmod p$.
(2) Use Hensel's lemma: if $f(x) \in \mathbb{Z}_{p}[x]$ is a monic polynomial whose reduction $\bar{f}(x) \in \mathbb{F}_{p}[x]$ has a simple root $\bar{t} \in \mathbb{F}_{p}$, then $f(x)$ has a unique root $t \in \mathbb{Z}_{p}$ that reduces to $\bar{t} \bmod p$.
(3) The 'primitive element theorem' states that the group $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic for every prime $p>2$ and $n \geq 1$. Use it to deduce that $\mathbb{Z}_{p}^{\times}=\lim _{\longleftarrow}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$contains a cyclic group of order $p-1$.
(4) Compute $\operatorname{Frob}_{p} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p-1}\right) / \mathbb{Q}\right)$ and take completions to deduce that $\mathbb{Q}\left(\zeta_{p-1}\right) \hookrightarrow \mathbb{Q}_{p}$. (There is one such embedding for every prime above p in $\mathbb{Q}\left(\zeta_{p-1}\right)$.)

Problem 8 (for $\mathbf{8 / 1 2}$). Let E / \mathbb{Q} be the elliptic curve $y^{2}=x^{3}+1 / 4$.
(1) On an elliptic curve $y^{2}=x^{3}+a x+b$ the x-coordinates of the nontrivial 3 -torsion points are roots of the 3 -division polynomial $x^{4}+$ $2 a x^{2}+4 b x-a^{2} / 3$. Use this to find $E[3]$.
(2) Find a basis of $E[3]$ in which $G_{\mathbb{Q}}$ acts on $E[3]$ as $\sigma \mapsto\left(\begin{array}{cc}1 & 0 \\ 0 & \chi(\sigma)\end{array}\right)$, where σ is the non-trivial 1-dimensional representation of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}\right)$.
(3) Considering the 3 -adic Tate module $T_{3} E$, deduce that for every prime p at which E has good reduction, the local factor of the L function $L(E / \mathbb{Q}, s)$

$$
F_{p}(T)=\operatorname{det}\left(1-\operatorname{Frob}_{p}^{-1} T \mid V_{3} E\right)=1-a T+p T^{2}
$$

has $a \equiv 2 \bmod 3$ if $p \equiv 1 \bmod 3$ and $a \equiv 0 \bmod 3$ if $p \equiv 2 \bmod 3$.

