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Abstract

We use the Freiman theorem in arithmetic combinatorics to show that if the Fourier
transform of certain measures satisfies sufficiently bad estimates, then the support of
the measure possesses an additive structure. The result is then discussed in light of the
Falconer distance problem.

1 Introduction and main results

In this note we prove a structural theorem that relates Lp, p ≥ 4 estimates for the Fourier
transform of measures with translation invariance properties of their supports. Naturally, a
lot of information about microstructure of the supports is contained in the decay properties
of the Fourier transforms.

Our motivation comes largely from the Erdös/Falconer distance conjectures. The Erdös
conjecture can be formulated as follows: let q À 1 and E ⊂ Rd be a point set. What is the
minimum cardinality #E to ensure that the distance set

∆(E) = {|x− y| : x, y ∈ E} (1.1)

has cardinality q? Erdös ([5]) suggested that one must have

#E Àq q
d
2 , (1.2)

(where the constant hidden in Àq may grow slowly with q).
Sets that indicate tightness of the conjecture (1.2) are truncations of lattices, suggesting

the heuristics that a lot of translation invariance means few distances.
The Falconer distance conjecture ([7]), regarded as the continuum version of (1.2) says

that if the Hausdorff dimension of a compact set E ⊂ Rd is greater than d
2 , then the Lebesgue

measure of ∆(E) is positive. This formulation calls immediately for the use of the Fourier
transform, and criticality of the dimension d

2 is once again supported by lattice-based con-
structions.

Here we ask a question, given the set E of critical dimension, how much of its translation-
invariant structure can be revealed by the Fourier transform Ê, where E is identified with
its characteristic function. The general idea is that one needs to look at Lp averages of Ê,
for p > 2. We consider far the easiest case p ≥ 4.
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For somewhat more technical motivation, let us quote some theorems about Fourier trans-
forms of convex curves in R2 and hypersurfaces in Rd in the same vein.

Let γ be a rectifiable curve in R2 contained in the unit square [0, 1]2. Let σγ denote the
Lebesgue measure on this curve and

σ̂γ(ξ) =
∫

γ
e−2πix·ξdσγ(x), (1.3)

be its Fourier transform.
The following theorem is due to Podkorytov ([15]) in two dimensions, and to Brandolini

et al. ([1]) in higher dimensions.

Theorem 1.1. Let γ be a convex hypersurface in Rd. Then
(∫

Sd−1

|σ̂γ(tω)|2dω

) 1
2

. t−
d−1
2 . (1.4)

Here, and throughout the paper, X . Y means that there exists some positive C, such
that X ≤ CY , X & Y means X ≥ cY , for some c, and X ≈ Y if both X . Y and X & Y .
The notations X . Y , X & Y , X ≈ Y also appear in literature in the guise X = O(Y ),
X = Ω(Y ), and X = Θ(Y ), respectively.

Note that the decay rate in (1.4) cannot be improved. Indeed, suppose that (1.4) holds
with t−

d−1
2 replaced by t−

(d−1+ε)
2 . Then

∞ =
∫ ∫ |x− y|−(d−1)dσγ(x)dσγ(y)

≈ ∫ |σ̂γ(ξ)|2|ξ|−1dξ

.
∫∞
1

(∫
Sd−1 |σ̂γ(tω)|2dω

)
td−2dt

.
∫∞
1 t−1−εdt < ∞,

(1.5)

which is absurd.
The L2 estimate (1.4) does not distinguish between different types of convex surfaces: it

is true both for polygons and well-curved surfaces. The differences between the two types
can be seen by looking at other Lp spherical averages. On the upper end of the Lp spectrum,
if γ is a polyhedron, then σ̂γ(ξ) does not decay at all in directions normal to the (d − 1)-
dimensional faces of the polygon. On the other hand, if γ is convex and has everywhere
non-vanishing curvature, then there is an L∞ estimate

|σ̂γ(ξ)| . |ξ|− d−1
2 . (1.6)

Conversely, if (1.6) holds under the convexity and sufficient smoothness assumption, then
γ has everywhere non-vanishing curvature. This is basically implicit in [10].

On the other hand, if γ is a polyhedron in Rd, it is not difficult to show that in the whole
range 2 ≤ p ≤ ∞, one has

(∫

Sd−1

|σ̂γ(tω)|pdω

) 1
p

≈ t
− d−1

p , (1.7)

precisely the answer obtained by interpolation of the general result in the case p = 2 given by
Theorem 1.1 and complete lack of decay in some directions for p = ∞. It would be interesting
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to understand, whether it is true that if (1.7) holds in, say, rectifiable category, then γ must
contain a piece of a hyperplane.

Over all, there is a general pattern that the lack of curvature that one can associate with
translation invariance corresponds to bad Lp estimates, for p > 2. (The situation changes to
the complete opposite for 1 ≤ p < 2, where the best possible estimates in the class of convex
curves are rendered by polygons and get gradually worse as curvature is allowed to enter. See
[3] and [2]).

The purpose of this note is to investigate a structural question which is somewhat similar
in spirit to the above described results. Our main interest however is the theory of dis-
tance sets, and we are further interested in higher Lp Fourier transform estimates not for
hypersurfaces, but rather compactly supported Borel measures with the support dimension
not smaller than d

2 , which is critical for the Falconer distance conjecture. The averages we
consider are taken over a thick spherical shell of a large radius and are therefore easier to
deal with than the spherical averages above, at least on the level of the proofs presented.
The discretization argument central for the main result in Theorem 1.4 of this note requires
regularity assumptions on the measures involved. We start out with rather stringent assump-
tions in Theorem 1.4 and then notice along the way that these assumptions can be weakened
to yield a less uniform, but a more practical result in Theorem 1.5. Assumptions of the
latter theorem are naturally satisfied in all the examples dealing with measures which arise
as thickenings of well-distributed sets that provide a quantitative link between the discrete
Erdös distance conjecture and the Falconer distance problem as its continuum version, see
[11] and the references contained therein.

Recall that a measure µ is called Ahlfors-David regular if there exists some s ∈ [0, d], such
that if Bδ(x) denotes a ball of radius δ that is centered at x,

µ[Bδ(x)] ≈ δs, ∀x ∈ suppµ. (1.8)

More generally, µ is a Frostman measure if in the above definition framework,

µ[Bδ(x)] . δs, ∀x. (1.9)

Basic examples of Ahlfors-David regular measures are given by the Lebesgue measure on
submanifolds in Rd or Cantor measures.

Definition 1.2. A finite point set A is an arithmetic progression in Zd of dimension k and
size L, if each element of g ∈ A possesses a representation

g = g0 + {r1g1 + · · ·+ rkgk}1≤rj≤Lj
, (1.10)

where each rj is an integer, each gj is a fixed element of Zd, called a generator, and L1 · L2 ·
· · · · Lk = L. An arithmetic progression is proper if the representation (1.10) is unique for
each g ∈ A. Arithmetic progressions are defined similarly in an arbitrary abelian group G,
and in particular Rd, to substitute Zd in this definition.

Definition 1.3. We say that an Ahlfors-David regular measure µ, supported on a compact
set E ⊂ Rd of Hausdorff dimension α > 0 (further E always stands for the support of the
measure µ, and one always has α ≥ s, where s is the exponent in (1.8), (1.9)) is arithmetic
if for each δ sufficiently small, there exists E′ ⊂ E, of positive α-dimensional Hausdorff
measure, such that E′

δ, the δ-neighborhood of E′, is contained in some Cδ-neighborhood ACδ

of some proper arithmetic progression A in Rd, of length L(A) . δ−s, and such that for any
non-equal x, y ∈ A, the distance |x− y| & δ−1.
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Further we deal specifically with the case s = d
2 , which is crucial for the Falconer distance

problem. Our main result is the following.

Theorem 1.4. Let µ be a compactly supported Ahlfors-David regular measure, satisfying
(1.8) with s = d

2 . Let p = 2l, l ≥ 2. Suppose that
∫

t≤|ξ|≤2t
|µ̂(ξ)|pdξ &

∫

t≤|ξ|≤2t
|µ̂(ξ)|2dξ ≈ t

d
2 , (1.11)

for all sufficiently large t. Then µ is arithmetic.

Note that assuming that the total mass of µ is 1, the inequality (1.11) holds automatically
in the opposite direction. Hence the condition (1.11) presupposes the worst possible Lp decay.

The ensuing proof of Theorem 1.4 implies that one can relax regularity conditions on µ
as follows.

Theorem 1.5. Let µ be a compactly supported Frostman measure, such that it satisfies (1.8)
with s = d

2 , for some small δ. Let l ≥ 2 and suppose that the condition (1.11) holds for
t ≈ δ−1. Then there exists a proper arithmetic progression A ∈ Rd, of length L(A) . δ−

d
2 ,

and such that for all non-equal x, y ∈ A, |x− y| & δ, with the property that
∫

Aδ

dµ & 1, (1.12)

with the constant in (1.12) independent of δ.

Let us illustrate Theorem 1.4 by two examples.

Example 1.6. Let µ be the Lebesgue measure on a straight line segment of length 2. The
measure µ is clearly Ahlfors-David regular, with s = 1, and arithmetic, as the support of µ
is contained in the δ-neighborhood of some proper arithmetic progression with one generator
of size Ω(δ) and length O(δ−1), for any δ ¿ 1, in accordance with Definition 1.3. On the
other hand, one can choose the coordinates so that

µ̂(ξ1, ξ2) = 2
sin(2πξ1)

2πξ1
,

and therefore for p > 1,
∫

t≤|ξ|≤2t
|µ̂(ξ)|pdξ ≈

∫

t≤max(ξ1,ξ2)≤2t
|µ̂(ξ)|pdξ . t.

Hence, conditions of Theorem 1.4 are satisfied, as well as the theorem itself.

Example 1.7. Our next example is a d-dimensional q/q2 Cantor set, which has dimension
d log q

log q2 = d
2 . We treat q À 1 as an asymptotic parameter.

A similar construction – for clarity’s sake, we skip some technicality – was developed
by K. J. Falconer ([7], see also [8] for details) to point out optimality of the dimension d

2
in the homonymous distance problem. The construction can be easily carried over to well-
distributed sets, see [11].

For i ≥ 1, let E′
i be the union of balls Bδi

(x) with the radius δi = q−2i, centered at points
x ∈ q1−2iZd that fit into the unit cube [0, 1]d. The set E = ∩∞i≥1E

′
i has Hausdorff dimension

α = d
2 , and supports a natural Cantor type Frostman measure µ, which satisfies (1.8) with
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the exponent s = d
2 , whenever δ = δi. (For other values of δ however, the constant hidden

in (1.8) can become as small as O(q−
d
2 ).) Let us also denote Ei = ∩i

j=1E
′
j . Clearly, the set

Ei = Ai
δi

, where Ai is an arithmetic progression of length O(qdi = δ
− d

2
i ), with di generators.

The first d generators have length q−1, the second d generators have length q−3, all the way to
the last d generators that have length q−2i+1; the length Lj corresponding to each generator
is approximately q.

Let us describe the measure µ as a limit of measures µi that are supported on Ei and
show that each µi satisfies the conditions of Theorem 1.5 with δ = δj , for any j = 1, . . . , i.

Let φ be a test function that integrates into one and is identically one in the ball of some
radius r0(d) and vanishes outside the ball of radius 4r0. Suppose, the Fourier transform φ̂ is
non-negative (φ can be taken as a convolution). Let φi(x) = q2diφ(q2ix).

Let
fi(x) = q−d(2i−1)

∑

a∈Zd

φ(aq1−2i)φi(x− aq1−2i)), (1.13)

an L1 density. The factor φ(aq1−2i) effectively does the cutoff |a| . q2i−1; the choice of the
unit cube to contain the support of µ was clearly irrelevant and has now been changed to the

unit ball. Then µi has the density
i∏

j=1

fi.

A direct calculation via the Poisson summation formula shows that the Fourier transform
f̂i(ξ) is the sum of the translates of φ̂ to the lattice points q2i−1Zd that sit inside the large
ball of radius approximately δ−1

i = q2i. The latter fact follows from the uncertainty principle,
in particular the fact that φ̂i vanishes rapidly outside the latter ball.

The condition (1.11) is then satisfied by each density fi, with the specific choice t = δ−1
i .

It is also satisfied by µi, for any t = δ−1
j , j = 1, . . . , i and a finite i, simply because of the

fact that µ̂i = f̂1 ∗ . . .∗ f̂i and the above described properties of each individual f̂j , 1 ≤ j ≤ i.
As i goes to infinity however, the bump functions, characteristic of the Fourier transform of
µi (represented by translates of φ̂ in each individual f̂j) spread out, due to convolution. This
causes the integral in the left-hand side of (1.11) get smaller, and as the result, the number
of generators in the arithmetic progressions Ai increases.

In particular, µ itself does not satisfy (1.11) for the sequence of the values of {t = ti}i≥1,
with constants uniform in i, and therefore the Cantor set E cannot be contained in the
δ-neighborhood of any arithmetic progression with the number of generators bounded inde-
pendently of δ as δ → 0.

The proof of Theorem 1.4 is based on a simple L4 type argument followed by application
of the Freiman theorem. The examples above however do not indicate any specific criticality
of p = 4. Naturally, a question comes about whether Theorems 1.4 and 1.5 are true for
p ∈ (2, 4). We do not know how to approach this question at the moment. For now, let
us contrast the above theorems with the following simple positive result that will direct us
towards the Falconer distance problem.

Definition 1.8. We call a compactly supported Borel measure µ additively simple if the
equation

x + y = x′ + y′, x, y, x′, y′ ∈ suppµ (1.14)

has at most a bounded number of non-trivial solutions, i.e. those when x 6= x′ or y′.
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Note that in d = 2, a measure supported on a strictly convex curve is additively simple.
This is not the case however for measures supported on convex hypersurfaces in higher di-
mensions. Take, for instance, a uniform measure on a sphere in R3. Equation (1.14) will be
satisfied by all pairs (x, y) of diametrically opposite points on any given circle drawn on the
sphere.

Theorem 1.9. Let µ be an additively simple Frostman measure, satisfying (1.9) with the
exponent s. Then ∫

1≤|ξ|≤t
|µ̂(ξ)|4dξ . td−2s. (1.15)

Corollary 1.10. Let E ⊂ Rd have Hausdorff dimension α ≥ d
2 . Suppose that E supports a

additively simple Frostman measure µ, satisfying (1.9) the exponent s ≥ d
2 . Then the Lebesgue

measure of the distance set ∆(E) of E is positive. In other words, the Falconer conjecture
holds for sets that support additively simple measures.

Connections with the Falconer conjecture are discussed in the final section of this note.
Unfortunately, we stop a step short of proving that the Falconer conjecture holds for measures
that satisfy the assumptions of Theorem 1.4. Vindication of this would require generalizing
the known facts about lattices, regarding the Falconer conjecture (see e.g. [12]), to the
case of proper arithmetic progressions in Rd that have a finite number of generators that
exceeds d. If such a proof becomes available, it would indicate that sets, such that measures
supported thereon satisfy very poor L4 Fourier estimates have large distance sets. Conversely,
Theorem 1.9 states that sets that have almost no arithmetic structure yield very good L4

Fourier estimates and hence have large distance sets. This would open a way to approach the
Falconer conjecture by attempting to interpolate the two extreme cases towards the “generic”
situation in between.

The rest of the paper is structured as follows. In Section 2 we construct a discrete model
resulting from the assumptions of Theorem 1.4 and use the Green-Ruzsa ([6]) variant of
Freiman’s theorem ([9]) to complete the proof of Theorem 1.4. In the last section we discuss
the connection between the problem we are studying and the theory of distance sets. There
we prove Theorem 1.9 and Corollary 1.10 based on the machinery developed by Mattila ([14])
for the Falconer distance problem ([7]). In conclusion we describe the finite field analog of
our main result.
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2 Discretization and proof of Theorem 1.4

Without loss of generality, the total mass of the measure µ is 1, so it clearly suffices to prove
Theorem 1.4 for l = 2. Not withstanding this fact, to emphasize the combinatorial aspects
of the problem, let us further regard l as an integer which is not smaller than 2.

Define a ≈δ b if |a − b| ≤ δ. Let µ be an arbitrary compactly supported Ahlfors-
David regular measure, satisfying (2.6) with s = d

2 , and such that (1.11) holds. Let
X = (x1, . . . , xl) ∈ Rdl, Y = (y1, . . . , yl) ∈ Rdl and µ∗ = µX × µY = µ × µ × · · · × µ, 2l
times. Observe that with δ ≈ 1

t , the condition (1.11) implies that

µ∗{(x1, . . . , xl, y1, . . . , yl) : x1 + · · ·+ xl ≈δ y1 + · · ·+ yl} & δ
d
2 , (2.1)
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for all sufficiently small values of δ. Indeed, if ψ is a radial cut-off function which is supported
in the annulus {ξ : .9 ≤ |ξ| ≤ 2.1}, and is identically one for 1 ≤ |ξ| ≤ 2, then by the Fubini
theorem, ∫

t≤|ξ|≤2t |µ̂(ξ)|2ldξ .
∫ ∫ (∫

e−2πiz·ξψ(ξ/t)dξ
)
dµXdµY

= td
∫ ∫

ψ̂(tz)dµXdµY ,

(2.2)

where z = x1 + . . .+xl−(y1 + . . .+yl). The estimate (2.1) now follows since ψ̂ decays rapidly.
Assume without loss of generality that E ⊂ [0, 1]d. Since µ is Ahlfors-David regular,

we can choose δ = c0t
−1, with some 0 < c0 < 1, so that for N = δ−1 there exists a set

ΓN ⊂ (NE ∩ Zd) of cardinality c1N
d
2 , for some sufficiently small c1 ∈ (0, 1), such that the

left hand side of (2.1) equals
∫

µX{(x1, . . . , xl) : x1 + · · ·+ xl ≈δ y1 + · · ·+ yl}dµY ≈

δdl #{(a1, . . . , al, b1, . . . , bl) ∈ ΓN : a1 + · · ·+ al = b1 + · · ·+ bl}.
(2.3)

Without loss of generality we may assume that N is an integer, and that N ≈ t. Theorem
1.4 now reduces to the following combinatorial problem.

Discrete Model Let ΓN be the aforementioned subset of Zd ∩ [0, N ]d of cardinality c1N
d
2 .

Suppose that

#{(a1, . . . , al, b1, . . . , bl) ∈ ΓN : a1 + · · ·+ al = b1 + · · ·+ bl} & Ndl− d
2 . (2.4)

The following theorem describes the structure of ΓN as N →∞.

Theorem 2.1. Condition (2.4) implies that there exists a set Γ′N ⊆ ΓN , of cardinality
#Γ′N ≈ N

d
2 , which is contained in some proper arithmetic progression A ⊂ Zd of length

L = O(N
d
2 ).

In view of what has been done so far in this section, Theorem 1.4 will follow from Theorem
2.1 immediately. As we have shown, the assumptions of Theorem 1.4 imply the assumption
(2.4) of Theorem 2.1 quite readily, since µ has been assumed to be Ahlfors-David regular.

To prove Theorem 2.1, define for u ∈ lΓN = ΓN + · · · + ΓN , l times, the multiplicity
function

n(u) = #{(a1, . . . , al) ∈ Γl
N : a1 + · · ·+ al = u}. (2.5)

The statement of the theorem can now be rewritten in the form
∑

u∈lΓN

n2(u) & Ndl− d
2 . (2.6)

Now we have the following combinatorial observation.

Lemma 2.2. There exists a family of subsets Γj,N ⊂ ΓN , j = 1, . . . , l, such that for all j,
#Γj,N & #ΓN and

#(Γ1,N + . . . + Γl,N ) . #Γj,N . (2.7)

Lemma 2.2 will be proved shortly. To take advantage of it, we need a slight generalization
of the following classical result due to G. Freiman ([9]).
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Theorem 2.3 (Freiman’s theorem). Let A ⊂ Z such that #(A + A) ≤ C#A. Then the
set A is contained in some k-dimensional arithmetic progression in Z, where k depends only
on C.

Observe that the Freiman theorem in the above formulation does not extend immediately
to Zd. However, Green and Ruzsa ([6]) proved that the theorem generalizes to arbitrary
abelian groups as follows.

Definition 2.4. A coset progression in an abelian group G is the sum A+ H, where A is a
proper arithmetic progression in G and H is a subgroup of G. The sum is direct in the sense
that a + h = a′ + h′ only if a = a′ and h = h′. The dimension of the coset progression is the
number k in (1.10) above and the size of the coset progression is the cardinality of A+ H.

Theorem 2.5. Let G be an abelian group and let A ⊂ G such that #(A + A) ≤ C#A. Then
A is a subset of a coset progression of dimension k(C) and size f(C)#A.

In particular, it is immediate from Theorem 2.5 that if G = Zd, then, as the theorem
deals with finite sets, the only possible choice for H is {0}, the trivial subgroup. In other
words, Theorem 2.3 carries over to Zd verbatim.

Remark 2.6. We note that the Freiman theorem continues to hold if we change its input to
#A ≈ #B and #(A + B) . #A. In this case, the conclusion is that at least one of A,B is
contained in a generalized arithmetic progression of the designated length and dimension.

One can probably avoid using the full power of the Green-Ruzsa generalization to extend
the Freiman theorem from Z into Zd, however we leave it as it is, expecting Theorem 1.4 to
have analogs in Fourier analysis on abelian groups other than Rd (see in particular the last
section of this note that develops the finite field analog).

Let us now prove Lemma 2.2. Observe that
∑

u∈lΓN
n2(u) ≤ maxu∈lΓN

n(u) ·∑u∈lΓN
n(u)

. N (l−1) d
2 ·N l d

2 = Ndl− d
2 .

(2.8)

Comparing this with the condition (2.4) we see that there is a subset ΥN ⊆ lΓN , of
cardinality at least c2N

d
2 , such that for all u ∈ ΥN , we have n(u) ≥ c3N

(l−1) d
2 . Indeed,

#ΥN . N l d
2

N (l−1) d
2

= N
d
2 . #ΓN . (2.9)

Then, by simple induction in l, starting from l = 2, there exist subsets Γ1,N , . . . , Γl,N such
that #Γj,N ≈ #ΓN ≈ N

d
2 , as well as

Γ1,N + . . . + Γ2,N ⊆ ΥN . (2.10)

This is precisely the claim of Lemma 2.2.
It follows from Theorem 2.5 that the set Γ1,N for instance is contained in some proper

arithmetic progression A in Zd ∩ [0, N ]d, and this suffices to prove Theorem 2.1 and con-
sequently Theorem 1.4. Observe that if g0, . . . gk, where k = O(1), are generators of the
arithmetic progression A, with lengths Lj , j = 1, . . . , k, one has L1 · . . . · Lk ≈ N

d
2 . More

information about the generators gj and lengths Lj in terms of the parameter N can possibly
be uncovered under additional assumptions on homogeneity properties of the support of µ,
cf. Example 1.7.
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3 Connections with Falconer distance problem

Recent advances towards the Falconer distance problem, see [16] and [4] for the best results
as of today and more references, rely on the L2 approach to distance measures set forth by
Mattila ([14]). The approach implies that if there exists a Borel measure µ supported on E,
such that

M(µ) =
∫ ∞

1

(∫

Sd−1

|µ̂(tω)|2dω

)2

td−1dt < ∞, (3.1)

then the Lebesgue measure of ∆(E) is positive. This fact arises by studying the push-forward
ν on ∆(E) of the measure µ × µ on E × E, under the distance map. Namely the criterion
(3.1) is equivalent to stating that ν has L2 density. Then, if µ is a probability measure, by
Cauchy-Schwartz and Plancherel one has

1 .
(∫

dν

)2

≤ |∆(E)| ·
∫
|ν̂(t)|2dt, (3.2)

so the Lebesgue measure |∆(E)| > 0 provided that ‖ν‖2
2 < ∞. Mattila showed that

ν̂(t) ≈ t
d−1
2

∫

Sd−1

|µ̂(tω)|2dω, (3.3)

i.e. the integral (3.1) represents a tight estimate for ‖ν‖2
2.

Observe that by Cauchy-Schwartz,
(∫

Sd−1

|µ̂(tω)|2dω

)2

.
∫

Sd−1

|µ̂(tω)|4dω,

hence
M(µ) ≤

∫ ∞

1
|µ̂(ξ)|4dξ. (3.4)

So if E supports a Borel measure µ such that µ̂ ∈ L4(Rd), then the Lebesgue measure of the
distance set is automatically positive.

Therefore, to prove Theorem 1.9, we use (3.4) and (2.2–2.4) with l = 2 that imply that
the integral M(µ) can be estimated in terms of the limit as t →∞ of

∫

1≤|ξ|≤t
|µ̂(ξ)|4dξ . td µ∗{(x, y, x′, y′) : x + y≈t−1x′ + y′}, (3.5)

with the notation of the proof of Theorem 1.4. Since µ is a Frostman measure that satisfies
(1.9), and by the assumption that µ is additively simple, cf. Definition 1.8, the right hand
side of (3.5) is O(td−2s), the bounding constant being independent of t. This completes the
proof of Theorem 1.9. Corollary 1.10 follows immediately from Theorem 1.9, the fact that
now s ≥ d

2 , and the estimates (3.4) and (3.2).

3.1 Finite field analog

Finally, let us briefly discuss the finite field analog of the results in this note. Let F be a finite
field of q À 1 elements and Fd be the d-dimensional vector space over F. Fd is equipped with
the counting measure dx, and its dual Fd∗ – with the normalized counting measure dξ.

Let us identify E ⊂ Fd and its characteristic function. For ξ ∈ Fd∗, the Fourier transform
of E is defined as

Ê(ξ) =
∫

Fd

E(x)e(−ξ · x)dx, (3.6)
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where e : F→ S1 is a non-principal character of F. (Without loss of generality one can think
of modulo arithmetics, in the particular case F = Zq, where q is a prime and e(ξ·x) = e2πiξx/q.)

The Falconer distance problem on Fd says that if #E & q
d
2 , then # ∆(E) & q, where

∆(E) = {(x− y) · (x− y) : x, y ∈ E}. (3.7)

By analogy with Definition 1.8, let us call E additively simple if the equation x+y = x′+y′

on E has at most a bounded (i.e. independent of q) number of non-trivial solutions. Then
we have the following analog of Theorems 1.4 and 1.9.

Theorem 3.1. Suppose #E ≈ q
d
2 and

∫

F d∗
|Ê(ξ)|4dξ & q

3d
2 . (3.8)

Then there is a subset E′ ⊆ E, such that #E′ & #E, which is contained in a coset progression
that has O(1) generators and size O(q

d
2 ). If the subgroup H defining the cosets is non-trivial,

then #∆(E) & q.
If E is additive simple, then also #∆(E) & q.

To prove the theorem, observe that by (3.6), the condition (3.8) means that the equation
x + y = x′ + y′ on E has at least some c4(#E)3 solutions, whereupon the proof of Theorem
1.4, for l = 2, is repeated step by step. One may need a version of the Freiman theorem
in somewhat more generality than Theorem 2.3 however (the Green-Ruzsa version clearly
provides full generality and suffices for this modest purpose). In particular, the subgroup H,
cf. Definition 2.4, may be non-trivial, in which case it contains a straight line (the later has
q points). This implies immediately the claim about the distance set ∆(E). Otherwise, the
claim is open, see the discussion at the end of Section 1.

On the other hand, if the set E is additively simple, then by the results of [13], the Mattila
criterion (3.1) in Fd, to ensure that #∆(E) & q, becomes

q−3d+1
∑

t∈F∗


 ∑

ξ∈F d∗ , ξ·ξ=t

|Ê(ξ)|2



2

. 1. (3.9)

Applying Cauchy-Schwartz to the sum in brackets, the condition (3.9) will hold, provided
that

q−3d+1qd−1
∑

ξ∈F∗

|Ê(ξ)|4 = q−d

∫

F d∗
|Ê(ξ)|4 . 1. (3.10)

Compared with (3.8), the condition (3.10) reads
∫

F d∗
|Ê(ξ)|4dξ . qd. (3.11)

This, in view of the discussion earlier in the proof of Theorem 3.1, is true in the case when
the set E is additively simple. This completes the proof of Theorem 3.1.
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