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Abstract

We study distance measures for lattice-generated sets in Rd, d ≥ 3, with respect to non-
isotropic distances | · |K , induced by smooth symmetric convex bodies K. An effective Fourier-
analytic approach is developed to get sharp upper bounds for the second moment of the weighted
distance measure.

The implications of these estimates are discussed in the context of the general Erdös-Falconer
distance problem.
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1. Introduction

1.1 In this paper we study distance sets, corresponding to the integer lattice Zd, d ≥ 3, with
respect to non-isotropic distances, defined in terms of the Minkowski functional of some well-curved
central-symmetric convex body K ⊂ Rd, with a smooth boundary ∂K. Namely we assume that the
Gaussian curvature on the boundary ∂K is bounded from above and below by some fixed pair of
positive constants. The boundary itself should be Cr, for a large enough r, and we do not discuss
how small r can possibly be. Suppose the volume of K equals the volume of the Euclidean unit
ball, which is denoted as B throughout the paper. Let K denote the class of such convex bodies.

For K ∈ K, let | · |K be the Minkowski functional of K, or the K-norm. Let | · |K∗ be the dual
norm to | · |K , defined as

|x|K∗ = sup
y∈K

|x · y|, K∗ = {x ∈ Rd : |x|K∗ ≤ 1}. (1)

The dual K∗ also belongs to the class K.
For a Borel set S ⊂ Rd, define its K-distance set as

∆K(S) = {|a− b|K : a, b ∈ S}. (2)

Let ∆(S) ≡ ∆B(S) be the distance set of S with respect to the Euclidean metric ‖ · ‖.
An infinite discrete set A ⊂ Rd is called homogeneous if all its elements are separated by some

c > 0, while any cube of side length C > c contains at least one element of A.
Let q À 1 be a large real, consider a homothety qK of K, with respect to the center of K. For a

homogeneous discrete set A, let Aq = A∩ qK be a truncation of A (which strictly speaking depends
on K).
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In the special case of A = Zd and K = B, it is well known that

#∆(Aq) ≈
{

q2, d ≥ 3,
q2√
log q

, d = 2.
(3)

To fix the notation, # denotes the cardinality of a finite set, | · | stands for the Lebesgue measure
of a Borel measurable set. The symbols O or . absorb constants depending only on K (and hence
d). Also we write a & b, or equivalently a = Ω(b), if b . a and a ≈ b if both a . b and a & b. The
symbol ∼ will indicate proportionality, up to some constant c(K).

The main goal in this paper is to develop a technically transparent Fourier-analysis based ap-
proach which would extend estimate (3) to the case of K-distances. We are able to do so in d ≥ 4;
if d = 3 we are off by a logarithmic factor. The result follows by estimating the second moment
of the corresponding distance measure; it is stated in Theorem 2 further in the paper, after all the
notations have been developed.

Theorem 1 If A = Zd, the d-dimensional integer lattice, one has

#∆K(Aq) &
{

q2, d ≥ 4,
q2 log−2 q, d = 3.

(4)

1.2 Theorem 1 can be given interpretation in terms of the borderline dimension d
2 in the Falconer

distance problem. The Falconer distance problem states that if the Hausdorff dimension of a Borel
set S ⊂ Rd, d ≥ 2 is greater than d

2 , then the Lebesgue measure of the distance set |∆(S)| > 0.
(See [5], [11], [2], [16], [17], [3], and the references contained therein for the description of this open
for every d ≥ 2 problem and progress over the years. The best known results are due to Wolff in
R2 and Erdogan in Rd, who vindicate the conjecture if the dimension of S exceeds d(d+2)

2(d+1) rather

than d
2 .) The discrete analogue of the Falconer distance problem is the Erdös distance conjecture

(see e.g. [13] and the references contained therein for thorough discussion and the state-of-the-art)
restricted to homogeneous sets, which states

#∆(Aq) ≥ Cεq
2−ε. (5)

Falconer ([5]) showed that the borderline dimension d
2 cannot be improved, due to the following

construction. Fix a rapidly growing sequence of positive integers {qi}i≥1, with q1 = 2 and qi+1 > qi
i.

Let A = Zd and Si be the union of Euclidean balls of radius q
− d

s
i , for some 0 < s < d, centered

at the points of 1
qi

Aqi . Let us call SF = ∩iSi the Falconer set. Then (see e.g. [4]) the Hausdorff
dimension dimHSF = s. On the other hand, the Lebesgue measure

|∆(Si)| ≈ q
− d

s
i ·#∆(Aqi). (6)

It follows from (3) that |∆(SF )| = 0 if s < d
2 . More precisely, |∆(SF )| > 0, provided that s ≥ d

2 for
d ≥ 3 and s > d

2 for d = 2.
An immediate consequence of Theorem 1 is that the same conclusion can be drawn in the case

d ≥ 4 for the Falconer set SF with respect to K-distances, K ∈ K, irrespective of the pair of
constants that bound the curvature. Consequently, as the basis for the Falconer construction one
can use any d-dimensional lattice, in which case Theorem 1 will be valid as well.
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Corollary 1.1 Let SF be the Falconer set with dimHSF = s. Suppose, s ≥ d
2 , and d ≥ 4. Then

|∆K(SF )| > 0, for any central-symmetric K, which is smooth and has bounded and everywhere
non-zero curvature on ∂K.

Remark: The assumption of central symmetry is not essential: one can always consider Zd
+ only.

We do not study to what extent the curvature assumption can be weakened so that K may still
qualify as “well-curved”, which for our purposes is determined by the validity of Lemma 2.2 further
in the paper.

As a separate issue, our result shows that if one fixes the Euclidean metric ‖ · ‖, the scope of
Falconer’s construction can be extended to a class A of homogeneous sets

A =
{ |a|K
‖a‖ a : a ∈ Zd

}
, K ∈ K. (7)

The difficult part in Theorem 1 is the endpoint issue, namely the precision of the exponents in
estimates (4), which transcribes into the inequality s ≥ d

2 , inclusive of the endpoint, in Corollary
1.1. Otherwise, that is if an extra qε were allowed in the right-hand side of (4), the proof can be
made somewhat shorter, using the techniques developed by Müller ([12]) and Iosevich et al. ([8])
developed to study the quantity

E(t) = #{tK ∩ Zd} − tdVolK. (8)

1.3 It appears to be important to understand how much the analytic methods for geometry of
numbers, i.e. in the present context the case A = Zd, can apply to study the Erdös-Falconer
problem, dealing with general homogeneous sets A. The motivation for doing so it comes from
a hypothesis closely related to (5) that lattice sets yield local minima for second moments of the
corresponding distance measures, with respect to variations of the sets. Hence our approach is
developed on the basis of the general distance measure formalism, set up by Mattila ([11]). The
distance measure ν(t), relative to the set Aq counts the number of points of Aq in 1

q -thin K-annuli
of radius t, centered at points of Aq, average with respect to the position of the center. (In the
case of a lattice it suffices to fix the center at the origin). The L1-norm ‖ν‖1 is approximately the
number of points of A in qK. The main task is to estimate the square of L2-norm, or the second
moment ‖ν‖2

2. This is the content of the forthcoming Theorem 2, after all the definitions have been
made. Beyond this non-technical introduction, we will be using various weighted measures ν, which
will carry extra identification.

The distance measure formalism however has nothing to do with the lattice structure, in the
sense that any finite compactly supported Borel measure µ in Rd generates a well-defined distance
measure ν in R+. To this effect, Mattila ([11]) proved a general theorem for the Euclidean distance,
which generalizes to K-distances (see [1]) as follows. The second moment of the K-distance measure
ν, generated by µ is finite in case what we call the Mattila integral

M(µ) =
∫ ∞

1

(∫
|µ̂(tx)|2dωK∗(x)

)2

td−1dt < ∞. (9)

Above, ωK∗ is the Lebesgue measure on ∂K∗. Hence, if M(µ) < ∞, the Lebesgue measure of the
support of ν is positive. As for the Falconer construction (see 1.2), for the natural (i.e. induced
by the Lebesgue measure in Rd) measure on the set SF , in the case dimHSF < d

2 the integral (9)
diverges.
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In essence, our proof of Theorem 2 consists in analyzing and estimating the Mattila integral for
a natural measure µ on the set Si = Sqi , in the Falconer construction, when SF = ∩Si has Hausdorff
dimension s = d

2 , after fixing qi = q and appropriate scaling.
Looking back at the construction of the set SF , it is clear that instead of the lattice Zd, one can

use any homogeneous set A as a basis for the construction. Unfortunately, our proof of Theorem 2
does not extend beyond the very special case when A is a lattice. The reason is that in the proof we
use a smooth approximation E(t) of the discrepancy E(t), see (8), as the auxiliary quantity. In the
lattice case, E(t) admits a well known analytic representation via the Poisson summation formula,
whereupon E2(t) looks very similar to the integrand in the Mattila integral. It follows that L2

estimates for the distance measure ν can be obtained in terms of L2-estimates for E. Whether such
an approach has a prototype in the general homogeneous set context is not at all clear.

1.4 To prove our main result we develop an asymptotic method, which enables one first to dominate
the L2-estimate for E by a weighted L2 estimate for ν, see (46) below. Then the latter estimate
can in turn be dominated by another L2-estimate for E, see e.g. (62) below. Theorem 2 follows.
L2-estimates for the quantity E were obtained in the works [12] and [8] (see also [9] for further
developments) where basically the same trick was used. However, the asymptotic techniques of
those papers did not yield a clear cut relation like (46) between the L2 estimates for the quantities
ν and E, due to plethora of cut-off functions, truncations, etc. used. These are the technical
difficulties one encounters in the effort to attain the endpoint result claimed in Theorem 1. We
identify the estimate (46) as the key display of the technical advantage of our approach, which also
yields the mean square estimates for E and E as a by-product. In addition, throughout the proof a
number of integral representations for the distance measure ν and related quantities are obtained,
which can be interesting in their own right. The approach rests on the use of the Hankel rather
than Fourier transform for distance measures, defined on R+, which enables to make the analysis
fairly transparent.

Due to the fact that it is only a weighted estimate for the second moment of the distance
measure ν that gets majorated by the second moment of E, our approach results in tight (modulo
the logarithmic factor in d = 3) estimates for the second moment of ν in d ≥ 3, yet for d = 2 it does
not do better than yield a trivial estimate. In d = 2, the case of a general K is an open problem.

The main body of the paper is organized as follows. In Section 2 we set up the distance measure
formalism in the context of a general homogeneous set A. In the special case A = Zd, we formulate
Theorem 2 and show how it implies Theorem 1. As an example of how the formalism applies to
a general A, we briefly discuss the Euclidean distance case and write out the integral expression
for the second moment of the distance measure. We further move on to the case of K-distances
and prove the general Mattila integral identity for the second moment in Proposition 2.3. The
proposition contributes little to the special case A = Zd. However, it establishes the proof template
which is further used in Section 3 to prove the crucial Lemma 3.1. Section 3 however is already
fully dedicated to the case A = Zd and from its outset takes advantage of the Poisson summation
formula. Comparison of the yield of the Poisson summation formula for the distance measure with
the general formula in Proposition 2.3 yields as a by-product Theorem 3 on duality. However, the
main result of Section 3 is Lemma 3.1. In Section 4 this lemma is used to prove Theorem 2.

2. Distance measure

Let φ be a non-negative radial (radial henceforth means radial with respect to the Euclidean metric)
Schwartz class function, such that

∫
φ(x) = 1, φ(x) = 1 inside the ball of some radius and vanishes
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outside the ball of twice the radius. Let q be a large number, denote φq(x) = qdφ(qx) and A ⊂ Rd

a homogeneous set, Aq = A∩ qK. Let also Zd
q = Zd ∩ qK for the special case A = Zd. Without loss

of generality (only to discount additional trivial estimates) suppose Aq contains no point in some
c-neighborhood of the origin.

For a function f ∈ L1(Rd) ∩ L2(Rd), let

f̂(ξ) =
∫

f(x)e−2πιξ·xdx (10)

define the Fourier transform. Let

µq(x) =
∑

a∈Aq

φq(x− a), (11)

be the smoothing of the counting measure on Aq. The radius of the atoms of the measure µq is
c0/q, with 0 < c0 < 1 by the choice of φ. Clearly

µ̂q(ξ) =
∑

a∈Aq

φ̂(ξ/q)e−2πιa·ξ, (12)

and the function φ̂ is radial.
To study the distances between the elements of A and the origin, define for t > 0:

νq,0(t) =
∫

ωK(x/t)dµq(x),

Nq,0(t) =
∫

ΩK(x/t)dµq(x) =
∫ t
0 dνq,0.

(13)

Above ωK is the Lebesgue measure on ∂K, ΩK is the characteristic function of K. Note that in the
first integral µq is actually a Schwartz function, and ωK - a distribution.

Without loss of generality one can assume that every lattice cube contains exactly one point
of A (this can always be achieved for any finite truncation Aq by sparsing it out and subsequent
scaling). In this case define the volume discrepancy

Eq,0(t) = Nq,0(t)− tdVolK. (14)

Studying the quantity Eq,0 for the integer lattice has a long history, see [8] for some references.
In the general context of homogeneous sets, the quantity Eq,0 defined relative to the origin cannot
be expected to be smaller in absolute value than O(qd−1). However, averaging with respect to the
choice of the center throughout Aq can result in a non-trivial estimate, important in the context of
the Erdös distance problem. This issue is briefly discussed further in the paper following (30).

The seemingly redundant 0 subscripts come from the fact that in the sequel it turns out to be
more convenient to work with the weighted quantities

[νq(t), Nq(t), Eq(t)] = t
1−d
2 [νq,0, Nq,0(t), Eq,0(t)]. (15)

The quantity νq,0 is the density of the measure µq on K-spheres of radius t, centered at the
origin. The primitive Nq,0(t) counts the points in K-balls of radius t. Clearly

∫ ∞

0
νq,0 ∼ qd. (16)
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By definition of the quantities µq and νq,0, in order to obtain estimates in terms of q, it is legitimate
to sample integrals containing νq,0 (as well as Eq,0 and other versions of ν and E to appear later)
by Darboux sums with the step size 1

c1q , for some constant c1.
Clearly νq,0 vanishes for t > q + q−1, while for t < q − q−1,

νq,0 ≈ q−1Γ(t, q−1), (17)

where Γ(t, δ) is the number of points of A in a K-annulus α(t, δ) (defined as (t+ δ)K \ tK) centered
at the origin, with radius t and width δ; further on δ will always be approximately 1

q . More precisely
the statement (17) means that there exist uniform constants c2 and c3, such that

Γ
(

t,
1

c2q

)
≤ νq,0

q
≤ Γ

(
t,

c3

q

)
. (18)

Let us cover Aq by a set of concentric K-annuli αk around the origin, all of which have fixed width
δ ∼ 1

q . Suppose α1 has radius q−1 and for k > 1 the inner boundary of αk+1 coincides with the
outer boundary of αk. Terminate the construction as soon as qK is covered by the union of αk.
Thus k . q2 and the K-radii tk of αk go up to q + O(q−1). Define the annulus standard deviation
and Dα and the ball mean square discrepancy DK as follows:

Dα =
√

1
q2

∑
k Γ2(tk, δ) ≈

√
1
q3

∫ q
0 ν2

q,0(t)dt,

DK =
√

1
q2

∑
k E2

q,0(tk) ≈
√

1
q

∫ q
0 E2

q,0(t)dt.

(19)

Theorem 2 Suppose A = Zd. Then

Dα, DK . qd−2, d ≥ 4,

Dα, DK . q log q, d = 3.
(20)

As far as the weighted quantity νq(t) is concerned, see (15), the estimate (20) of Theorem 2 is
tantamount to

‖νq‖2
2 =

∫ ∞

0
ν2

q (t)dt .
{

qd, d ≥ 4,
q3 log2 q, d = 3.

(21)

Theorem 2 implies Theorem 1.

Proof of Theorem 1 Assume Theorem 2. By the Cauchy-Schwartz inequality,

q2d ≈
(∫ q

1
νq,0dt

)2

≤ |supp νq,0|
∫ q

1
ν2

q,0(t)dt, (22)

where |supp νq,0| is the Lebesgue measure of the support of νq,0. Substituting the estimates (20) in
the right hand side, one gets the lower bound |supp νq,0| & q for d ≥ 4 and |supp νq,0| & q

log2 q
for

d = 3. Hence, by definition of νq,0, cf. (17), there exists Ω(q2) in d ≥ 4 and Ω(q2/ log2 q) disjoint
K-annuli, of width δ ∼ 1

q , and whose radii do not exceed q, such that each of these annuli contains
at least one lattice point. This is equivalent to the statement of Theorem 1. ¤
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Let us now return to the general homogeneous set A set-up. Observe that in the same way as (22),
as |supp νq,0| . q, for the second moment of the weighted quantity νq one should always have

‖νq‖2
2 & qd. (23)

Let us write up some integral representations for the quantities νq, Nq. Applying the Plancherel
theorem to the integrals in (13), for the weighted quantities (15) we get:

νq(t) = t
d−1
2

∫
φ̂(ξ/q)ω̂K(tξ)

∑
a∈Aq

e−2πι a·ξdξ,

Nq(t) = t
d+1
2

∫
φ̂(ξ/q)Ω̂K(tξ)

∑
a∈Aq

e−2πι a·ξdξ.

(24)

Observe that νq(t) extends as zero to t = 0, as well as the fact that the quantity Nq(t) is not in
L2(R+) if d = 2.

Euclidean case

First let us get an integral representation for the second moment ‖νq‖2
2 when K is the Euclidean ball,

with the notations ωB, ΩB for the surface and volume measure. In this case the Fourier transform
ω̂B(ξ) is radial, namely ω̂B(ξ) ∼ ‖ξ‖1− d

2 J d
2
−1(2π‖ξ‖), where Jv further denotes the Bessel function

of order v ≥ 0. Let us skip the factor of 2π in what follows. This can always be accomplished by
scaling. After writing the integral (24) for νq in the spherical coordinates we have

νq(t) ∼
√

t

∫ ∞

0
rJ d

2
−1(rt)ψ(r/q)

∑

a∈Aq

J d
2
−1(r‖a‖)dr, (25)

where henceforth
ψ(r) = φ̂(ξ)|‖ξ‖=r, (26)

so |ψ(r/q)| is asymptotically smaller than any inverse power of r/q.
Using the Hankel formula (see e.g. [15]),

∫ ∞

0
tJv(at)Jv(bt)dt =

δ(a− b)
a

, (27)

one gets from (24)

‖νq‖2
2 =

∫∞
0 ν2

q (t)dt ∼ ∫∞
0 rψ2(r/q)

∑
a,b∈Aq

J d
2−1

(r‖a‖)J d
2−1

(r‖b‖)

(‖a‖‖b‖) d
2−1

dr

∼ ∫∞
0 rd−1ψ2(r/q)

∑
a,b∈Aq

ω̂B(r‖a‖)ω̂B(r‖b‖)dr.

(28)

The representation (28) is closely related to the Mattila integral (9) for the measure µq.
Observe that by the Hankel formula (27) with v = d

2 − 1, the expression (28) is in essence the
Parseval identity for the Hankel transformation

H[νq](r) =
∫ ∞

0

√
rtJ d

2
−1(rt)νq(t)dt ∼ √

rψ(r/q)
∑

a∈Aq

J d
2
−1(r‖a‖)

(‖a‖) d
2
−1

. (29)
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Remark Similarly to (28) one can apply the Hankel formula with v = d
2 to the quantity Nq(t) and

get for d ≥ 3:

qd+2 ≈ ‖Nq‖2
2 ∼ ∫∞

0
1
rψ2(r/q)

∑
a,b∈Aq

J d
2−1

(r‖a‖)J d
2−1

(r‖b‖)

(‖a‖‖b‖) d
2−1

dr

∼ ∫∞
0 rd−3ψ2(r/q)

∑
a,b∈Aq

ω̂B(r‖a‖)ω̂B(r‖b‖)dr,

(30)

It is easy to show that in order to get the order of magnitude qd+2 for ‖Nq‖2
2 in the latter integral,

it suffices to restrict the domain of integration to (0, 1). On the other hand, the integral on [1,∞)
would be approximately q−2‖ν2

q ‖2
2. In the special case A = Zd, the integral (30), taken from 1 to

infinity is closely related to the quantity Eq, see the ensuing Lemma 3.1, However, for a general
homogeneous set the integral (30), taken from 1 to infinity apparently cannot be interpreted in
terms of the quantity Eq.

Anisotropic case

Let us move on to the case of K-distances. To proceed, we need the following lemma on the
asymptotics of the Fourier transforms ω̂K and Ω̂K . We do not present a proof here, as for Ω̂K it
can be found in [7], and the case of ω̂K follows in the same way. For more asymptotics of this kind
see [6], [14].

Lemma 2.2 For ‖ξ‖ ≤ 1, ω̂K(ξ), Ω̂K(ξ) ≈ 1, otherwise

ω̂K(ξ) =
∑1

j=0 uj

(
ξ
‖ξ‖

)
J d

2
−1+j(c4|ξ|K∗)‖ξ‖1− d

2
−j + O

(
‖ξ‖− d+3

2

)
,

Ω̂K(ξ) =
∑1

j=0 Uj

(
ξ
‖ξ‖

)
J d

2
+j(c4|ξ|K∗)‖ξ‖− d

2
−j + O

(
‖ξ‖− d+5

2

)
,

(31)

where the quantities u0, U0 are strictly positive and the constant c4 depends on K only.

Without loss of generality, assume c4 = 1 in the formulae (31) above. The sums in the asymptotic
expansions have two terms, because this is as many as we will have to analyze. Observe that in the
Euclidean case, the expressions (31) reduce to the first term in the sum only.

Lemma 2.2 will be instrumental for our proofs. First let us use it to derive the K-analog of the
formula (28).

Proposition 2.3 For d ≥ 2,

‖νq‖2
2 ≈ ∫∞

0 rd−1ψ2(r/q)
∑

a,b∈Aq
ω̂K∗(ra)ω̂K∗(rb) dr

≈ ∫∞
0 rψ2(r/q)

∑
a,b∈Aq

J d
2−1

(|a|Kr)J d
2−1

(|b|Kr)

(|a|K |b|K)
d
2−1

dr.

(32)

Proof The proof is direct verification, done by substituting the asymptotic expansion for ω̂K∗

(naturally K∗∗ = K) from (31) into the intermediate term in (32). Given a pair (a, b) ∈ Aq ×Aq in
the double sum (32), it suffices to consider three cases, as far as the three-term expansions in (31)
are concerned: the leading terms for both a and b, the leading term for a and the second term for b,
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and finally the leading term for a and the remainder for b. The contribution of other combinations
of terms is negligible, by the order of their asymptotics. Hence the proof has three steps.

1. Given (a, b), take the product of the leading terms in the sum (31). Then, cf. (28), what we
get is proportional to the following quantity, involving an integral over Rd:

u0(a/‖a‖)u0(b/‖b‖)
∫

φ̂2(ξ/q)ω̂B(|a|Kξ)ω̂B(|b|Kξ)dξ

≈ ∫
[φq ∗ (ωB ◦ |a|−1

K )](x) · [φq ∗ (ωB ◦ |b|−1
K )](x)dx,

(33)

where ωB ◦ |a|−1
K (x) = |a|1−d

K ωB(|a|−1
K x). The integrand in the right hand side of (33) is roughly the

product of characteristic functions of concentric Euclidean annuli, of radii |a|K and |b|K . It vanishes
if ||a|K − |b|K | > 1

q , and its integral is proportional to |a|d−1
K in case |a|K = |b|K . Thus the average

value of ωB ◦ |a|−1
K across the Euclidean annulus of radius |a|K and width of ≈ 1

q is proportional to
q. So we get

∑
a,b∈Aq

u0(a/‖a‖)u0(b/‖b‖)
∫∞
0 rψ2(r/q)

J d
2−1

(|a|Kr)J d
2−1

(|b|Kr)

(|a|K |b|K)
d
2−1

dr ≈ q
∑∼q2

k=1
Γ2(rk,δ)

rd−1
k

≈ ∫∞
0 ν2

q (t)dt.

(34)

The sum in the intermediate expression is taken over consecutive K-annuli of radius rk and fixed
width δ ∼ 1

q , cf. (17).
2. Now let us take the first term in the sum (31) for a and the second one for b and substitute

them in the right-hand side of (32). Note that merely using the leading order asymptotics in this
case would result in a superfluous factor

∫∞
1 r−1ψ2(r/q)dr ≈ log q.

So, given (a, b) ∈ Aq ×Aq we have, similarly to (33) and omitting uniform constants:

∫∞
0 ψ2(r/q)

J d
2−1

(|a|Kr)J d
2
(|b|Kr)

|a|
d
2−1

K |b|
d
2
K

dr ∼ ∫
φ̂2(ξ/q)ω̂B(|a|Kξ)Ω̂B(|b|Kξ)dξ

=
∫

[φq ∗ (ωB ◦ |a|−1
K )](x) · [φq ∗ (ΩB ◦ |b|−1

K )](x)dx

≈
{

1
|a|d−1

K |b|dK
|a|d−1

K , |a|K ≤ |b|K + 1
q ,

0 otherwise.

(35)

Summing in absolute value over a, b ∈ Aq yields
∑

b∈Aq

|b|−d
K

∑

|a|K≤|b|K
1 ≈ qd, (36)

cf. (23).
3. Finally, we estimate the contribution into (32) of the leading order term for a and the

remainder for b in (31). Rewrite the integral in (32) as
∑

a,b∈Aq
Ia,b and notice that without loss of

generality one can assume |a|K ≥ |b|K . Then partition

∑

a,b∈Aq , |b|K≤|a|K
Ia,b =

∑

a,b∈Aq , |b|K≤|a|K

(∫ |a|−1
K

0
+

∫ |b|−1
K

|a|−1
K

+
∫ ∞

|b|−1
K

)
. (37)
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In the first piece we substitute 1 for the a-term and 1 for the b-term, this yields

∑

a∈Aq

∑

b∈Aq , |b|K≤|a|K

∫ |a|−1
K

0
rd−1dr ≈

∑

a∈Aq

|a|−d
K

∑

b∈Aq , |b|K≤|a|K
1 ≈

∑

a∈Aq

1 ≈ qd. (38)

For the second piece use 1 for the b-term and zero order asymptotics (|a|Kr)−
d−1
2 for the a-term,

this yields

∑

a∈Aq

∑

b∈Aq , |b|K≤|a|K

∫ |b|−1
K

|a|−1
K

|a|
1−d
2

K r
d−1
2 dt ≈

∑

a∈Aq

|a|
1−d
2

K

∑

b∈Aq , |b|K≤|a|K
|b|−

d+1
2

K ≈
∑

a∈Aq

1 ≈ qd. (39)

Finally, for the third piece substitute (|a|Kr)−
d−1
2 for the a-term terms and (|b|Kr)−

d+3
2 , for the

b-term to get 
 ∑

a,b∈Aq

|a|−
d−1
2

K |b|−
d+3
2

K


 ·

∫ ∞

1
ψ2(r/q)t−2dt . qd−1. (40)

We have shown that the upper estimates in steps 2,3 match the lower bound (23) for ‖νq‖2
2. This

completes the proof of Proposition 2.3 ¤.

3. Poisson formula

From now on consider the case A = Zd, Aq = Zd
q . Then the quantities νq(t), Nq(t), Eq(t) can be

computed directly, rather than via (24), using the Poisson summation formula. By doing this, one
gets expressions for these quantities on the t-side, rather than on the Hankel transform side, cf.
(29). For example, see (13), (15), for 1

q < t < q − 1
q one has

νq(t) = t
1−d
2

∑

a∈Zd

∫
ωK(x/t)φq(x− a)dx. (41)

Applying the Poisson summation formula to the convolution that the integral in (41) represents and
doing the same thing for the quantities Nq, Eq yields, for 1

q < t < q − 1
q :

νq(t) ∼ t
d−1
2

∑
a∈Zq φ̂(a/q)ω̂K(ta) ≡ ν(t),

Nq(t) ∼ t
d+1
2

∑
a∈Zq φ̂(a/q)Ω̂K(ta) ≡ N(t),

Eq(t) ∼ t
d+1
2

∑
a∈Zq\{0} φ̂(a/q)Ω̂K(ta) ≡ E(t).

(42)

Note however that the quantities in the right hand side of (42) are unbounded as t → ∞, besides
the summation is carried over the whole integer lattice. Still, there is a considerable resemblance
between the expression for ν(t) and the square root of the integrand in (32). Let us introduce
L2(R+) quantities

[ν̃(t), Ñ(t), Ẽ(t)] = ψ(t/q)[ν(t), N(t), E(t)]. (43)

Clearly

‖νq‖2
2 . ‖ν̃‖2

2,

∫ q

0
E2

q (t)dt . ‖Ẽ‖2
2. (44)

10



Now define the quantities νq∗(t), ν∗(t), ν̃∗(t) with respect to the dual body K∗ in the same way
as νq(t), ν(t), ν̃(t), have been defined for K (see (13), (15), (43), (42)), do the same thing for the
quantity E. Also with respect to K∗, define the notation Γ∗, cf. (17). Note that ν̃∗(t) will be given
precisely by the square root of the integrand in (32), after the summation therein has been extended
over the whole Zd by weighing each term with φ̂(a/q). Since the dual quantities also satisfy (44),
comparison of the expression for ν in (42) with (32) results in the following theorem.

Theorem 3 For d ≥ 2,
‖ν̃‖2 ≈ ‖ν̃∗‖2. (45)

Note that in the definition (43) of the quantity ν̃ there is no harm restricting the summation to
Zd \ {0}, which will be done further. Indeed, a = 0 results in a regular term t

d−1
2 , and it is easy to

check that the contribution of this term into ‖ν̃‖2
2 is O(qd), cf. (23).

The next lemma is the central ingredient to prove Theorem 2.

Lemma 3.1 For d ≥ 2:

‖Ẽ‖2
2 .

∫ ∞

0

ν̃2∗(t)
1 + t2

dt + R(q), (46)

where R(q) = O(qd−2) in d ≥ 3 and O(log q) in d = 2.

Proof The proof follows the same pattern as the proof of Proposition 2.3. Namely, it consists
in direct verification, done by substituting the asymptotic expansion for Ω̂K from (31) into the
definition (42), (43) of Ẽ and evaluating the second moment. Given a, b ∈ Zd \ {0} in the resulting
double sum, it suffices to consider three cases: the leading terms for both a and b, the leading term
for a and the second term for b, and finally the leading term for a and the remainder for b. Hence
the proof has three steps.

1. For the principal terms’ contribution into ‖Ẽ‖2
2, omitting uniform positive constants we get

∑

a,b∈Zd\{0}
φ̂(a/q)φ̂(b/q)

∫ ∞

0
tψ2(t/q)

J d
2
(|a|K∗t)J d

2
(|b|K∗t)

(|a|K∗bK∗)
d
2

dt. (47)

The integral in (47), given (a, b) can be rewritten as an integral over Rd:
∫

[(ΩB ◦ |a|−1
K∗) ∗ φq]b(ξ)ξ · [(ΩB ◦ |b|−1

K∗) ∗ φq]b(ξ)ξdξ

=
∫ ∇x[(ΩB ◦ |a|−1

K∗) ∗ φq](x) · ∇x[(ΩB ◦ |b|−1
K∗) ∗ φq](x)dx.

(48)

where, cf. (33), ΩB ◦ |a|−1
K∗(x) = |a|−d

K∗ΩB(|a|−1
K∗x). The integral in the right-hand side of (48) is

clearly zero if ||a|K∗ − |b|K∗ | > 1
q , while if |a|K∗ = |b|K∗ , it is O(|a|d−1

K∗ ). Hence, (47) is

≈ q
∞∑

k=1

Γ2∗(rk, δ)
r2
kr

d−1
k

ψ2(rk/q) ≈
∫ ∞

0

ν̃2∗(t)
1 + t2

dt, (49)

cf. (34).

11



2. For the principal a-term and second b-term in the asymptotics (31), omitting uniform con-
stants, we get

∑

a,b∈Zd\{0}
φ̂(a/q)φ̂(b/q)

∫ ∞

0
ψ2(t/q)

J d
2
(|a|K∗t)J d

2
+1(|b|K∗t)

|a|
d
2
K∗b

d
2
+1

K∗
dt. (50)

Observe that the expression (50) is reminiscent of (35), only in dimension d + 1. Let wB,WB be
the Lebesgue measure on Sd and the characteristic function of the Euclidean unit ball in Rd+1,
respectively. Let (y, ζ) ∈ Rd+1 × Rd+1, let the radial cutoff function ϕ be defined in the same way
as φ, only in dimension d + 1.

Denote ϕq(y) = qd+1ϕ(qy), wB ◦ |a|−1
K∗(y) = |a|−d

K∗wB(|a|−1
K∗y), as well as WB ◦ |a|−1

K∗(y) =
|a|−d−1

K∗ WB(|a|−1
K∗y). Then given (a, b), the integral in (50) is a constant times

∫
[(wB ◦ |a|−1

K∗) ∗ ϕq]b(ζ) · ([(WB ◦ |a|−1
K∗) ∗ ϕq]b(ζ) ‖ζ‖) dζ

≈ ∫
[(wB ◦ |a|−1

K∗) ∗ ϕq](y) · ‖∇y[(WB ◦ |a|−1
K∗) ∗ ϕq](y)‖ dy.

(51)

Thus the integral vanishes if ||a|K∗ − |b|K∗ | > 1
q and is approximately 1

|b|d+1
K∗

if |a|K∗ = |b|K∗ .

Summation in absolute values over (a, b) values results precisely in (49).
3. We deal with the remainder in the asymptotics (31) in the same way as it was done in

Proposition 2.3. On this step, in the double sum in a, b ∈ Zd \ {0} representing the second moment
of Ẽ we use the leading term for a and the remainder for b. The demonstration consists in essentially
repeating (37–40). The presence of the cutoff terms φ̂(a/q), φ̂(b/q) allows here for restricting the
summation to Zd

q \ {0}. Assume |a|K∗ ≥ |b|K∗ and partition each integral into three counterparts
in the summation according to (37).

For instance, for the first counterpart, cf. (38), we have
∑

a∈Zd
q\{0}

∑
b6=0, |b|K∗≤|a|K∗

∫ |a|−1
K∗

0 rd+1dr ≈ ∑
a∈Zd

q\{0} |a|
−2
K∗

≈
{

qd−2, d ≥ 3,
log q, d = 2.

(52)

The estimates of the second and third counterpart are done along the same lines as (39) and (40)
and we omit them. ¤
Remark It is clear that estimating the right-hand-side of (46) which is essentially an L2-estimate for
ν
t does not suffice to get a sharp estimate for ν, when it grows in average slower than

√
t as t →∞.

That is why we cannot prove Theorem 2 for d = 2. The logarithmic factor in the case d = 3 in the
estimate (21) also appears to be an artifact.

4. Proof of Theorem 2

Theorem 2 will follow immediately from the bound (46) of Lemma 3.1 and the following lemma,
which somewhat generalizes the results of [8].

Lemma 4.2 We have the following bound:

‖Ẽ‖2
2 . bd(q), where bd(q) =





qd−2, d ≥ 4,
q log2 q, d = 3,
q, d = 2.

(53)
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Proof There is no harm changing in(46) the lower limit of integration to 1 and 1 + t2 in the
denominator to t2.

By definition of ν̃, for any tl, tu, with tu − tl À 1
q and a small enough δ ∼ 1

q , we have the
representation of the integral as a Darboux sum:

∫ tu

tl

ν̃2∗(t)
t2

dt ≈
∑

k

ν2∗(t)|t∈Ik

t2k
ψ(tk/q) δ, (54)

where the intervals Ik = [tk, tk+1) of length δ partition [tl, tu) and choice of t ∈ [tk, tk+1) is arbitrary.
Then one can always choose t inside each interval Ik in such a way that

ν∗(t) . max
[
t

d−1
2 , q|E∗|(t)

]
. (55)

Indeed, the first term inside the above maximum corresponds to the case of the existence of t ∈ Ik

such that ν∗(t) . t
d−1
2 . Otherwise, let us use the fact that dE∗(t)

dt ≈ ν∗(t) + O
(
t

d−1
2

)
, and if

ν∗(t) & t
d−1
2 , the O

(
t

d−1
2

)
term can be omitted. Then |E∗(t)| &

∫ t
t0

ν∗(τ)dτ , where at t0, |E∗| has
its absolute minimum in Ik. Which implies that q supIk

|E∗(t)| & infIk
ν∗(t) in this case.

Note that due to (23) all the “regular” terms O
(
t

d−1
2

)
that appear further would a-priori result

in (53), and in fact stronger inequalities for d = 2, 3.
Furthermore by (55)

∫ ∞

1

ν̃2∗(t)
t2

dt .
∫ ∞

1
td−3ψ(t/q)dt +

∫

I

ν̃2∗(t)
t2

dt, (56)

where
I = {t : ν∗(t) ≤ c5q|E∗(t)|}, (57)

for some c5. The first integral in (56) bounded via qd−2 for d ≥ 3 and log q for d = 2.
Let us turn to the second integral in (56). Clearly, in order to get the upper bound, the integral

can be extended from I to R+, under the assumption that ν∗(t) ≤ c5q|E∗(t)| everywhere (note that
I can be represented as the union of intervals of length not smaller than ≈ 1

q each). Under this
assumption, we write out a dyadic decomposition:

∫ ∞

1

ν̃2∗(t)
1 + t2

dt ≈
∞∑

k=0

2−2k

∫ 2k+1

2k

ν̃2
∗(t)dt . q

∞∑

k=0

|ψ(2k/q)|2 d+1
4

k−2k

√∫ 2k+1

2k

|Ẽ∗|2ν∗(t)dt, (58)

To get the right-hand side we have applied Cauchy-Schwartz and used the fact that in an annulus
of width 2k the integral of ν∗ is O(2k d+1

2 ), recall the scaling (15).
Furthermore, using the fact that dE(t)

dt ≈ ν∗(t) + O(t
d−1
2 ), we have

∫ 2k+1

2k

|Ẽ∗|2ν∗(t)dt . |ψ(2k/q)|
(
|E∗(2k)|3 + |E∗(2k+1)|3 + 2k d−1

2

∫ 2k+1

2k

E2
∗(t)dt

)
. (59)

The cubic terms in brackets are bounded as

O
[
23k( d−3

2
+ 2

d+1) + 23k d−1
2 q−3

]
, (60)
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which follows from the well known, see e.g. [10], L∞ estimate

|E0(t)| . td−2+ 2
d+1 + q−1td−1, (61)

where E0(t) = t
d−1
2 E(t), in view of the scaling (15). It is a routine calculation to show using the

decay of ψ that the contribution of these terms into (58) is well in compliance with (53).
Hence we are left with

∫ ∞

0
Ẽ2(t)dt . bd(q) + q

∞∑

k=0

2k( d
2
−2)|ψ(2k/q)|

√∫ 2k+1

2k

Ẽ2∗(t)dt. (62)

Assuming that the sum above is & bd(q), see (53), consider the case d ≥ 4 first. Then, as clearly

∞∑

k=0

2k( d
2
−2)|ψ(2k/q)| . q

d
2
−2, for d ≥ 4, (63)

we have ∫ ∞

0
Ẽ2(t)dt . q

d
2
−1

√∫ ∞

0
Ẽ2∗(t)dt, (64)

and it follows that ‖Ẽ‖2
2, ‖Ẽ∗‖2

2 . bd(q) = qd−2, d ≥ 4, as one can certainly swap the subscript ∗
to the left-hand side.

The case d = 2, 3 requires some extra consideration, see [8], which we have adopted from the
latter reference for the sake of completeness. Recall that the quantity E has been defined with
respect to the parameter q, where 1

q is the characteristic scale of the smoothing. To reflect this fact,
let us further write E = E(q), Ẽ = Ẽ(q). It is easy to verify by definition of E that for t . q̄ . q,
one has

|E(q̄)|(t) . |E(q)|(t) + O(t
d−1
2 q̄−1). (65)

Let us rewrite (62) as follows:

∫ ∞

0
|Ẽ(q)|2(t)dt . bd(q) + q sup

k




√∫ 2k+1

0 |Ẽ(q)
∗ |2(t)dt

bd(2k+1)




∞∑

k=0

2k( d
2
−2)|ψ(2k/q)|

√
bd(2k+1). (66)

Evaluating the sum yields

∫∞
0 |Ẽ(q)|2dt

bd(q)
. 1 + sup

k




√∫ 2k+1

0 |Ẽ(q)
∗ |2dt

bd(2k+1)


 . (67)

The supremum above should be achieved for some finite k, because of the decay, built into the
quantity Ẽ, due to the presence of the cutoff ψ. Then define k̄ as follows:

m(q) = max sup
k

(∫ 2k+1

0 |Ẽ(q)|2dt

bd(2k+1)
,

∫ 2k+1

0 |Ẽ(q)
∗ |2dt

bd(2k+1)

)
(68)

is achieved for k = k̄. Without loss of generality suppose the maximum in (68) is effected by the
first entry. Also suppose m(q) > 1, otherwise the proof of Lemma 4.2 would be complete.
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Then by definition of k̄, ∫∞
0 |Ẽ(q)|2dt

bd(q)
.

∫∞
0 |Ẽ(q)|2dt

bd(2k̄+1)
, (69)

hence 2k̄+1 . q. Consider now two cases, with the objective to show that m(q) = O(1).
Case 1. If 2k̄+1 & q, then the quantity m(q), by its definition, has to be bounded by a constant

times the left-hand side of (67). This implies m(q) = O(1).
Case 2. Suppose now 2k̄+1 ¿ q, let q̄ = 2k̄+1. Look back at the expressions (67) and (68)

replacing q by q̄, i.e. as the statements about the quantity Ẽ(q̄) rather than Ẽ(q). By (65), if k = k̄,
then ∫ 2k+1

0
|Ẽ(q̄)|2dt ≈

∫ 2k+1

0
|Ẽ(q)|2dt. (70)

Otherwise, if k < k̄, the relation (70) should in general hold with the . sign.
This implies m(q̄) ≈ m(q), in other words m(q̄) may be thought to be achieved when k = k̄, so

by (70)

m(q̄) .
∫∞
0 |Ẽ(q̄)|2dt

bd(q̄)
. (71)

This, similarly to Case 1, the statement (67) for the quantity Ẽ(q̄), would imply m(q̄) = O(1), so
once again m(q) = O(1).

Therefore the right-hand side of (67) always turns our to be O(1). This completes the proof of
Lemma 4.2 and Theorem 2. ¤
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