Exercise. Let C / \mathbb{Q}_{p}, for p odd, be the curve

$$
4 x y(x+y)=p
$$

Recall that this equation defines a regular model $\mathcal{C} / \mathbb{Z}_{p}$ of C, and its special fibre \bar{C} / \mathbb{F}_{p} consists of 3 lines meeting at a point.
(1) Use Thm 2 and point counting on \bar{C} to find the local factor $P\left(C / \mathbb{Q}_{p}, T\right)$.
(2) Use Thm 3 to compute the special fibre $\bar{C}^{\prime} / \mathbb{F}_{p}$ of a regular model with normal crossings $\mathcal{C}^{\prime} / \mathbb{Z}_{p}$.
[You may use that all f_{F} and f_{L} are linear, and so the conditions in Thm 3 are automatically satisfied; alternatively, see below how they are defined. Observe that \mathcal{C}^{\prime} can be obtained from \mathcal{C} by one blow up at the point of \bar{C} where 3 components meet, and \mathcal{C} from \mathcal{C}^{\prime} by blowing down the unique component of self-intersection -1 .]

How to define the reductions f_{F} and f_{L} for $f=\sum_{i, j} a_{i j} x^{i} y^{j}$ formally:
Take a 2-face F, and extend $\left.v\right|_{F}: F \rightarrow \mathbb{R}$ to a unique linear function $v_{F}: \mathbb{Z}^{2} \rightarrow \frac{1}{\delta_{F}} \mathbb{Z}$ (surjective by definition of δ_{F}). Pick an identification

$$
\alpha: \mathbb{Z}^{2} \xrightarrow{\cong} v_{F}^{-1}(\mathbb{Z})
$$

of affine lattices, and set

$$
f_{F}(x, y)=\sum_{i, j} \frac{a_{\alpha(i, j)}}{\pi^{v_{F}(\alpha(i, j))}} x^{i} y^{j} \quad \bmod \pi
$$

The definition for $f_{L}(t)$ is the same, except that $v_{L}:(\mathbb{Q}$-line spanned by $L) \rightarrow \frac{1}{\delta_{L}} \mathbb{Z}$, $\alpha: \mathbb{Z} \cong v_{L}^{-1}(\mathbb{Z})$ and $f_{L}(t)$ is univariate. (In the above exercise, it is always linear once the factors of t are removed; t is a unit and has no zeroes in \mathbb{G}_{m}.)

These definitions depend on the choice of α, but different choices give isomorphic reductions $f_{F}=0 \subset \mathbb{G}_{m}^{2}$ and $f_{L}=0 \subset \mathbb{G}_{m}$.

