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Abstract

We construct Lax pairs for general d + 1 dimensional evolution equations in the form ut =
F [u], where F [u] depends on the field u and its space derivatives. As an example we study a
3 + 1 dimensional integrable generalization of the Burgers equation. We develop a procedure
to generate some exact solutions of this equation, based on a class of discrete symmetries of
the Darboux transformation type. In the one-dimensional limit, these symmetries reduce to the
Cole-Hopf substitution for the Burgers equation. It is discussed how the technique can be used
to construct exact solutions for higher-dimensional evolution PDEs in a broader context.
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1 Introduction

Most of the known completely integrable nonlinear evolution PDEs are 1+1 dimensional [1], [12].
In space dimension d ≥ 2, the existing theory encounters fundamental algebraic and geometric
obstructions. Integrability of nonlinear PDEs is closely related (yet certainly not equivalent) to the
existence of [L,A], or Lax pairs. It turns out that for any d ≥ 1 and any nonlinear scalar evolution
equation

ut = F [u], (1.1)

where F [u] is a finite algebraic expression containing u and its space derivatives, there exists an
[L,A] pair. Let us illustrate it for d = 1, 2, 3.

1. If d = 1, the [L,A] pair for equation (1.1) has the following form:

ψx = uxψ,

ψt = a11ψxx + (a− 2a11)ψx +
(
F [u] + a11(u2

x − uxx)− aux

)
ψ,

(1.2)

where a11, a are arbitrary constants and u = u(x, t), ψ = ψ(x, t).

AMS subject classification 35Q53, 35Q58
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2. If d = 2, we have

ψxy = uyψx + uxψy + (uxy − uxuy) ψ,

ψt = a11ψxx + a22ψyy + (a− 2a11ux) ψx + (b− 2a22uy)ψy+(
F [u] + a11(u2

x − uxx) + a22(u2
y − uyy)− aux − buy

)
ψ,

(1.3)

where a11, a22, a, b are arbitrary constants and u = u(x, y, t), ψ = ψ(x, y, t).

3. If d = 3, the analog of (1.2, 1.3) is

ψxyz = uyψxz + uxψyz + uzψxy+
(uxy − uxuy) ψz + (uyz − uzuy) ψx + (uxz − uxuz) ψy+
(uxyz − uxuyz − uyuxz − uzuxy + uxuyuz) ψ,

ψt = a11ψxx + a22ψyy + a33ψzz + 2 (a12ψxy + a13ψxz + a23ψyz)+
(a− 2(a11ux + a12uy + a13uz))ψx + (b− 2(a12ux + a22uy + a23uz))ψy+
(c− 2(a13ux + a23uy + a33uz))ψz + (F [u] + a11(u2

x − uxx)+
a22(u2

y − uyy) + a33(u2
z − uzz) + 2(a12(uxuy − uxy)+

a13(uxuz − uxz) + a23(uyuz − uyz))− aux − buy − cuz)ψ,

(1.4)

where amn (m,n = 1..3), a, b are arbitrary constants and u = u(x, y, z, t), ψ = ψ(x, y, z, t).

For the general d ≥ 1, the first equation, or the L-equation, of the pair will have order d, while the
second equation, or the A-equation, will always be of the second order in the space variables.

Clearly, the existence of the [L,A] pair does not in general guarantee integrability of the corre-
sponding PDE. However in many cases (this issue is addressed in the final section of this note in
some detail) the pair may still enable one to construct non-trivial exact solutions of the equation in
question.

Until the last section, let study the special case when F [u] is such that the coefficient multiplying
ψ in the A-equation is zero. If d = 1, this yields the Burgers equation, whose Lax pair is

ψx = uxψ, ψt = aψxx + bψx,

with the compatibility condition

wt = a (2wwx + wxx) + bwx, (1.5)

where w = ux.
Recall that the standard form of the Burgers equation for U = U(x, t) is

Ut + UUx − νUxx = 0, (1.6)

and it can be fully linearized via the Cole-Hopf substitution ([6], [9]).

U = −2ν∂x log Θ, (1.7)

which transforms it to the heat equation (with diffusivity ν) for the quantity Θ(x, t).
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Despite it is linearizable, the Burgers equation is closely related to bona fide nonlinear PDE
hierarchies, such as KdV and mKdV, [8]. It plays an important rôle in physical models character-
ized by the balance between nonlinearity and dissipation, [3] (rather than dispersion, which makes
the Burgers equation quite special among other evolution equations). For some physical models
involving the Burgers equation, see e.g. [5], [4], [13].

If d > 1, the family (1.1) of evolution equations provides a wide generalization of the Burgers
equation. Each member of the family allows for a Lax pair and can occasionally be linearized. If
this is the case, one can spot certain displays of linearizability in the equation’s symmetry structure,
as it happens for instance with the Thomas equation, see [14].

We shall further deal with d = 3. In the recent work [15], the 2+1 dimensional BLP (Boiti,
Leon and Pempinelli) system was studied in the same vein, namely as an integrable two-dimensional
generalization of the Burgers equation.

Henceforth, consider the following 3+1 dimensional representative of the family (1.1):

K[u] ≡ ut + a1

(
ux

2 − uxx

)
+ a2

(
uz

2 − uzz

)
+ b1 (uxuy − uxy) + b2 (uxuz − uxz)−

ρux − µuy − λuz

= 0,
(1.8)

where u = u(x, y, z, t) and the rest of the parameters are constants. Let us repeat that this equation
results from the [L, A] pair (1.4) in a special case, when F [u] is such that it zeroes the last bracket
in the A-equation of the system. The general situation is dealt with in Section 5.

Equation (1.8) contains dissipative terms and has the following properties:

1. It is completely integrable.

2. In the 1+1 dimensional limit it gives the Burgers equation.

3. It admits a class of discrete symmetries of the Darboux transformation type. Namely, to take
advantage of these symmetries, one has to solve the Lax pair equations. This enables one
to construct a rich family of the exact solutions of the equation. In particular, it becomes
possible to fulfill a 3+1 dimensional dressing of the Burgers equation.

4. In the 1+1 dimensional limit, the symmetries in question reduce to the Cole-Hopf transfor-
mation.

Equation (1.8) is completely integrable, as it allows for complete linearization, after multiplying it
by exp(−u) and introducing the new variable v = exp(−u). In this sense, it represents a very close
analog of the Burgers equation. It may appear that the fact of linearizability makes the development
of ”nonlinear” methods for this equation superfluous. There are several principal objections against
that.

The first and the main one is the fact that equation (1.8) represents in a sense a limit case
of the class of nonlinear equations, resulting from the [L,A] pair (1.4). In the general case, point
linearization would be impossible. However, the technique developed below is based solely on the
intertwining properties of the L-operator and to some extent (see Section 5) applies to the general
case. In the same vein, the Burgers equation, although linearizable, has its proper niche among
nonlinear hierarchies, see [8] and the references contained therein.

The dressing procedure developed further does not contain a spectral parameter. Thus, from
the point of view of Inverse Scattering the above Lax pair is not likely to be useful. This is hardly an
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exception however in d > 1. Rather, the situation is similar to the case of 2+1 integrable models,
such as for instance the Davey-Stewartson equations. (See e.g. [10].) In general, it is not fully
understood to what extent the presence of the spectral parameter (and Inverse Scattering) should
be characteristic of multi-dimensional models, or it is the special feature of the case d = 1 (although
in the case d = 2, the spectral parameter can be introduced and the spectral theory worked out).
For recent results dealing with 2+1 dimensional generalizations of spectral theory methods, see [2]
and the references contained therein.

At last, the technique can be applied in the ”inverse” direction. The linearizing substitution
results in strictly positive real solutions of the corresponding linear equation. Hence, one can use
the exact solutions of the nonlinear equation (1.8) in order to construct positive solutions of the
underlying linear equation, which may be of some physical sense.

2 Statement of results

In the 1 + 1 dimensional limit, equation (1.8) reduces to the dissipative Burgers equation. Indeed,
imposing a one-dimensional reduction ∂y = ∂z = 0, and defining the quantity

ξ(x, t) = ux(x, t), (2.1)

we obtain
ξt − ρξx − a1ξxx + 2a1ξξx = 0. (2.2)

The latter equation becomes the Burgers equation after either changing t → t′, such that

∂t′ = ∂t − ρ∂x,

or directly letting ρ = 0. Clearly, the reduction ∂x = ∂y = 0 has a similar effect, while the reduction
u = u(y, t) yields

ut − µuy = 0,

a linear equation. In view of the above, equation (1.8) can be viewed as a special non-isotropic
three-dimensional extension of the Burgers equation. To emphasize this, let w = ux and consider
µ = ρ = λ = 0. Rewrite (1.8) as follows:

wt + 2a1wwx + b1wwy + b2wwz − a1wxx − a2wzz − b1wxy − b2wxz+
b1uywx + b2uzwx + 2a2uzwz = 0.

(2.3)

One can see that the in the “physical” realization of equation (2.3) one should have a1, a2 > 0,
for otherwise the problem is ill-posed. Further in this note we construct some exact solutions of
equation (2.3), see Examples 4.1 and 4.3. We observe however that in the apparently “non-physical”
case a1a2 < 0, the latter equation admits three-dimensional stationary localized solutions, which
may or may not possess physical meaning, see Example 4.2.

Our main result is the following theorem.

Theorem 2.1. Let u(x, y, z, t) be a particular solution of equation (1.8) and ψ = ψ(x, y, z, t) satisfy
the following linear equation:

ψt = a1ψxx + a2ψzz + b1ψxy + b2ψxz + (ρ− 2a1ux − b2uz − b1uy) ψx + (µ− b1ux)ψy+
(λ− 2a2uz − b2ux) ψz ≡ A[u] ψ.

(2.4)
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Then any ũklm = ũklm(x, y, z, t), defined as

ũklm = u− log
(
(∂x − ux)k (∂y − uy)

l (∂z − uz)
m ψ

)
, (2.5)

for some (k, l, m) ∈ Z3
+, is also a solution of equation (1.8).

Above, Z+ denotes non-negative integers; Z++ further stands for positive integers.
Theorem 2.1 is based on a Lax pair, which is a particular case of (1.4), where some parameters

have been assigned zero values.

Proposition 2.2. Equation (1.8) admits a Lax pair, with the A-equation ψt = A(u)ψ, see (2.4),
and the L-equation

ψxyz = uzψxy + uyψxz + uxψyz + (uyz − uyuz) ψx + (uxz − uxuz)ψy + (uxy − uxuy) ψz+
(uxyz − uyzux − uyxuz − uxzuy + uxuyuz) ψ.

(2.6)

Observe that the spectral equation (2.6) of the Lax pair can be rewritten as follows:

(∂x − ux) (∂y − uy) (∂z − uz) ψ ≡ L1[u]L2[u]L3[u]ψ ≡ L[u]ψ = 0. (2.7)

Also observe that if we introduce the operator A′[u] = A[u] + K[u], the compatibility condition of
the Lax pair equations (2.6) and (2.4) will be reduced to the identity. Namely the operators L[u]
and B′[u] = ∂t −A′[u] commute: [L[u],B′[u]] = 0.

Successive iteration of (2.5) results in the following corollary.

Corollary 2.3. Let {ψi}, i = 1, . . . , N be a set of particular solutions of the A-equation (2.4).
Given a potential u satisfying equation (1.8), new solutions of this equation can be generated as
follows:

ũ = u− log

(
N∏

i=1

Lki
1 [u]Lli

2 [u]Lmi
3 [u]ψi

)
, (2.8)

where (ki, li, mi) ∈ Z3
+.

Remark 2.4. Note that in the formulation of Theorem 2.1 there is no mention of the L-equation of
the pair. It is the special choice of the quantity F [u] in equation (1.8) that makes the L-equation
play only an auxiliary rôle to determine the intertwining properties of the operators used to prove
the theorem, cf. (3.2). In particular, the L-equation in general does not have to be satisfied by
the function ψ in Theorem 2.1. This happens in particular in Example 4.3 in the sequel, while in
Examples 4.1, 4.2 the L-equation is satisfied. If the L-equation is satisfied, then one can additionally
require that (k, l, m) 6∈ Z3

++ in Theorem 2.1 and the following Corollary 2.3, as (2.6) states that
L = L1L2L3 is an annihilator of ψ. Generally speaking, the formulae (2.5), (2.8) should be viewed
as computation rules, rather than be characteristic of some function space. In particular, the choice
(ki, li,mi) not in Z3

++ alone cannot ensure that the quantity ũ be generally non-singular.

Earlier it was shown that the Burgers equation (2.2) follows from equation (1.8) after letting
∂y = ∂z = 0. Equivalently, if we set u = u(x, t) in (2.5) and use it with u ≡ 0, k = 1, then after
differentiation with respect to x, the expression (2.5) results in the Cole-Hopf substitution.
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3 Proof of Theorem 2.1

The proof of the theorem is based on the following observation.

Lemma 3.1. Let ψ be a solution of the Lax pair equations (2.6), (2.4) with the potential u, which
is a solution of equation (1.8). Then the function

ψ̃klm = Lk
1[u]Ll

2[u]Lm
3 [u]ψ, (k, l, m) ∈ Z3

+ (3.1)

also satisfies the [L,A] equations (2.6), (2.4), with the same potential u.
If ψ is a solution of the A-equation (2.4) alone, then ψ̃klm computed by (3.1) is also a solution

of (2.4).

The lemma follows by induction from the following commutation relations, whose verification is
a direct computation: for i, j = 1, 2, 3 one has

[Li[u], L[u]] = [Li[u], B[u]] = [Li[u], Lj [u]] = 0,

where B[u] = ∂t −A[u]. 2

To prove Theorem 2.1, let us introduced three intertwining operators

Di = fi∂i − gi, i = 1, 2, 3, (3.2)

with the quantities fi, gi to be determined (notation-wise, above ∂1,2,3 = ∂x,y,z, respectively), such
that the operators Di have the following property: for some ui = ui(x, y, z, t),

L(ui)Di = DiL[u], B(ui)Di = DiB[u]. (3.3)

The commutation relations (3.3) determine the maps u → ui, which result from the substitution of
(3.2) into (3.3). The explicit form of the operators Di can be found as follows.

Substituting (3.2) into (3.3) and equating the components at the same partial derivatives re-
sults in a system of nonlinear equations (the reader is spared the latter system that looks rather
cumbersome), whence it follows:

Di = e−v (Li[u]− ci) , ui = ũ = u− v, (3.4)

where ci are constants and will be further assigned zero values. If u is a solution of (1.8), then ũ is
a new solution of (1.8), provided that v = v(x, y, z, t) satisfies the following nonlinear equation:

vt = a1

(
vxx + vx

2
)

+ a2

(
vzz + vz

2
)

+ b1 (vxy + vxvy) + b2 (vxz + vxvz)+
(ρ− 2a1ux − b2uz − b1uy) vx + (µ− b1ux) vy + (λ− 2a2uz − b2ux) vz.

(3.5)

Therefore the relations (3.4) or explicitly (3.5) indicate that for u ≡ 0, the function ”−v” satisfies
equation (1.8).

Let us consider the quantity ψ = eu and substitute it into (2.4). If u is a solution of (1.8),
then ψ = eu will satisfy (2.4). On the other hand, by Lemma 3.1 (namely its last statement), the
quantities ψ̃klm defined by the relation (3.1) are also solutions of (2.4), with the same potential u.
Rewriting them as ψ̃klm = exp(vklm) and substituting into (2.4), one verifies that the quantities
vklm indeed satisfy equation (3.5). Theorem 2.1 and the formula (2.5) now follow from the second
relation from (3.4).

Observe that the L-equation has played but an auxiliary rôle throughout the proof. I.e. if ψ
solves the A-equation, we can formally let u = log ψ, and then (∂x − ux)ψ = 0 is just a truism. 2
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Remark 3.2. The formula (2.5) has a countenance similar to the Darboux transformation, which is
a standard tool for constructing exact solutions of nonlinear PDEs (usually in 1+1, more rarely in
2+1 dimensions) which admit Lax pairs. See e.g. [11] for general theory, applications and references.
Strictly speaking however, the formula (2.5) does not represent a bona fide Darboux transform for
the following reasons.

1. The Darboux transformation, representing discrete symmetries of a particular Lax pair, pos-
sesses a non-trivial kernel on the solution space of the pair. This is precisely the property that
enables one to write down the Crum determinant formulae (see [7]) for successive Darboux
transforms. However, the transformation (2.5) does not have such a property.

2. In the Darboux transform, one always needs the solution of the full [L, A] pair. Contrary
to this, in the proof of Theorem 2.1 in order to get (2.5), we have used the solution of the
A-equation (2.4) only. To this effect, the transformation (2.5) is similar to the Cole-Hopf
transformation and points towards the possibility of linearization of equation (1.8).

4 Some exact solutions

Let us use Theorem 2.1 to construct some exact solutions of equation (2.3) (which is the equation
for ux, where u is a solution of equation (1.8) with µ = λ = ρ = 0). We consider equation (2.3),
rather than (1.8), as it bears a closer resemblance to the Burgers equation and is more likely to be
interesting from the physical point of view. Observe that in the first two examples, both Lax pair
equations (with the background potential u) will be satisfied by the function ψ, while in the third
example, it is only the A-equation, cf. Remark 2.4.

Example 4.1. Consider dressing on the vacuum background u ≡ 0. One solution of the Lax pair
equations (2.6), (2.4) is

ψ(x, y, z, t) = c1eα(αa1+βb1)t cosh(αx + βy) + c2e(a1a2+a2b2+abb2)t cosh(ax + bz) + c3ea2c2t cosh(cz),
(4.1)

where α, β, a, a1, a2, b, b1, b2, c1, c2, c3 are some real constants. Let us choose them such that

β = −αa1

b1
, b = − a

2a2

(
b2 ±

√
b2
2 − 4a1a2

)
. (4.2)

Substituting now (4.1) into (2.5), we compute the quantity ũklm. Further differentiating it with
respect to x and choosing k = l = m = 0, we obtain a solution w to equation (2.3) as follows:

w(x, y, z, t) = − αc1 sinh(αx + βy) + ac2 sinh(ax + bz)
c1 cosh(αx + βy) + c2 cosh(ax + bz) + c3ea2c2t cosh(cz)

. (4.3)

Example 4.2. Let us consider once again u ≡ 0. As a solution of the Lax pair equations now take

ψ(x, y, z, t) = a2x2 + b2y2 + c2z2 + 2
(
a1a

2 + a2c
2
)
t + s2, (4.4)

where a, a1, a2, b, c, s are some real constants. In the same vein as in the previous example, we
obtain

w(x, y, z, t) = − 2a2x

a2x2 + b2y2 + c2z2 + 2 (a1a2 + a2c2) t + s2
, (4.5)
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an exact solution of equation (2.3). Does this solution have a physical meaning? Apparently it
describes a rationally localized impulse, vanishing as t → +∞. To ensure that it is non-singular
for t ≥ 0, one should impose the inequality a2 ≥ −a2a1/c2 on the coefficients. In the case a2 =
−a2a1/c2, the solution becomes stationary.

It was noted earlier however that if a1a2 < 0, the problem described by equation (2.3) is ill-posed.
On the other hand, this is precisely the case when the solution (4.5) is stationary. The fact of the
existence of a localized stationary solution in an equation containing dissipative terms may appear
a physical nonsense. One can see that the constants a1 and a2 come up in the dissipative terms of
equation (2.3). The constant a1 characterizes the dissipation along the x axis and a2 – along the
z axis. The case when a1 and a2 have different signs suggests that dissipation in one direction is
compensated by instability in the other. These two effects balance each other through nonlinearity,
resulting in the appearance of the stationary solution (4.5). This solution can be regarded as a
three-dimensional dissipative structure. A similar scenario occurs for two-dimensional stationary
solutions of the BLP equation, described in [15]. It is arguable whether or not there is a physical
meaning to such phenomena.

Example 4.3. Let us now illustrate how some exact solutions of the three-dimensional equation
(2.3) can be constructed on the basis of the solutions of the 1+1 dimensional Burgers equation.
Consider equation (2.2) for the unknown ξ(x, t). Suppose λ = µ = ρ = 0, let a1 = ν in (2.2). One
can see that the quantity U(x, t) = 2νξ(x, t) satisfies the one-dimensional Burgers equation (1.6).

As a starting point let us take a shock wave solution of the Burgers equation, e.g.

ξ = ux =
v − νa

2ν
+

a

1 + ea(x−vt)
, (4.6)

where a and v are constants. Let us seek a solution of (2.4) in the superposition form

ψ =
N∑

k=1

Ak(η)eβky+γkz, (4.7)

where η = x− vt, and the 2N quantities βk and γk can in general be functions of η. For simplicity
however let us treat them as constants to be determined.

Substituting (4.7) into (2.4) yields N linear equations for the unknowns Ak(η):

νÄ + (v + σ − 2νξ) Ȧ +
(
a2γ

2 − σξ
)
A = 0. (4.8)

In equation (4.8) above, the subscripts k for the quantities Ak, βk, γk and σk ≡ b1βk + b2γk have
been omitted, the quantity ξ has come from (4.6), and the dot denotes differentiation with respect
to η.

The expression (4.8) can be simplified further. With the notations

q = ξ(x, t)− ξ0, eaη =
a

q
− 1, ξ0 =

v − νa

2ν
,

equation (4.8), rewritten in terms of q, becomes

ν
(
q2 − aq

)2
A′′(q) + σ

(
q2 − aq

)
A′(q) + (δ − σq) A(q) = 0, (4.9)

where δ = a2γ
2 − σξ0, and prime denotes differentiation with respect to q. The latter equation can

be further simplified by substituting

A(q) = W (q)
(

q

q − a

)σ/(2νa)

. (4.10)
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This reduces (4.9) to the following equation for the quantity W (q):

W ′′(q)
W (q)

=
2aσν − 4δν + σ2

4ν2(q − a)2q2
. (4.11)

In a particular case, when the right-hand side in (4.11) is zero, one can solve the A-equation (2.4)
of the [L, A] pair explicitly. Bringing the subscripts k back into the notation, this is tantamount to
choosing

βk =
−b2γk − v ±

√
v2 + 4a2νγ2

k

b1

in (4.7). Then

ψ =
N∑

k=1

(Wkq + Vk)
(

q

q − a

)σk/(2νa)

eβky+γkz, (4.12)

where Wk and Vk are arbitrary constants. Substituting (4.12) into (2.5), we obtain a family of the
exact solutions of equations (1.8) or (2.3). The described procedure can be regarded physically as
a three-dimensional dressing of one-dimensional shock waves.

5 The general case

Let us now address the general case of F [u], when the linear in ψ term in the A-equation of the
pairs (1.2–1.4) is nonzero. The situation now is certainly more complicated than has been discussed
so far. However, it turns out that the above described Darboux-transformation-like procedure can
be used to establish the Bäcklund transformations between different evolution equations, hence
enabling one to construct some exact solutions of these equations.

We shall further outline a general procedure, which we expect to address in more detail in
a separate paper. To reduce the calculation volume, let us further confine ourselves to the first
spatially non-trivial dimension d = 2.

Hence, let us consider the general equation (1.1), where the quantity F [u] depends on u(t, x, y)
as well as its spatial derivatives: F [u] = F (u, ux, uy, uxx, uxy, ...). One of the Darboux transforms
for this equation remains the same:

ψ → ψ̃ = eũ−u (ψx − uxψ) .

The new quantity ũ(t, x, y) satisfies a new nonlinear equation as follows

ũt = F̃ [ũ], (5.1)

where the quantity F̃ [ũ] = F̃ (ũ, ũx, ũy, ũxx, ũxy, ...) remains arbitrary. In fact, we can choose the
expressions F and F̃ in a convenient way. Take for instance

F [u] = uxx + uyy + u, F̃ [ũ] = ũxx + ũyy + u3,

etc. The choice of the expressions for F and F̃ should be constrained by the following condition:
both equations (1.1) and (5.1) must allow for at least two integrals of motion in the form

C1(u, ux, uy) = E1, C2(u, ux, uy) = E2, (5.2)
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for (1.1) and
C̃1(ũ, ũx, ũy) = Ẽ1, C̃2(ũ, ũx, ũy) = Ẽ2, (5.3)

for (5.1). Using (5.2), one can express the space derivatives ux, uy via u:

ux = ξ1(E1, E2, u) = A1(u), uy = ξ2(E1, E2, u) = A2(u).

This clearly enables one to get rid of the rest of the derivatives as well, by expressing for instance

uxx =
dA1(u)

du
ux = A′1(u)A1(u) = B1(u), uxy =

dA1(u)
du

uy = A′1(u)A2(u) = B2(u),

etc. Hence, the quantity F [u] = F (u, ux, uy, uxx, uxy, ...) = G(u), can be rewritten as a function of
u only. In the same fashion, one can use (5.3) to rewrite F̃ as a function of ũ only: F̃ [u] = G̃(ũ).

Now consider the functional dependence

ũ = f(u), (5.4)

to be determined. The function f gets fully determined by the quantities F and F̃ above. Let us
show that if F and F̃ satisfy the conditions (5.2) and (5.3), then the dependence (5.4) can be found
in quadratures. Substituting (5.4) into (5.1) we get

ũt =
df(u)
du

ut = f ′(u)G(u) = G̃(f),

and thence ∫
df

G̃(f)
=

∫
du

G(u)
.

Integration (whenever feasible) determines (explicitly or implicitly) the functional dependence (5.4)
which represents the Bäcklund transformation between equations (1.1) and (5.1).

The above described procedure can be applied to the case d = 3, allowing for the pair (1.4).
Similar to the case d = 2, the main issue is to choose the quantities F and F̃ to ensure that there
exists a sufficient number of first integrals that would enable elimination of the space derivatives of
u and ũ in F and F̃ .

In conclusion, let us remark that it appears indeed valuable if one could exhibit a non-trivial
example of a 2+1 dimensional physically relevant equation for which the above outlined technique
can be effectively carried out. At this stage in particular, it is not clear whether looking for auto-
Bäcklund transformations would essentially facilitate this task. We intend to address this and other
issues that may eventually enable one to construct non-trivial “physical” examples of the general
technique, discussed in this section, in subsequent work.
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