
Linear Algebra & Geometry: Sheet 1

Set on Friday, October 4: Questions 1, 3, 4, 5, 8, 11

1. Sketch the following vectors in R2 and compute their norm ‖v‖

(a) v1 =
(

2
5

)
(b) v2 =

(
−2
5

)
(c) v3 =

(
0
2

)
(d) v4 =

(
0
−2

)
(e) v5 =

(
−1
−5

)
(f) v6 =

(
0
0

)
2. Find the components of

(a) 5v1 (b) v2 + v1 (c) 5
2v3 − v2

(d) 5(v4 + 2v2) (e) 2v5 + v1 + v2 (f) 0v1

where v1,v2,v3,v4,v5 and v6 are the vectors from Exercise 1.

3. Let u =
(

1
2

)
, v =

(
2
−3

)
and w =

(
3
2

)
. Find the components of the vector x ∈ R2 that

satisfies 2u− v − x = 7x + w.

4. We are given a triangle with sidelength a, b, c > 0 and angle γ between legs a and b, see the
figure below. We want to prove the law of cosines

c2 = a2 + b2 − 2ab cos γ , (1)

and derive the triangle inequality.

(i) Consider the vectors u =
(
a
0

)
and v = b

(
cos γ
sin γ

)
. Show that ‖u‖ = a and ‖v‖ = b.

(ii) Plot the vectors u and v and show that they span the triangle with sides a, b, c with
c = ‖u− v‖ and use this to derive (1).

(iii) Use the law of cosines to derive the triangle inequality in the form

c2 ≤ (a+ b)2 ,

and determine for which γ ∈ [0, π] we have equality.

a

b
c

γ

1



5. Use the result from Question 4 to show that for any x,y ∈ R2

‖x + y‖ ≤ ‖x‖+ ‖y‖ .

6. Let u =
(

1
0

)
and v =

(
1
y

)
with y ∈ R. Compute ‖u‖, ‖v‖ and ‖u + v‖, and determine for

which y ∈ R we have
‖u + v‖ = ‖u‖+ ‖v‖ .

Sketch the vectors u, v and u + v in this case.

7. Compute the distances between the following points in R2

(a)
(

2
5

)
and

(
−1
0

)
(b)

(
10
2

)
and

(
11
4

)
(c)

(
0
1

)
and

(
1
0

)
(d) 3

(
0
−2

)
and 5

(
0
−2

)
(e)

(
cosϕ
sinϕ

)
and

(
1
0

)
8. Consider the following vectors:

(a)
(

1
1

)
(b)

(
0
−5

)
(c)

(
−3
4

)
,

find for each of them a λ > 0 and a θ ∈ [0, 2π) such that

v = λu(θ) where u(θ) =
(

cos θ
sin θ

)
.

9. Find the components of the vector x ∈ R2 that satisfies x = λu(θ) for

(a) λ = 1 and θ = π/3 (b) λ = 2 and θ = π/2 (c) λ = 10 and θ = 7π
6

10. Let v1,v2, · · · ,vn ∈ R2 be n arbitrary vectors in R2. Show that

‖v1 + v2 + · · ·+ vn‖ ≤ ‖v1‖+ ‖v2‖+ · · ·+ ‖vn‖

and give an example of n vectors for which there is equality.

11. Compute the following dot products and determine the cosine of the angle between the
vectors.

(a)
(

1
2

)
·
(

6
−8

)
(b)

(
−7
−3

)
·
(

0
1

)
1
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