REGULATOR CONSTANTS

TIM AND VLADIMIR DOKCHITSER

This note is a concise version of [2] $\S 2$, and concerns a group-theoretic invariant that owes its existence to the fact that different G-sets can have isomorphic permutation representations.

Let G be a finite group. If $H_i < G$ are subgroups and $n_i \in \mathbb{Z}$, we say that $\Theta = \sum_i n_i H_i$ is a relation between permutation representations or simply a G-relation if $\bigoplus_i \mathbb{C}[G/H_i]^{\oplus n_i} = 0$ as a virtual representation. (Equivalently, Θ is an element in the kernel of the natural map from the Burnside ring to the representation ring of G.)

Suppose $\Theta = \sum_i n_i H_i$ is such a relation, and ρ is a $\mathbb{Q}G$ -representation. Pick a G-invariant non-degenerate \mathbb{Q} -bilinear pairing \langle,\rangle on ρ and define the regulator constant

$$\mathcal{C}_{\Theta}(\rho) = \prod_{i} \det(\frac{1}{|H_i|}\langle,\rangle|\rho^{H_i})^{n_i} \in \mathbb{Q}^*/\mathbb{Q}^{*2}.$$

Here ρ^{H_i} is the space of H_i -invariant vectors of ρ , and $\det(\langle,\rangle|V)$ is the determinant of the matrix $(\langle v_i, v_j \rangle)_{i,j}$ with v_i any \mathbb{Q} -basis of V — as an element of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ it is independent of the basis.

The crucial fact is that $\mathcal{C}_{\Theta}(\rho)$ is independent of the pairing \langle, \rangle . Regulator constants are additive in both Θ and ρ ,

$$\mathcal{C}_{\Theta_1+\Theta_2}(\rho) = \mathcal{C}_{\Theta_1}(\rho)\mathcal{C}_{\Theta_2}(\rho), \qquad \mathcal{C}_{\Theta}(\rho_1 \oplus \rho_2) = \mathcal{C}_{\Theta}(\rho_1)\mathcal{C}_{\Theta}(\rho_2).$$

In particular it suffices to describe them for $\mathbb{Q}G$ -irreducible representations.

Example 1. Let $G = D_{2p}$ be the dihedral group of order 2p, with p an odd prime. Its \mathbb{Q} -irreducible representations are trivial $\mathbf{1}$, sign ϵ and (p-1)-dimensional ρ . There is a unique relation Θ up to multiples, and $\mathcal{C}_{\Theta}(\mathbf{1}) = \mathcal{C}_{\Theta}(\epsilon) = \mathcal{C}_{\Theta}(\rho) = p$. We summarise this as

$$\begin{array}{c|cccc} D_{2p} & & \mathbf{1} & \epsilon & \rho \\ \hline \Theta = 1 - 2 C_2 - C_p + 2 G & p & p & p \end{array}$$

Example 2. Take $G = A_5$. Here the irreducible rational representations are $\mathbf{1}, \rho, \sigma, \eta$ of dimensions 1, 6, 4 and 5, respectively, and the subgroups of G up to conjugacy are $1, C_2, C_3, C_2 \times C_2, C_5, S_3, D_{10}, A_4, A_5$. The lattice of relations is generated by 5 elements, and here are the regulator constants:

$$\begin{array}{c|ccccc} A_5 & \mathbf{1} & \rho & \sigma & \eta \\ \hline \Theta_1 = 1 - 3\,C_2 + 2\,C_2 \times C_2 & 2 & 1 & 1 & 2 \\ \Theta_2 = C_2 \times C_2 - 2\,D_{10} - A_4 + 2\,A_5 & 3 & 1 & 3 & 3 \\ \Theta_3 = S_3 - D_{10} - A_4 + A_5 & 3 & 1 & 3 & 3 \\ \Theta_4 = C_3 - C_5 - 2\,A_4 + 2\,A_5 & 15 & 5 & 15 & 3 \\ \Theta_5 = 1 - 2\,C_2 - C_5 + 2\,D_{10} & 5 & 5 & 5 & 1 \end{array}$$

Question 3. What are these numbers?

Date: October 25, 2007.

Let us mention that the field \mathbb{Q} may be replaced by any field K of characteristic 0 (or coprime to |G|), provided we stick to self-dual representations: if ρ is a self-dual KG-representation, $\mathcal{C}_{\Theta}(\rho) \in K^*/K^{*2}$ is well-defined, and is unchanged in field extensions; $\mathcal{C}_{\Theta}(\rho \otimes_K L)$ agrees with $\mathcal{C}_{\Theta}(\rho)$ in L^*/L^{*2} for $L \supset K$.

Here are a few cases when we know how to prove that the regulator constants are trivial:

Theorem 4 (Vanishing). Let ρ be a $\mathbb{Q}G$ -irreducible representation, and $\Theta = \sum_i n_i H_i$ a G-relation.

- (1) $\operatorname{ord}_p \mathcal{C}_{\Theta}(\rho) \equiv 0 \mod 2 \text{ for all } p \nmid |G|.$
- (2) $C_{\Theta}(\rho) = 1$ if $\rho \otimes \mathbb{C}$ admits a non-degenerate alternating G-invariant pairing. In particular, if a complex irreducible constituent of ρ is non-self-dual, symplectic or has even Schur index.
- (3) $\mathcal{C}_{\Theta}(\rho) = 1$ if ρ is not a constituent of any of the $\mathbb{Q}[G/H_i]$.
- (4) $C_{\Theta}(\mathbb{Q}[G]) = 1$; generally, $C_{\Theta}(\mathbb{Q}[G/D]) = 1$ if D < G is cyclic or has odd order.
- (5) $\operatorname{ord}_p \mathcal{C}_{\Theta}(\mathbb{Q}[G/D]) \equiv 0 \mod 2$ if D < G has a normal subgroup N of order coprime to p and D/N cyclic.

For the applications that we have in mind, we fix a prime p and to each Grelation Θ associate a representation $\tau_{\Theta,p}$ that encodes the p-part of regulator
constants:

$$\tau_{\Theta,p} = \bigoplus_{\substack{\sigma \ \mathbb{Q}G\text{-}\mathrm{irr.}\\ \mathrm{ord}_p\ \mathcal{C}_{\Theta}(\sigma)\ \mathrm{odd}}} (\mathrm{any}\ \mathbb{C}\text{-}\mathrm{irreducible}\ \mathrm{constituent}\ \mathrm{of}\ \sigma).$$

Its defining property is that for every $\mathbb{Q}G$ -representation ρ ,

$$\operatorname{ord}_p \mathcal{C}_{\Theta}(\rho) \equiv \langle \tau_{\Theta,p}, \rho \rangle \mod 2.$$

Question 5. For a fixed p, describe which complex representations of G are of the form $\tau_{\Theta,p}$ for some Θ .

Theorem 6. The set of $\tau_{\Theta,p}$ is closed under direct sum, tensor product by permutation representations, induction and restriction. Moreover,

- (1) $\tau_{\Theta,p}$ has even dimension and trivial determinant.
- (2) If H < G, then $\operatorname{Res}_{G}^{H} \tau_{\Theta,p} = \tau_{\operatorname{Res}_{G}^{H} \Theta,p}$. Here $\operatorname{Res}_{G}^{H} (\sum n_{i} H_{i}) = \sum n_{i} \sum_{x \in H \setminus G/H_{i}} H \cap x H_{i} x^{-1}$.
- (3) If H < G and Φ is an H-relation, then $\operatorname{Ind}_H^G \tau_{\Phi,p} = \tau_{\operatorname{Ind}_H^G \Phi,p}$. Here $\operatorname{Ind}_H^G (\sum n_i H_i) = \sum n_i H_i$.

Remark 7. The name "regulator constant" was introduced in [1] and comes from regulators of elliptic curves. Suppose G is the Galois group of an extension F/K of number fields, and E/K is an elliptic curve. If $\Theta = \sum_i n_i H_i$ is a G-relation, Artin formalism for L-functions forces the identity

$$\prod_{i} L(E/F^{H_i}, s)^{n_i} = 1.$$

The Birch–Swinnerton-Dyer conjecture expresses the leading terms of these

L-functions at s=1 in terms of arithmetic invariants of E/F^{H_i} . The above formula leads to

(8) $\prod_{i} (\operatorname{Reg}_{E/F^{H_i}})^{n_i} \equiv \text{computable quantity} \mod \mathbb{Q}^{*2}.$

Here $\text{Reg}_{E/L}$ is the so-called regulator, the determinant of the canonical height pairing \langle , \rangle_L on a basis of E(L)/torsion.

Now consider the $\mathbb{Q}G$ -representation $\mathcal{E} = E(F) \otimes_{\mathbb{Z}} \mathbb{Q}$. Then $\langle , \rangle = \langle , \rangle_F$ is an \mathbb{R} -valued G-invariant \mathbb{Q} -bilinear pairing on \mathcal{E} , and the determinant $\det(\frac{1}{|H|}\langle , \rangle|\mathcal{E}^H)$ is (up to a rational square) the regulator of E/F^H . So the left-hand side of (8) equals $\mathcal{C}_{\Theta}(\mathcal{E})$, and hence the parity of $\langle \tau_{\Theta,p}, \mathcal{E} \rangle$ is computable for every Θ and p.

Tables of regulator constants

In the tables, beneath each representation we record its dimension. If the representation is not complex-irreducible, we also write 2o1, 2n1 or 1s2, depending on whether its complex constituent is orthogonal, not self-dual or symplectic. (In each of the examples below, we never have more than 2 constituents.)

$C_2 \times C_2 = C_{2,2}$	$ \begin{array}{c} \rho_1 \\ 1 \end{array} $	ρ_2 1	ρ_3 1	ρ_4 1
$C_1 - C_2^a - C_2^b - C_2^c + 2C_{2,2}$	2	2	2	2
p=2	*	*	*	*

Quaternions Q_8	$ \begin{array}{c} \rho_1\\ 1 \end{array} $	ρ_2 1	ρ_3 1	ρ_4 1	ρ_5 4
					1s2
$C_2 - C_4^a - C_4^b - C_4^c + 2G$	2	2	2	2	1
p=2	*	*	*	*	

D_8					$\frac{\rho_5}{2}$
$C_2^b - C_2^c + C_{2,2}^a - C_{2,2}^b$	1	2	1	2	2
	2	2	2	2	1
$\begin{vmatrix} C_2^a - C_4 - C_{2,2}^a - C_{2,2}^b + 2G \\ C_1 - C_2^a - 2C_2^c + 2C_{2,2}^a \end{vmatrix}$	2	2	2	2	1
p=2		*		*	*
	*	*	*	*	

		ρ_2	-	-	-	-
D_{16}	1	1	1	1	2	4
						2o1
$C_2^b - C_2^c + D_8^a - D_8^b$	1	1	1	1	2	2
$C_{2,2}^a - C_{2,2}^b - D_8^a + D_8^b$	_	1	2	2	2	1
$C_4 - C_8 - D_8^a - D_8^b + 2G$	2	2	2	2	1	1
$C_1 - 2C_2^c - C_4 + 2D_8^a$	1	1	1	1	1	1
$C_2^a - C_4 - 2C_{2,2}^b + 2D_8^b$	2	2	2	2	1	1
p=2					*	*
			*	*	*	
	*	*	*	*		

$G_{20} = C_5 \rtimes C_4$	$ \begin{array}{c} \rho_1\\ 1 \end{array} $	$\frac{\rho_2}{1}$	$\frac{\rho_3}{2}$	$\frac{\rho_4}{4}$
			2n1	
$C_2 - 2C_4 - D_{10} + 2G$	5	5	1	5
$ \begin{vmatrix} C_2 - 2C_4 - D_{10} + 2G \\ C_1 - 2C_2 - C_5 + 2D_{10} \end{vmatrix} $	5	5	1	5
p=5	*	*		*

$\mathrm{SL}_2(\mathbb{F}_3)$	$ \begin{array}{c} \rho_1 \\ 1 \end{array} $	$\frac{\rho_2}{2}$	ρ_3 4	$\frac{\rho_4}{4}$	$\frac{\rho_5}{3}$
		2n1	1s2	2n1	
$C_4 - C_6 - Q_8 + G$	2	1	1	1	2
$C_4 - C_6 - Q_8 + G$ $C_2 - 3C_4 + 2Q_8$	2	1	1	1	2
p=2	*				*

()	١.	•		ρ_4	•		•
$\mathrm{GL}_2(\mathbb{F}_3)$	1	1	2	4	3	3	4
				2n1			
$S_3^a - S_3^b$	1	1	1	1	1	1	3
$C_4 - C_{2,2} + D_8 - Q_8$	1	2	2	1	1	2	1
$D_8 - D_{12} - Sy_{16} + G$	2	1	2	1	2	1	1
$C_{2,2} - C_6 - D_8 + SL_2(\mathbb{F}_3)$	2	1	2	1	2	1	1
$C_2^a - C_{2,2} - C_6 - C_8 + 2G$	6	3	6	1	2	1	1
$C_{2,2} - C_8 - 2D_8 + 2Sy_{16}$	2	1	2	1	2	1	1
$C_3 - C_6 - 2S_3^b + 2D_{12}$	2	2	1	1	2	2	3
$2D_8 - Q_8 - 2D_{12} + SL_2(\mathbb{F}_3)$	3	3	3	1	1	1	1
$C_1 - 2C_2^b - C_6 + 2D_{12}$	6	6	3	1	2	2	1
p=2		*	*			*	
	*		*		*		
p=3							*
	*	*	*				

	ρ_1	ρ_2	ρ_3	ρ_4	ρ_5
$\mathrm{PSL}_2(\mathbb{F}_7)$	1	6	6	7	8
		2n1			
$A_4^a - A_4^b$	1	1	2	1	1
$S_4^a - S_4^b$	1	1	2	1	1
$C_{2,2}^a - C_{2,2}^b$	1	1	2	1	1
$A_4^a - H_{21}^1 - S_4^b + G$	1	1	1	1	1
$C_{2,2}^a - S_3 - D_8 + S_4^b$	2	1	1	2	1
$C_2 - C_3 - C_{2,2}^a + A_4^a$	2	1	2	2	1
$S_3 - D_8 - H_{21}^1 + G$	6	1	2	6	3
$C_1 - C_2 - C_3 - C_4 + 2S_4^a$	6	1	2	6	3
$C_3 - C_4 - 2A_4^a + 2S_4^b$	3	1	2	3	3
$C_{2,2}^a - C_7 - 3A_4^b + 3H_{21}^1$	1	1	1	1	1
p=2			*		
	*			*	
p=3	*			*	*

S_3	$ \begin{array}{c} \rho_1 \\ 1 \end{array} $	$\frac{\rho_2}{1}$	$\frac{\rho_3}{2}$
$C_1 - 2C_2 - C_3 + 2G$	3	3	3
p=3	*	*	*

			ρ_3		
S_A	1	1	2	3	3
$C_{2,2}^b - S_3 - D_8 + G$	2	1	2	1	2
$C_2^b - C_3 - C_{2,2}^b + A_4$	2	1	2	1	2
$C_2^a - C_2^b - C_{2,2}^a + C_{2,2}^b$	1	2	2	2	1
$C_1 - 2C_2^a - C_3 + C_{2,2}^a + A_4$	1	1	1	1	1
$C_2^b - C_4 - 2C_{2,2}^b + 2D_8$	2	1	2	1	2
$C_{2,2}^a - 2C_{2,2}^b + 2S_3 - A_4$	3	3	3	1	1
p=2	*		*		*
		*	*	*	
p=3	*	*	*		

		_	_	_	_	_	_
_						ρ_6	
S_5	1	1	4	4	5	5	6
$D_8 - D_{12} - G_{20} + G$	1	1	1	1	1	1	1
$C_2^a - C_3 - C_{2,2}^b + A_4$	2	1	1	1	1	2	2
$C_{2,2}^b - S_3^b - D_8 + S_4$	2	1	1	1	1	2	2
$C_2^b - C_3 - C_{2,2}^a + A_4$	2	2	1	1	2	2	1
$S_3^a - D_8 - A_4 + S_4$	6	2	1	3	2	6	1
$D_8 - D_{10} - S_4 + A_5$	2	6	3	1	6	2	1
$C_{2,2}^a - 2S_3^a + A_4$	3	3	3	3	3	3	1
$C_2^a - C_{2,2}^b - C_5 - S_3^a + D_{10} + A_5$	10	5	5	5	1	2	10
$C_2^a - 2C_{2,2}^b - C_6 + 2D_{12}$	3	1	1	3	1	3	1
$C_4 - C_6 - 2G_{20} + 2G$	6	1	1	3	1	6	2
$C_1 - 3C_2^b + 2C_{2,2}^a$	2	2	1	1	2	2	1
$C_4 - C_{2,2}^b - S_3^a + 2D_8 - 2G_{20} + A_5$	10	10	5	5	2	2	5
p=2	*					*	*
	*	*			*	*	
p=3	*			*		*	
		*	*		*		
p=5	*	*	*	*			*

A_4	$ \begin{array}{c} \rho_1\\1 \end{array} $	$\frac{\rho_2}{2}$	$\frac{\rho_3}{3}$
		2n1	
$C_2 - C_3 - C_{2,2} + G$	2	1	2
$ \begin{vmatrix} C_2 - C_3 - C_{2,2} + G \\ C_1 - 3C_2 + 2C_{2,2} \end{vmatrix} $	2	1	2
p=2	*		*

$\begin{array}{c} \rho_1 \\ 1 \end{array}$		-	-
	2o1		
2	1	1	2
3	1	3	3
3	1	3	3
2	1	1	2
15	5	15	3
*			*
*		*	*
*	*	*	
	1 2 3 2 15 *	1 6 201 2 1 3 1 3 1 2 1 15 5 *	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

_	١.	•	•	ρ_4	•	ρ_6
A_6	1	5	5	16	9	10
				2o1		
$C_{2,2}^a - C_{2,2}^b$	1	2	2	1	1	2
$S_3^a - S_3^b + S_4^a - S_4^b$	1	2	2	1	1	2
$D_8 - D_{10} - H_{36}^9 + G$	2	2	2	1	2	1
$D_8 - D_{10} - S_4^b + A_5^a$	2	2	2	1	2	1
$D_8 - D_{10} - S_4^a + A_5^b$	2	2	2	1	2	1
$S_3^b - D_{10} - A_4^a + A_5^b$	3	1	3	1	1	3
$S_3^a - D_{10} - A_4^b + A_5^a$	3	3	1	1	1	3
$C_{3,3} - A_4^a - A_4^b + H_{18}^4$	2	3	3	1	2	2
$H_{18}^4 - S_4^b - A_5^b + G$	2	6	6	1	2	1
$C_2 - C_4 - C_{2,2}^a - S_3^a + D_8 + S_4^b$	1	1	1	1	1	1
$C_{2,2}^a - 2S_3^b + A_4^a$	3	1	3	1	1	3
$C_4 - C_5 - S_4^b - H_{36}^9 + A_5^a + G$	5	2	2	5	5	2
$C_3^a - C_4 - C_{3,3} + S_4^a - A_5^a + G$	3	2	6	1	1	6
$C_1 - C_2 - C_3^a - C_4 + 2S_4^b$	6	3	1	1	2	6
$C_3^b - C_4 - C_{3,3} - H_{18}^4 + 2S_4^b$	6	1	3	1	2	6
$C_4 - 2S_3^b + 2H_{18}^4 - H_{36}^9 - A_5^a + A_5^b$	1	6	6	1	1	2
p=2		*	*			*
	*	*	*		*	
p=3	*		*			*
	*	*				*
p=5	*			*	*	

	ρ_1	ρ_2	ρ_3	ρ_4	ρ_5	ρ_6	ρ_7	ρ_8
M_{11}			20					
			2n1		2n1			
$H_{36}^9 - H_{36}^9$	1	1	1	1	1	1	1	1
$S_3^a - S_3^b$	1	3	1	3	1	3	1	3
$A_5^a - A_5^b$	1	3	1	3	1	3	1	3
$D_8 - D_{12} - G_{20} + S_5$	1	1	1	1	1	1	1	1
$C_4 - C_6 - Q_8 + SL_2(\mathbb{F}_3)$	2	1	1	2	1	1	2	2
$C_8 - Q_8 - H_{72}^{39} + H_{72}^{41}$	1	1	1	1	1	1	1	1
$GL_2(\mathbb{F}_3) - H_{72}^{39} - S_5 + H_{720}$	1	1	1	1	1	1	1	1
$A_4 - H_{18}^3 - S_4 + H_{72}^{40}$	2	1	1	2	1	1	2	2
$C_6 - Q_8 - H_{18}^3 + H_{72}^{41}$	3	1	1	3	1	1	1	1
$S_3^b - Q_8 - H_{18}^4 + H_{72}^{41}$	3	1	1	-	1	1	1	1
$C_3 - C_4 - C_{3,3} + H_{36}^9$	3	-	1		1	3	1	3
$H_{72}^{40} - S_5 - H_{144}^{182} + H_{720}$	3	1	1		1	1	1	1
$H_{36}^{9} - A_5^a - H_{72}^{41} + A_6$	3	2	1	-	1	1	2	2
$H_{36}^{9} - H_{36}^{10} + H_{72}^{40} - H_{72}^{41}$	1	2	_	1	1	1	2	2
$ A_6 - H_{660} - H_{720} + G H_{18}^3 - SL_2(\mathbb{F}_3) - H_{36}^9 + H_{72}^{41} $	6	2 1	1	6 6	1	1	1	$\frac{1}{2}$
$H_{18} - SL_2(\mathbb{F}_3) - H_{36} + H_{72}$ $C_{3.3} - A_4 - SL_2(\mathbb{F}_3) + H_{72}^{40}$	6	6	1 1		1 1	3	2 2	6
$H_{36}^{0} - GL_2(\mathbb{F}_3) + H_{72}^{182} + H_{144}^{182}$	6		1	-	_	3 1	2	2
$H_{18}^{36} - GL_2(\mathbb{F}_3) - H_{72} + H_{144}$ $H_{18}^4 - 2S_4 + H_{36}^9$	2	1		2		1	2	2
$S_5 - H_{144}^{182} - H_{660} + G$	_	2		10		5	1	1
$D_{12} - Sy_{16} - H_{36}^9 + H_{72}^{41} - S_5 + H_{720}$	1	2		10	1	1	2	2
$G_{20} - H_{36}^9 - H_{55}^1 - S_5 + A_6 + H_{660}$	_	1		5	1	5	1	1
$S_4 - 2H_{36}^9 + H_{72}^{41}$	3	6		1	1	3	2	6
$Q_8 - Sy_{16} - G_{20} - SL_2(\mathbb{F}_3) + GL_2(\mathbb{F}_3) + S_5$	6	2	1	6	1	1	1	1
$C_{2,2} - D_8 - Q_8 - H_{36}^9 + 2H_{72}^{41}$	1	2	1	1	1	1	2	2
$C_1 - C_2 - C_3 - C_4 + 2S_4$	6	3	1	2	1	3	2	6
$C_2 - C_4 - C_8 - D_{10} - H_{18}^3 + GL_2(\mathbb{F}_3) + H_{144}^{182} + A_6$	6	1	1	6	1	1	2	2
$C_5 - C_6 - G_{20} + H_{36}^9 - H_{55}^1 + H_{144}^{182} + H_{660} - H_{720}$	10	1	1	10	1	5	2	2
$Sy_{16} - G_{20} - H_{36}^9 + H_{72}^{41} + H_{660} - G$	30	1	1	30	1	5	2	2
$D_{10} - Sy_{16} - G_{20} + H_{72}^{41} - S_5 + H_{144}^{182}$	30	2	1	30	1	5	1	1
$C_4 - C_5 - C_{11} + S_4 + H_{36}^9 + H_{55}^1 - A_5^b - 2H_{72}^{40} + H_{660} - 3H_{720} + 3G$	6	2	1	6	1	1	1	1
p=2	*			*			*	*
		*					*	*
p=3		*		*		*		*
	*			*				
p = 5	*			*		*		

References

- [1] T. Dokchitser, V. Dokchitser, On the Birch–Swinnerton-Dyer quotients modulo squares, 2006, arxiv: math.NT/0610290.
- [2] T. Dokchitser, V. Dokchitser, Regulator constants and the parity conjecture, 2007, arxiv: 0709.2852.

ROBINSON COLLEGE, CAMBRIDGE CB3 9AN, UNITED KINGDOM $E\text{-}mail\ address:}$ t.dokchitser@dpmms.cam.ac.uk

Gonville & Caius College, Cambridge CB2 1TA, United Kingdom $\textit{E-mail address:}\ \texttt{v.dokchitser@dpmms.cam.ac.uk}$