REGULATOR CONSTANTS

TIM AND VLADIMIR DOKCHITSER

This note is a concise version of [2] §2, and concerns a group-theoretic
invariant that owes its existence to the fact that different G-sets can have
isomorphic permutation representations.

Let G be a finite group. If H; <G are subgroups and n; € Z, we say that
©=>,n;H; is a relation between permutation representations or simply a
G-relation if @, C[G/H;]®™ = 0 as a virtual representation. (Equivalently,
O is an element in the kernel of the natural map from the Burnside ring to
the representation ring of G.)

Suppose © = ). n;H; is such a relation, and p is a QG-representation.
Pick a G-invariant non-degenerate Q-bilinear pairing (, ) on p and define the
requlator constant

Col(p) = Hdet(u-}” (, >|PHZ)nZ € @*/Q*Q

Here pHi is the space of H;-invariant vectors of p, and det({,)|V) is the
determinant of the matrix ((v;,v;));; with v; any Q-basis of V' — as an
element of Q*/Q*2 it is independent of the basis.

The crucial fact is that Co(p) is independent of the pairing (, ). Regulator
constants are additive in both © and p,

Co,+0,(p) = Co,(p)Coy(p),  Colpr @ p2) = Coa(p1)Col(p2)-
In particular it suffices to describe them for QG-irreducible representations.

Example 1. Let G = Dy, be the dihedral group of order 2p, with p an odd
prime. Its Q-irreducible representations are trivial 1, sign € and (p — 1)-
dimensional p. There is a unique relation © up to multiples, and Cgo(1) =
Co(€) = Co(p) = p. We summarise this as

Do, ‘ 1 € p
@:1—2CQ—CP+2G‘p pp
Example 2. Take G = As. Here the irreducible rational representations
are 1, p,0,n of dimensions 1,6,4 and 5, respectively, and the subgroups of
G up to conjugacy are 1,Co, Cs,Cyx Co, C5,S3, D1g, Ag, As. The lattice of
relations is generated by 5 elements, and here are the regulator constants:

As 1 p o n
©1=1-30C3+2CyxCy 2 1 1 2
Oy =CyxCy—2D1g— A4 +2A5| 3 1 3 3
O3 =53 — Dyg— A4 + As 3 1 3 3
O,=0C3—C5—2A4+2A5 15 5 15 3
O;=1—-2Cy—C5+2Dqg 5 5 o5 1

Question 3. What are these numbers?
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Let us mention that the field Q may be replaced by any field K of charac-
teristic 0 (or coprime to |G|), provided we stick to self-dual representations:
if p is a self-dual K G-representation, Co(p) € K*/K*? is well-defined, and
is unchanged in field extensions; Co(p ®x L) agrees with Co(p) in L*/L*?
for L O K.

Here are a few cases when we know how to prove that the regulator
constants are trivial:

Theorem 4 (Vanishing). Let p be a QG-irreducible representation, and
© => . n;H; a G-relation.

(1) ord,Ce(p) =0 mod 2 for all p1|G]|.

(2) Co(p) =1 if p® C admits a non-degenerate alternating G-invariant
pairing. In particular, if a complex irreducible constituent of p is
non-self-dual, symplectic or has even Schur indez.

(3) Co(p) =1 if p is not a constituent of any of the Q[G/H;].

(4) Co(Q[G]) = 1; generally, Co(Q[G/D]) =1 if D<G is cyclic or has
odd order.

(5) ord, Ce(Q[G/D]) =0 mod 2 if D<G has a normal subgroup N of
order coprime to p and D/N cyclic.

For the applications that we have in mind, we fix a prime p and to each G-
relation © associate a representation 7g 5, that encodes the p-part of regulator
constants:

TOp = @ (any C-irreducible constituent of o).

o QG-irr.
ordp Cg (o) odd

Its defining property is that for every QG-representation p,
ord, Ce(p) = (Te,p,p) mod 2.

Question 5. For a fixed p, describe which complex representations of G are
of the form 7g , for some ©.
Theorem 6. The set of 7g ) is closed under direct sum, tensor product by
permutation representations, induction and restriction. Moreover,
(1) 1o, has even dimension and trivial determinant.
H
(2) If H <G, then Res¢ 1o p = TRes! ©,p°
Here Res2 (3" niH;) = Yon; >vemg/m; HN rHix~ !
. . G
(3) If H <G and ® is an H-relation, then Indf 79 ), = TndG @,p-
Here Ind% (S" niH;) = S niH;.
Remark 7. The name “regulator constant” was introduced in [1] and comes
from regulators of elliptic curves. Suppose G is the Galois group of an

extension F/K of number fields, and E/K is an elliptic curve. If © =
> niH; is a G-relation, Artin formalism for L-functions forces the identity

HiL(E’/FHi,s)’” = 1.

The Birch—Swinnerton-Dyer conjecture expresses the leading terms of these
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L-functions at s = 1 in terms of arithmetic invariants of £/FH:. The above
formula leads to

(8) [I:(Regp pr;)™ = computable quantity mod Q*2.

Here Regp/, is the so-called regulator, the determinant of the canonical
height pairing (, )7, on a basis of E(L)/torsion.

Now consider the QG-representation & = E(F) ®z Q. Then (,) = (,)p
is an R-valued G-invariant Q-bilinear pairing on &£, and the determinant
det(‘—}”(,ﬂé’H) is (up to a rational square) the regulator of £/F. So the
left-hand side of (8) equals Cgo(€), and hence the parity of (7g p,E) is com-
putable for every © and p.

Tables of regulator constants

In the tables, beneath each representation we record its dimension. If
the representation is not complex-irreducible, we also write 201, 2nl or 1s2,
depending on whether its complex constituent is orthogonal, not self-dual
or symplectic. (In each of the examples below, we never have more than 2
constituents.)

Cy x Cy = Ch2 1111

Cl—CS—CS—CQC‘FQCQ,Q 2 2 2 2
p=2

Quaternions Qg 1111 4

Co—Ci—Ct—C5+2Gl2 2 2 2 1

p=2 * % % %
p1 P2 P3 P4 Ps
Ds 1111 2
CS—C5+C5,—Ch, 1 21 2 2
C§—Cs—C8y—Ch,+2G|2 2 2 2 1
Cy — C% — 205 +2C5, 2 2 2 21
p=2 * * ok
ko ok ok k
p1 P2 P3 P4 P5 P6
D 11112 4
201
CY —C5+ Dg — D} 11112 2
C$y—Cs,—Dg+D§ |1 1 2 2 2 1
Cyi—Cs—D¢—D3+2G|2 2 2 2 1 1
Cy — 2C5 — Cy + 2D¢ 111111
Cy —Cy—20%,+2D% |2 2 2 2 1 1
p=2 * ok
K  k Xk
* ok ok
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P1 P2 P3 P4
G20 =C5 x Cy 11 2 4
2nl
Cy—2C4—D1o+2G |5 5 1 5
C1—2Cy —Cs5+2D1gl5 5 1 5
p=>5 * % *
pPL P2 P3 P4 P5
SLo(IF3) 1 2 4 4 3
2nl 1s2 2nl
Ci—Ce—Qs+G|2 1 1 1 2
Cy — 3Cs 4+ 2Qs 2 1 1 1 2
p=2 * *
pP1 P2 P3 pa Ps P6 P7
GLa(F3) 112 4 3 3 4
2nl
S¢ — ST 1111113
C4—0272+D8—Q8 1 2 2 1 1 2 1
Ds — D12 — Sy16 + G 21 2 1 2 11
Co2—Cs—Dg+SL2(F3) |2 1 2 1 2 1 1
CS_CQ’Q—CG_CS+2G 6 3 6 1 2 1 1
Cao — Cs — 2Dg + 2Sy16 2121 211
Cs — Cs — 2554 2Dy 2211 22 3
2Dg — Qs —2D12+ SLa(F3)[3 3 3 1 1 1 1
C1 —2C% — Cs + 2D 6 6 3 1 2 21
p=2 * % *
* * *
p:3 *
* kX
P1 P2 P3 P4 P5
PSLy(F7) 1 6 6 7 8
2nl
A% — A 1 1 211
5S¢ — b 11 211
C$,—C3, 11 211
A% —HY —Sh+ @G 1 1 111
C$y—S3— Ds+ S} 2 1 1 21
Cy—C3—C8y+ Af 2 1 2 21
Ss — Dg — Ha1 + G 6 1 2 6 3
C1—Ca—C3—-Cy4+25¢|6 1 2 6 3
Cs — Cy — 2A% + 258 31 2 3 3
C$y—C7—3A%+3H3; |1 1 1 1 1
p=2 *
* *
p=3 * % %
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Ss3 11 2

Cy—2C2—Cs+2G|3 3
*

p=3 *
P1 P2 P3 P4 P5
Sy 112 3 3
CSy—S3—Ds+G 21 21 2
CS—C5—Chy+ Ay 2121 2
C§—C8—Csa+C3, 12221
01—205—034-05,24‘144 1 1111
Ch — Cy —2C5 5 +2Ds 2121 2
C$y—205,+283— Ay |3 3 3 1 1
p=2 * * *
* ok ok
p=3 EE
P1 P2 P3 P4 P5 P6 P7
Ss 11445056
Ds — D1z — G0+ G 1 1 1 1 1 1 1
C§—Cs3—Chy+ Ay 2111122
C55—S5— Ds+ Ss 2111122
C3—C3—C5o+ Ay 2211221
S§—D8—A4+S4 6 21 3 2 6 1
Dg — Do — S4 + As 26 316 21
C$o— 255 + Ay 3333331
C§—Chy—C5—8$+Dig+4s (105 5 5 1 2 10
C$ — 2055 — Co + 2D12 3113131
Cy — Cs — 2Goo + 2G 6 1 1 3 1 6 2
Cy — 3C% +2C% 5 2 2112 21
Cy—C89— 5§ +2Ds —2G20 + A5[1010 5 5 2 2 5
p=2 * * ok
* * * *
p=3 * * *
*x % *
p=>5 * ok ox % *




P1 P2 P3
Ay 1 2 3

Cy—C3—C2p+G

2 2
C1 —3Cy + 202,2 2 1 2
p=2 * *
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P1 P2 P3 P4
As 1 6 45
201
Co—C3—Cap+As|2 1 1 2
S3 — Dig—As +G 3 1 3 3
Cao — 253+ As 31 3 3
C1 —3Cy + 202,2 2 1 1 2
C3 —Cs —2A4+2G|15 5 15 3
p=2 * *
p=3 * *
p=>5 * %
P1L P2 P3 P4 P5 P6
Ag 1 55 16 9 10
201
Cs,—C3, 12211 2
S¢ — 82489 — S8 122 112
Ds — Do — Hy + G 2221 21
Ds — Do — S5 + Ag 2221 21
Dg — Dyg — 5§ + A8 2221 21
St — Dyg — A + A% 313113
S¢ — Dyg — A} + A 3311 13
Cs3— AF — A + Hiy 2 331 2 2
His— S} — AL+ G 26 6 1 21
Cy—Cy—CSy— S§ + Ds + S5 111111
%5 — 255 + AS 313113
Cy—Cs— St —H3ys+ A2+ G 52 2 5 5 2
C§—Cys—Cs3+8f —AL+G 326 116
CL—Co—C§ —Cy+255 6 31 1 26
C3 — Cy — C3 3 — Hig + 255 6 1 3 1 26
Cy—2S54+2Hts —H3s— A2 +A%1 6 6 1 1 2
p=2 * % *
* * * *
p=3 * * *
* * *
p=>5 * * %
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pP1 P2 pP3 P4 Ps Pe P7 P8
My 1 10 20 11 32 44 45 55
2nl 2nl
H3e — H3g T 1 1 1 1 111
Sg — S5 13 131313
Ag — A} 13131313
Ds — D12 — Goo + S5 11 1 1 1 1 11
Cy— Cs — Qs + SLa(F3) 21 1 2 112 2
Cs — Qs — HY + Hys 11 1 1 1 111
GL2(Fs) — HY — S5 + Hrao 11111111
Ay — Hig — Sy + H79 21 1 2 1 12 2
Cs — Qs — His + H73 31 1 3 1 111
S% — Qs — Hig + H?3 3113 1 111
Cs —Cy — Cs3 + His 331 11313
H2) — S5 — HI$2 + Hooo 3113 1 111
H3s — A — H73 + As 3213 1 12 2
H3s — H3g + H79 — Hys 12111122
As — Heso — Hro0 + G 6 2 1 6 1 1 1 1
His — SLy(F3) — H3s + His 6 1 1 6 1 1 2 2
C3,3 — Ay — SLa(F3) + HY 16 1 3 1326
H3s — GLy(F3) — Hys + H{} 6 1 16 1 1 2 2
Hig — 254 + H3g 21 1 2 1 12 2
Ss — Hi%; — Heeo + G 02 1101 5 11
D12 — Sy — H3s + H73 — S5 + Hrao 121 11122
G20 — H3s — His — S5 + As + Heeo 51 1 5 1 5 11
Sy —2H3s + Hys 36 1 1 1 3 2 6
Qs — Syi6 — G20 — SL2(F3) + GL2(F3) + S5 6 2 1 6 1 1 11
Ca2 — Ds — Qs — H3s + 2H7, 12111122
C1—Cy—C35—C4 +254 6 3 1 2 1 3 2 6
Cy — Cy — Cs — Dig — His + GLa(F3) + HiSE + As 6 1 1 6 1 1 2 2
Cs — Cs — G0 + H3s — Hss + H{%i + Heeo — Hrao 101 1101 5 2 2
Syi6 — Gao — H3s + H7s + Hgeo — G 301 13 1 5 2 2
Dio — Syi6 — Gao + Hs — S5 + HI5; 302 13 1 5 1 1
Ci—Cs—Cr1+Sa+Hys+His— AL —2H2 + Hoso—3Hm0+3G|6 2 1 6 1 1 1 1
p=2 * * * ok
* * *
p=3 * * * *
*
p=>5 * *
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