Galois Representations (Lecture 4)

Exercise. Let C/\mathbb{Q}_p , for p odd, be the curve

$$4xy(x+y) = p.$$

Recall that this equation defines a regular model \mathcal{C}/\mathbb{Z}_p of C, and its special fibre $\overline{C}/\mathbb{F}_p$ consists of 3 lines meeting at a point.

- (1) Use Thm 2 and point counting on \overline{C} to find the local factor $P(C/\mathbb{Q}_p, T)$.
- (2) Use Thm 3 to compute the special fibre \bar{C}'/\mathbb{F}_p of a regular model with normal crossings $\mathcal{C}'/\mathbb{Z}_p$.

[You may use that all f_F and f_L are linear, and so the conditions in Thm 3 are automatically satisfied; alternatively, see below how they are defined. Observe that C' can be obtained from C by one blow up at the point of \overline{C} where 3 components meet, and C from C' by blowing down the unique component of self-intersection -1.]

How to define the reductions f_F and f_L for $f = \sum_{i,j} a_{ij} x^i y^j$ formally:

Take a 2-face F, and extend $v|_F : F \to \mathbb{R}$ to a unique linear function $v_F : \mathbb{Z}^2 \to \frac{1}{\delta_F}\mathbb{Z}$ (surjective by definition of δ_F). Pick an identification

$$\alpha: \mathbb{Z}^2 \quad \stackrel{\cong}{\longrightarrow} \quad v_F^{-1}(\mathbb{Z}),$$

of affine lattices, and set

$$f_F(x,y) = \sum_{i,j} \frac{a_{\alpha(i,j)}}{\pi^{v_F(\alpha(i,j))}} x^i y^j \mod \pi.$$

The definition for $f_L(t)$ is the same, except that $v_L: (\mathbb{Q}$ -line spanned by $L) \to \frac{1}{\delta_L}\mathbb{Z}$, $\alpha: \mathbb{Z} \cong v_L^{-1}(\mathbb{Z})$ and $f_L(t)$ is univariate. (In the above exercise, it is always linear once the factors of t are removed; t is a unit and has no zeroes in \mathbb{G}_m .)

These definitions depend on the choice of α , but different choices give isomorphic reductions $f_F = 0 \subset \mathbb{G}_m^2$ and $f_L = 0 \subset \mathbb{G}_m$.